e

salesforce: Summer '12

Database.com Apex Code Developer's Guide

Last updated: September 11 2012

© Copyright 2000-2012 salesforce.com, inc. All rights reserved. Salesforce.com is a registered trademark of salesforce.com, inc., as are other
names and marks. Other marks appearing herein may be trademarks of their respective owners.

Table of Contents
Table of Contents

Chapter 1: INtroducing APeX.......coouueiiiiiiiiiiiiiiiiiiiiiiiiieiieieeeseessssssssssssssssssssssssssssssssssssssns 9
WAL 18 APEXP.cuervtteuiuiinirteteuttntst ettt sttt st be sttt st b et b bttt st b b sttt etk es et et s et eb sttt st et e b e sttt st beneatat et eteteseneaen 10
How D0oes APEx WOTKP......ocuiiiiiiiiirecce ettt ettt ene 11

What is the Apex Development ProCess?.......cicivrriiueirininieieuiirininietereetneseetenetse s sesesetsesseseseseesesaesesesesssssesesensanns 11
Developing in a Test Database Organization..........eeececeecececrcuererereierererernininenneneseseseseesseseseseseseseseseresssenes 12

WWIEEINZ APEX.vtutiriireriuiintrietetettnt ettt st et ses ettt et b et b ettt b bttt se b b ettt et et be sttt st b sentataaetesereneanas 14

WVILENG TESLS. vttt es ettt ettt bbb bbb a et et a e sttt scatesecaeaene 14

Deploying Apex to a Database.com Production Organization..........ccoceeveeuereuieenereeierecneneniereeeenenenserecrenennne 15

WHhen Should T USE APEX?.....c.coviriiiiiiiieeiireeieeee ettt ettt a e 15

What are the Limitations 0f APEXP.....ccocvurueueuiririririeueiininieiereettrtseeseseseessssesesestsesesseseseatasssesesestatssssesesentsssssesesenssens 15
Warehouse Objects for Code SAMPIES.........cucuiiriririiiiiiriiiccirreeee et 16
WVhat's INEW ... uieeieieieeeeecteet ettt e st s e et e et e e beesteeetaeesseesseebe e be e saessaesaseeasaenbaenseaesaeessessseeassenseansaesseesssesnseenseenseenseenseenseas 16
APEX QUICK STATT. ..ottt ettt s a et e et s et eea s et e een s e enene 16
Documentation Typographical COnVENtions.c.cccrrerreueuiriririereretrtntneeeesetntseenesesetseseesesesesessssesestassesessesenensssssene 17
Understanding Apex Core CONCEPES.......c.curirirurueuemiririreeiereiireseeseeseeseeee et esesesasse e sesesesaesesessnesassesesesessssens 17
Wiriting Your First Apex Class and TrigEer. ..ottt seresetseseeseses et saesesesesssssesesensaens 21
Creating @ CuStOm ODJECT..cveueueuiuiiriricieiciireeee ettt e en e 22

AddIng an APEX Class....c.cueiriririereirinirieierectrreete ettt ettt s et be bttt b et e et b ettt enene 22

AddIng an APeEx TIIZZEr. .c.cuvuriririirr ettt ettt 24

AdAINg @ TSt ClaSS.cueuvieviuiiiriiieieier ettt ettt ettt ettt et e et bt eenene 25

Deploying Components to ProdUCtOn.c.ccoieiviriiuiiiniieicici e enene 27

Chapter 2: Language Constructs......ueiuiinieiniieiniieiniiiniiiniecnneenieenneesisessseessssessssessssessssessssessssesssns 29
Data TYPES.rrerereriiririririrr ettt bttt sttt et bbbt n et 30
Primitive Data TYPes....ccceveveueiriririeieiiririeietcittrt ettt ettt sttt ettt bttt et bttt et n e e 30
SODBJECE TTYPES..euruuiuiuiierererereteretetetse sttt ettt et b s b s s e s ettt ettt s b b bbb b s et n s s e e e neeaeaen 32
Accessing SODIECt FIELAS. ...cuvviriiueuiuiinirieiciciiriretcc ettt ettt ettt bttt ene 33

Accessing sObject Fields Through Relationships......c.ccceveuereriirininnninniiccrcceeeeieesenesesesesessesesesesesenes 35

Validating sObjects and FIeldsccoioiiiiiiiiiicceee e 36

COllECtIONS. .evteuteeteeetete et etteste et esteste e bt esbasseestessasseassassasseassassansaassasseassassasseassassasseassassassanssassassaasaassanseassessansesssassenseaseas 37

LSt e tteeie ettt ettt ettt e e et e et e e te e e bt e e bt e et e e ae e be e be e baearaeeaae e be e beeabaearaeettaanbeebeeateabaeasaeanaeeseetaereeanaennreans 37

St tetiett ettt ettt ettt e ettt e st e et e et e et et e et e et e et b et e bt e st e b eetten b e bt et b e b e bt es b e beettest e be et b esbeteestentearsententenssanes 41

IVLAPS. ottt e e bt n e 42

Maps fOm SODJECE ATTAYS...eevevreirereriicectticieeeeeieiererereterere sttt ettt se bbbt s sesessssaseneseneaes 44

Tterating CollECtioNS.cueiriiiiiciiiieiciete ettt st 44

R 0o V- S 44
Understanding Rules of COonverSion.........cccoiiiiiriiiiiiiiniciieeeeeeeeee ettt 46

W ATTADLES. oeutivieiteieettet ettt ettt e et et et e teesb e be e st et e be e st e s b e ta e st esbe et e ess et e eRtes b et e eRtesbeekaestenbe Rt e s b et eeteerbebeesaesbeteestenseteessententen 47
CASE SEISIEIVILY. ..ttt b e a et a et e e b et b et e et a et a et aes 48
COMSTANES. 1 ettetteteetteteteeteetesteeetestesteestessesteestassasseassassasaassessanssassasseassessasseassassasseassassansaessassasssassassansaassassansesssassenseaseas 48
EXPI@SSIONS. ..ottt e st a e e e R et st a et a e e s st b e 49

Table of Contents

Understanding EXPressions........ccocoiirueueuiioirriiicccerieee ettt enene 49
Understanding EXpression OPErators...........ccireirieuiriruiririiiniiiieireeeeeeseeeset et sseesse e ssesessesesesesessesesaesesaesessesesenas 50
Understanding Operator PreCedence.........cuovv et eenene 56
Extending sObject and List EXPresSions........ccecciiuiiriiiiiiiiciieiiccieeteree et 57

USING COMUMEITS. ...ttt ettt e et b e e a et s e ettt e s s et sa et sesene e enene 57
ASSIZNIMENT STALEIMIENTS . .eeurtrereuiutererteteueaetrtetereattrtstesebeseatatsaeteses et st steseseaeattesebeseatatse et beseatatetetebeseatateeebesentattsteseseneatasnsene 57
Conditional (If-EISE) StateImMeEnts.......ccueevieiereieeiereerteeteeeerteeteeseesteeseeseeeseeseeseeseessensesseessessesssessesssessessesseessessesssersensesseensensesses 59
00D ettt h et R e e R e b e h et a st e R e bt a ettt aen et n e be e 60
DO-WHILE LLOOPS....uuiuiiiiiieiiirieicieec ettt ettt et s et sa s en e 60

WWHILE LLOOPS. ... uiiiiiiiciitcrcerte ettt et s e st sa e n e nan 60

FOr L00OPS ittt 61
Traditional FOr LoOPS....c.cceiriririeriiinirieieicctristeieiee ettt ettt ettt sttt et e e s bt eeaene 62

List or Set Iteration FOor LLoops.....c.cov ittt 62

SOQL FOr LioOPS..ceiiuiiiiiiiiiiiiieieteietect ettt sttt s e n e nenns 62

SOQL aNd SOSL QUETIES...c.ueeuveiierieresteetietesteetestesreeaessesteessessesseessessesssessassesssassassesssessesssessassessssssessesssessassessesssessesssessessens 64
Working with SOQL and SOSL Query Results........c.ccviiiiiiiiiiiiiiicieeeceeeeeteeeeeeee e 66
Working with SOQL Aggregate FUNCiONS.o.eueueiiniriiiiiircccceree et 67
Working with Very Large SOQL QUETIES.......c.ocuiiiiriiiiiiiiiieieeeecee ettt 67

Using SOQL Queries That Return One Record.......c.ceeeiiininininninnninicccrcieieereneteserereeseseseses e ceseesenens 70
Improving Performance by Not Searching on Null Values........c.ccceeiiiiiiiiniiiniiiiinciceeceecccecceeeseeeeenees 70
Understanding Foreign Key and Parent-Child Relationship SOQL Queries........ccoceeverurueucirinininiecieneneeeeeeeeeens 71

Using Apex Variables in SOQL and SOSL QUETIES......cveueutriririerereirininieieretnirenieresetnestseeseseeseseeseseseesesssseseseessssene 71
Querying All Records with @ SOQL Statement........c..cucueeiririiieuiiirnieiccciree e e ese s 73
LOCKING SEAtEMENLS.veuiitiiiiieiiiieiieieieietet ettt ettt ettt b et s et e b et s et s ese s eae s e b ese s e e st saenesseneseeneneenen 73
Locking in 2 SOQL FOr LioOP....ciiiiieiiiiiecceireeceree ettt e 73
AVOIAING DIEAAIOCKS. ... vveuiiririeieiiiirietet ettt ettt ettt ettt sttt sttt b bttt a ettt et ene 74
TranSaCtioN CONTIOL...uiuirieuirieieieteirtetiteteteteteteesteteteteseeteseesesesesessesessasasessaseasesensesensasaseesaseesesesesessasassesesersesensasansnsanssesenss 74
EXCEPHON STATEIMENTS. ..ottt ettt ettt et e b et b s s s e s b s e b et s e et e ene s enesneneseenen 75
TRIOW STATEMENTS...uiuvetiieteeieteieietistetestetesteteseesesessesessesassesassesesssesessesensesensesessesesssessnsesensesensesensesessesesessesessesensesensasan 75
Try-Catch-Finally Statements....c.ccoiririeuereieirirteterctertetereteett sttt ee et bt be et a b st e be bttt saeteseseneneene 75
Chapter 3: INVOKING APEX...eiiiriiiiiiiiiiiiiiiiiiiiiiiiiiiieeiniisnieeesssessssess 77
T ELZZETS ettt ettt sttt ettt sttt st b ettt e ettt e bttt R bttt h bRttt et b bttt et bttt e b s nen 78
BULK TIIZEEIS. et tvtiieenieeiceeicetieieieuetetese et s ettt ettt b bbb ettt ettt bbb bbbt nesea e e seneeaeacn 78
TTIZZET SYNEAX..vveuiiirietciettrtet ettt ettt sttt bbbt b et s b ettt bbbttt st b bttt na et benenentene 79
Trigger Context VAriables. . ..o ivuririririririieceteririeieieieiererereresstssseseses sttt se bbb sesesesesesessssesesssesestacacasasecsenens 80
Context Variable ConsSIAErations........ciuieieecieeiieeeiieerieeteeiteeeteesteesteesseeeaeeseesseesseesseesssessseessesssaesssesssesssessessseesseessesns 82
Common Bulk Trigger IdIOmS. ...c.euvueuriririereiicteticiceieeieteereretesesesee sttt sesesesesesessssassseseseasaes 83

Using Maps and Sets in Bulk Trig@ers.....c.ccevreueuiinnrieieiiinineicctnnesieseictsesteeesesees e seseeseseesesesesessenene 83

Correlating Records with Query Results in Bulk THggers......oveeeererieerrereeeierererernninenenneseseseeeeeneeeenene 83

Using Triggers to Insert or Update Records with Unique Fields.....c.ccovrueueinnnnieccnnnnecineneeeecccnenene 84

DefinIng TrIZEEIS..vovricecuieieeeeerieieieetetetereret ettt ettt ettt ebe b s et et a sttt ettt bbb bbb seneseaasaseneeaeaes 84
Triggers and Recovered ReCOrds......covueueueuieiririiieucinirinieicicitninietceectntseeteve sttt ettt esesaene 85
Triggers and Order 0f EXCCULION. c.vvvviiiieceiericicicicieieieietetetetetse st be e sesese s s et aene 86
Operations That Don't INvoke TTriGZers. .. .c.cvvu ettt se et ses e e seessesesenes 87

Table of Contents

Fields that Aren’t Available or Can’t Be Updated in TIigers.....ccceeuereururirirnninrininccceceeeeeeienererererenenesessesesesesesenes 88
i EXCEPIONS. vttt ettt ettt sttt b ettt na et be et e etene 88
Trigger and Bulk Request Best Practices........covieeiieieueueiiininininininrc et cceeecerieieienerenesesesesesssseseses e escscscasecsenens 89

AAPEX SCREAUIET ...ttt ettt ettt ettt sttt b bt b bttt et bbbttt bttt et bt e e e 90
ANONYMOUS BLOCKS. ...ttt 95
APEX I AJAX ettt h bt ettt h ettt bt e e e 96
Chapter 4: Classes, Objects, and Interfaces..........ccoovueiiiiuiiiiiiiiiiniiiniiiiiniiiieece s 98
Understanding CLaSSES......c.eeiruiiriiiriiiiiie ettt st sttt s a s s et e et a et e e bt b et ee 99
Defining APEx CLASSES.....ceveueuiriririeieriirireeieteetre ettt et a ettt a s e st e s s seae e ee et s e eneaene 99
Extended Class EXAMPLE......c.cciiiiiiiiiiiiiiiiiicicieeet ettt 100
Declaring Class Variables.........ccoueueuiuiiiriiieuciiirieieecinire ettt ee e senes 103
Defining Class IMEethods.......c.coueuiiiiiiiiiiiiiiee ettt 104

USING COMSLIUCTOIS. ...veviuiuiaiteteueieeieee ettt et a et e et a s e e e s e s s b s eaeae e eaeneneneanenenene 106
AACCESS IMLOITIETS. . veuveueeeeeeietietestet ettt et ettt ete et et et et ese et e stesbeseeseese et et assaneeseesessassenseseesaesasansanseseasessansansassasensansanes 108

STAtC AN INSTANCE .cveueteiiietiteetetc ettt ettt ettt ettt ettt b et b et b et b st e bt s ebe e e b et sbenesbesesaebeneenen 109

Using Static Methods and Variables........c.cccioiiiiiiiiiiiiicceeieeeeeeceee e 109

Using Instance Methods and Variables..........oociiiiiiiinnniiiiiceccreeeeeeeee e 110

Using Initialization Code..........couiuiiiiiiiiiiiiicee et 111

AAPEX POPEITIES....cueueeiiiiiiietcece ettt ettt 112
Interfaces and EXtending CLasses....... oottt ettt s 114
Parameterized Typing and INErfaces.......cccoeoieeieieieieiirinininrrr ettt ser s b ea s 115
CUSEOM THETATOTS. 1uvttieuteieetieteete et et et et e te et e et e e e ae et e teeseensesseestensaseentensaeseentenseeseensanseeseensansesstensenseentansasseensansasnean 118
KEYWOIAS. ...ttt e 120
Using the final Keyword..........cciuiiiiiiie ettt 120

Using the instanceof KeyWord..........oouciiiiiiiiiccciecece e 120

Using the super KeyWord.........ccooiiiiiiiiicic ettt 121

Using the this KeyWord........ccciiineerreeeee e enene 122

Using the transient Keyword..........oooiiiiiic et 122

Using the with sharing or without sharing Keywords..........ccoeiiionniniiiiiiiireccceeece e 123
AANITIOTATIONS. c.vtevitetetetteteetestet et et eteetestesteseeseete st esseseeseesessassassaseeseeseesassansaseesess et anseneeseese et ansenseseeseesensansaseeseesessansensessesensanes 124
FUTUTE ANDOTATION. t.tteutteiirieiiiet ettt ettt ettt et ettt eb ettt sttt b e bt s b st s b ebe st eb et et et et ese st esesaesenaesenestenenee 125

TSTESt ANNOTATION. c.evititeeieeietietistestetestettetestetesteseeseesessassesseseesessassassansessesesassassansessesessassansassessasasansansasseseesensensanes 126
ReadONnly ANNOTAtION. ...c.eciiiiieuiiiirirteieicieire ettt ettt e e s ee e s nens 128

APEX REST ANNOTATIONS..c.ttevriuiiirieieteiitririeteicc st tereatse ettt ettt be et se st ese bttt b sttt seeseseneneaesenene 129
ReStRESOUICE ANNOTALION. c.cuvteuirteiirieeiteteteteteteteie ettt ettt ettt st s bt se et e e b e b et stesesesenaesenesbesessesensesens 129

HttpDelete ANNOAION. ...veueuiieirirteteeetirteteteretre ettt bbbt st e s sese e s s b sestesesaeseseneaesesenenencs 130

HEtPG et ANMOTATION. ...uiuiiiciiiiirieieieec ettt s et eeeenenenis 130

HttpPatch ANNOTALION. c.c.eveueiieiiririetcecttrtetetet ettt ettt ettt ae et a ettt a bt eesenenencn 130

HEtPPOSt ANNOTATION. c..etuttiiiiirieietcet ettt et e s nens 130

HEtPPUL ANNOTALION..c.cutttetetiiiirirtetciettrt ettt ettt ettt ettt a et e s b et esesaebese et s s enenencn 130

Classes AN CASTIIZ. .. .ueurirereeteiiirireeieie ettt et et s e s e s eae e e ae s e aen e enenenis 130
Classes ANA COllECTIONS. c..eeuteuiritieiieriieteeteieettet e et e et e et e e s et eaeeeesseestetesseeateseeseensanseeseensansesntensesseentansasseensansassean 132
COlleCtion CaSTINE. ...vveuieiiieeieieiiirere ettt et a e et a et ese s st e e s nens 132
Differences Between Apex Classes and Java Classes.......couvueueueiririrueueininniniereitninieieeteseseeseseseessseesesestesesseseseseessssesesens 132

iii

Table of Contents

C1ass DEfINItION CrEatioN...ciuiiiesieeieiesteetiestesteetestesteeeessesseessessesseessassesseessasseassessassesssessessesssassesssessansesssessessessssssessesssessesses 133
INAmMING COMVENTIONS. ...ctiiiiiiiiiiieieirte ettt et et e b a et a e st s e es e s b et e s et see e e s e e s eseeneneaee 134

INAME SHAQOWINEZ. c. ettt et a s sens 135

CLASS SEOUIILY.... ittt ettt s b et b et et e st e s e b et e et s s e e s et b et s et s e e s e s e s s et senesneneas 135
Enforcing Object and Field Permissions........ccccioiieuiiinirricceirreciceereeee et ae e e sa s 136
INAMESPACE PrEfIX...cviuiiiiiiiiiiiicc ettt ettt e et 137
Namespace, Class, and Variable Name Precedence..........oociiniiiiiiniiiincccsecce e 137

Type Resolution and System Namespace for TYPes......c.cecivrriereirinnirieieirinneeetresereeeeeeest et seseseenessesene 138

VIEISION SETHIIES...vvveuiueeieieiiirereeteteees ettt sttt b st e s se s et s s st e et sese et s ea s s s st se e nesenean e eeenenenis 139
Setting the Database.com API Version for Classes and Triggers......cccovveueueirnniereeninnneeeeeenenesieseeeseseseenescnenens 139

Chapter 5: Testing APeX....covueiiruiriruiririniiiiriiiniieiiitiiieesieseitsssesssesosesssessssesssssssssssssssssssssssssssnses 140
Understanding TeSting i APEX.....oveueueuerirrirueueirniriesereetntseesesetsestesesesestatsessesesestssssesesestatsessesesesentasssesestattsssseseseneasssesene 141

WRY TSt APEXP..euvviiriiiiicetetitieieaeaeiete et sttt ettt ettt ettt bbb be b bt et a s a e se ettt aeaeatesaeaesebenesenenen 141

WHA 0 TESt I APEX.ututriiririuiriririeteuiirinieteteettrt sttt et bt b ettt b st st sa b bttt st et be et s e b beneatteaesesenentanes 141

UNIE TESHNEZ ADPEX.euturuiririuiiiieiererereiereteritetstseseseseses st ettt ataesebesesesesesesesesesessesese et e tatatatateeaeaeaeaesesesesesesesesesessesssssnsnenes 142
Isolation of Test Data from Organization Data in Unit Tests....ccovueueernnriereninnnnieccnenneiciecreneeveseeseseesenenenes 143

Using the runAs IMEthod.c.cciiiicccceet et e 144

Using Limits, startTest, and stOPTest. . .euieiriruiueuiirininieicicirireteeetrentee ettt ettt se s seseeneesenene 145

Adding SOSL Queries t0 Uit TeSts..uvuiiiiiieeririeieiereieieiereteieere st eesteeeesesesesesesesesesesesessasesesesesesescasacscsces 145

Running Unit Test IMIEthodSs. ...c.cocvrueueueirririeieciinieieic ettt ettt sttt bttt a e bt be et e s esenencn 146
TeSting BeSt PractiCes....c.ceueueueueueueieieiiiiinirirnnrcrer ettt bbbttt a s a sttt ettt bbb bbb b s s s s s e e e s 150
TEStNE EXAMPLE. ..ctviiriiiiiieici ettt ettt bttt ettt bttt bttt et be ettt en e 151
Chapter 6: Dynamic APeX......cceiivuiiiiiiiiiiiiiiiiiiiiiiiiiiiieinieeenseessssessssesessssssssssssssssssssssssssssssssssss 156
Understanding Apex Describe INfOrmation........ccevirueueueirininieiereininircieetntsestereretsesee et eseseesesesetsssaesesestsesessesesenesssesene 157
Dynamic SOQLu. ...ttt a e as 161
Dynamic SOSLi. ..ottt s et 162
Dynamic DML ... e 163
Chapter 7: Batch APeX.....ccovuiiiiniiiiiiiiniiiiiiiiiiiitinniecnnecesitecssseessssessssssessssesssssssssssssssssssessssss 166
USING BALCH APEX...uiuiuiiiuiiiiiieieieieieieieietitetsesese ettt bbbt s s a ettt bttt s b bbbt es st sesesesssnaneneres 167
Understanding Apex Managed SHaring.......cocccernreuccinnnieieeeinneeeieetreseeeesesets et tsesaeseseseess s e sentsesessesesesesssesene 175
Understanding SHaring.........cccioirriiiiinieccc ettt enene 176

Sharing @ Record USINZ APeX......c.eueuieiririiuereuiriririeieietirineesereetntseesesesetstsee s st ae s ettt sttt seeseseseatessesesesensnes 178

Recalculating Apex Managed SHaring.........ccccioiiiriiiiiiiieiireeeeeee et 183

Chapter 8: Debugging APeX.....ccovuiiriuiirinuiininiiiiiiiiniiiiiieeemieesmieimmeesmmiesmseesmmeesmstesssssssss 188
Understanding the Debug LLog. ..ot e 189

Using the Developer COomS0le.ot 193

Debugging Apex APT Calls......coccciiiiiiieieeeeieieieeeeeese sttt se e sesesesesesessssasesesesesesessasasasacaces 201

Handling Uncaught EXCEPLIONS......c.couciiiiiiiiiiiiiiciieiteee ettt et 203
Understanding Execution Governors and LIMIts.........cccocoioirriiiiininiiiiieeeeeneceee s e eseenens 203

Using Governor Limit Email Warnings........cccoioiiiiiiiiiieeicceei e 206
Chapter 9: Exposing Apex Methods as SOAP Web Services.......cueevviiiiniiiiiiiiiniiiiinnieinnneennnneennn, 207
WV EDSEIVICE IMLETNOMS. ... vicviiiieciieceeeeie ettt et et e e et e s tee e e e et e e be e teesseeesseesseesseenssassaessseenseenseessaesseesseessseansaenseeseanseans 208

iv

Table of Contents
Exposing Data with WebService Methods........c.coviiiuiiiiniiiiiineccereeeee et 208
Considerations for Using the WebService Keyword...........ccoiiiiiiiiiiiiiiiiiiicecncceeeeeceeeeee e 208
Overloading Web Service IMethods......c.c.vcvviiiuiiiniiiciiieecciereeecceee e e 209
Chapter 10: Exposing Apex Classes as REST Web Services........cocueevuriviiiniriniriniiinnininieninencnneennne 210
Introduction t0 APEx REST ..ottt et be bbb st a sttt esesebenenenen 211
APEX REST ANNOTAtIONS. c.cttteveuiuiririrteueectntnteteteit sttt st tesestst st se b sttt s et sesest st saebeseatat st saesebeseat st et beseatatsssseseneneassesene 211
APEX REST MEthOdS. ...cucueuiieieieieieieieieiiinteeeerser sttt teeieseeeae bbbt s s s s s s e sttt ettt et ae bbb besesenesesesesssnensnenen 211
Exposing Data with Apex REST Web Service IMethods.......c.cucciririeueuirinninierecinineieietereeeeseseeeseeeeseseeseseeseseeessssesesencs 216
Apex REST Code SAMPLES....c.cucueriieiiririiiriniririnerret et ticieieeeieieserereseteseseseasses ettt sebesebesesesesesessesssssnsnenen 217
Apex REST Basic Code SAMPLE....ccvuiueuiuiriririeieiciiririeieicttnteeeeietseseeee ettt sese et et se et seeseseseseessesene 217
Apex REST Code Sample Using RESTREGUESE......curueueueueueieiereiiiiiriririririnerecceeteciereaeaesesenesesesesesessessseseseesesesescscsces 219
Chapter 11: Invoking Callouts Using ApeX.......coccveevueiriuiinriiiniurinsirinnieiniiinieinneinisennsenseenseesseenne 221
Adding Remote SIte SETHIES....c.cveururueueuiirireiieieiiirere ettt ettt e s et a e e e s e e enene 222
SOAP Services: Defining a Class from @ WSDL DOCUMENL......c.eveuiiriririereiiriniicieiirinieieieettseseeteneeneseeseseeeseseeseseseeees 222
Invoking an EXternal SEIVICE........ceiuiiiriiiiuiiiiririeicic ettt 223
HTTP Header SUPPOTt.....cucucuiriririeieiieiririnieieiettsteteteietstse ittt aesese st s e st se e s st s st b seatt st e seseneesesesesencn 223
Supported WSDL FEatUres........ccucucuiuiiiiiiiiiiiriiciciciiee ettt a et e 224
Understanding the Generated Code.........couiiiiiiiiiiiiiiiiicc et 226
Test Coverage for the Generated Code.... .ottt s st sees 229
Considerations Using WEDLis.......c.c.coiiiiiiiieece et 230
Mapping HEaders.ccuiiiiiiiiiiiiccee ettt 230
Understanding Runtime EVEnts..... ..ot 230
Understanding Unsupported Characters in Variable Names.......c.ccccovuiueuiirnnniccinnncecenreeeeeeeceeenes 231
Debugging Classes Generated from WSDL Files.......coocciiiiiiiiiiiiiceceececsccseeeceenes 231
InvOKINgG HT TP CalloUts....covveieuieieeereieeieueieiereieiereresesesessesesesesee e tseseseeseesesesesesesesesesesssssssssssesesestststasatacssasessesesenesesenenen 231
USING COITIICALES. ...ttt ettt et et b e e e h et e h et b e st s b b e e e s e e sa et et seene e b e b et n s 232
Generating CertifICatES.ouiuiuiirirerieieieerire ettt ettt s st e s e e s nenis 232
Using Certificates With SOAP SErvices......cvrueueueinininieieuiinninieieetrtnteteteeetst ettt et st sasseseseseneesesene 233
Using Certificates With HT TP ReQUESES......coviiuruiurieieeiieieieieieiniirerrisereeccetesieieseaesesesesesesesesessssesesesesesesesescscaces 234
CAllOUE LIS ...ttt b et e e et b e et s e s e b s s e nena 234
Chapter 12: Reference........ouuuiiiniiiiiiiiiiiiiiiiiitininiiecincins s essse s sssssssssssses 236
Apex Data Manipulation Language (DIVIL) OpPerations.......eeueeeerererueueerineneniereueneneneereneattseseesesesesessssesesessesessesesesessssesene 237
Delete OPEration......c.cccvueueucueuiiririeieiiiereeeeiee ettt a ettt s et a s neas 237
TSIt OPEIATION. ...cuitiiiiiiiiiiiet ettt s b s b et a et e e e a e 239
Undelete OPEratiOn.....c.cueuirirerueueuiiireeieieiitreeeeie ettt a et e s et s s b e se e neseseeeeenene 242
UPAate OPEration........c.cciiuiiiiiiiiiicet ettt a bbbt b e st be s n e 244
UPSEIT OPEIAtION. .. cueviuieiiieecieieiiee ettt ettt et sttt a s nenene 247
sObjects That Do Not Support DML Operations.........cccceeueueuerrererrereertninieiereeteenessesesesestssssesesetseseesesesessssssesesenes 250
sObjects That Cannot Be Used Together in DML Operations......c.c.ceeueerererererericniieeeeeereenerererereserereresessssesesesees 251
Bulk DML Exception Handling........ccoviiiiiiiiieinerceneeeeiee et 252
Apex Standard Classes and IMEthods.ccouiueuiiiiiiiiiiiineeeireecee et 253
Apex Primitive IMEthods. ...coveveueuiirinieiciiiirineccc ettt ettt ettt ae ettt bttt 253
BIOD IMEtROMS. ...ttt 254

Table of Contents

B001ean IMLEThOQS. ..c.uveiiiieeiiiiciicieiect ettt ettt e ettt este et et e steesbesbeeseesbesseesaessesbeessessabeessesseeseensansenees 254

Date IMIEthods....ouvieeiicieceeeeee ettt ettt ettt e te e te e be e baesaaeeate e be e baeeaaeeaaeeabeenreebaeereensreennas 254
Datetime IMEthodS. ...ccviiuiiiiiiciicieiectetestee ettt et ste e et e s te e b e beeseesbesseesaessesbeessassanseassassenseessansenses 257
Decimal IMLEthOMS. .. uviiiiieieiiecie ettt ettt e ete e te e be e aaessaeeate e ba e baesseesaseensaenseeseesseenssennnas 262
DoUDIE IMLEthOdS....ccuviiiiieeiiiiciietetect ettt ettt et et s te et e besteesbasbaeseassesseesaessasseessassaseassassenseessansenses 267
Integer IMEthods. ...coueiiieiiiiicicieec ettt 269

Liong IMEtROMAS. ... eeeeiiiiicicici ettt 269

SENEG IMLEtROMS. ...ttt 270

TIME IMLEtNOMS..cuveeiieietieiitiieieetet ettt ettt ettt ettt et e b eseeteeteebeba s essessebaebesbensesseseessesessensensesseseesensanes 275

Apex Collection IMEtROAS. . ..cveveveuiiririeieiciiiririeteicc ettt ettt ettt sttt s ettt s e st e s enene 276
LISt IVLEEROMS ot cutitieiteie ettt ettt ettt ettt et e s teesa et e ebeesb e beerbesbeese e st e s b e abeesbesbebeesbenseeraentantenees 276

MAP MEthods.....ccoiviiiiiiieiiice ettt st 283

SOt IVLETROAS. ..cuvievieiectieiteie ettt ettt et e et et e e ta et e beesbesbeesaessasseessessasseassasbesssessesseessassanseeseessanseessansanseas 287

ENUM IMEtROMS. .. uiieiieiecieeeeeece ettt ettt ettt e e et e e be e beesbeeesaeesaeeaseeabaenbaesseesssesassensaeseesseessseenseeseenns 291
APEX SODJECT IVIEROMS. ...ttt 291
Schema IMEthods.cuviiiicieceeceeeee ettt ettt e e te e te e be e beeeaaeeabeeabe e baesbeesaseenseenseenreenns 291
SODIECE IMETROMS. ...ttt ettt 292
sObject Describe Result IMethods.......cc.eieiiuiiiiiiiiiiiiiiicicrceeeee et 296
Describe Field Result IMEthods......c.vcveiiiiieiiiiiiieieiieeeieie sttt ettt ste st eseste e s essesseesaessesseessassessesssassenses 298
Custom Settings IMethods.......ccoioiiiiiiiiiiec et 305

APEX SyStem IMEthOdS.cuvviuiiiiiieicci ettt 310
Database IMEthods.....ocouiiiiiiiee et ettt et et e et re e e aa e et e e re e beeeaeeeareeanas 311

JOON SUPPOTL..eiiiiiiiiiicict ettt ettt neas 322
LAmits IMIEthodS. .cocuviceiieiecieeeteeeteee ettt ettt e e bt e ete e et e e aeebe e te e baessaeesaeenbeenbe e seesaeesaseenseenbeereenreans 339

IMath IMLEthodS. ...vevieeiiiiiieiieiee ettt et ettt et e s te e b et e e beesbe b e e beesbesbeessessesseessessessaessansesssessensesssassansenss 342

APEX REST .ottt ettt ettt bttt sttt 346
SEATCh IMLETNOMS. .. cuvivieeiiiiciieiectee ettt te ettt e b e e e teesb e beessesbesseessassesssessassasssessanseessansaseas 351
SYstem IEthods. ...c.cvieiiiiicic et 352

TSt IMLEtNOMS. 1..viuveeieeieteetiteteet ettt ettt ettt et et et eteebe b e b esseseeseebesassessesseseebesbensessessessetessensenseneeseetensanns 362

TYPE IMLEtROAS. . ettt ettt ettt ettt ettt bttt sttt bttt ettt nene 364

URL IMEthOdS....vicuieiieiieiieeieiieteeteieeeeteste st etestesstessesseessessessaessassesseessassasssassassesssessensasssessesssessensesssessassenss 367
USEIINFO IMELNOMAS. ..c.uvieiiieiieiieeteectte ettt ettt et et e e te e beesteeeaeeeaaeenbeeseesseesaessseenseentaenraeseesseesssennns 370
VErsion IMLEThOQS. .ccuveiiiiciiiiiciicietect ettt ettt et et s te e st e beeteesbesbaessasbesseessessesseessassaseassassanseessansenses 371

Using Exception IMethods. ..ottt 373
AAPEX CLASSES.....veeieeecicieie ettt ettt et b ettt e sttt ettt e bt nenene 375
EXCEPHON CLaSS ..ttt ettt sttt n et 376
Constructing an EXCEPHION.c.cuiiiiiieicieireccc ettt e 376

Using EXception Variables. ..ottt s 377
Pattern and MatCher CLaSSES.....cviiiiiiiieieriiieeiesteetetesteetteteste et essestaestessesteessassesssassassesssessessasssessesseassessesseessassenses 378
Using Patterns and IMatChers.........ccoouiiiiiiiiiicciieeeee et 378

USING REGIOMS.....uiiiiiiiiiiiiiiiiic e 379

Using Match OpPerations........c.coveueirieiriiiiriiieieieirteiriete ettt et et a e s b s sae e snenes 379

USING BOUNS. ...ttt 380
Understanding Capturing GIOUPS........cocieueuieirieirieirieiieeeeeteteese ettt ss e s 380
Pattern and Matcher EXample.........ccoooiriiiiiiiniciirceci e 380

Table of Contents
Pattern IMLEthods. . ccveiiiiieiiiiciicietectet ettt ettt et e b s te et e beste e st e s beeseasbesseesaessesbeessessaseessesseeseessansenses 381
IMAtCher IMLEROMAS. . c.uvieeiieieeieecteecte ettt ettt ettt et e e be e s e e eaeeeaaeenbeese e se e saessseenseentaensaensaesseesssennnas 382
HTTP (RESTTUL) Services ClaSSes.....cueeuerriirierirriereeeesteeseenseeteeseesseeseessessesssensessesssesesssessessesssessessesssesesssessensessesnes 388
HITTP ClLaSSES.cuveviiuieueiteceeeteeteeeteete et eeteete et eeteete et eeteete et eeteeteeaeeeseessensaeseessenseeseessenseessesseseessensenseessensenseeees 388
CLYPLO CLASS vttt ettt ettt eenenens 395
EncodingUH] CLass......c.couiiiiiiiiiiciiceecec ettt 401
XIMILL ClaSSES. veuvereerranresrierressesseestessesteessessasseessassesssessassesssassassasssassassesssassasssassassansssssassenssessessessesssessesssessensesssessensanss 402
XINISTIEAM CLASSES.oeuviirieirieitieieeete et et et et e e tteeteeteebeesteesseeeseeesseeaseesseeseasssesssesaseensaenseessesssessseesseenseenns 402
DIOIVL CLASSES...uveviirrereirieiinieeteetesteeteetesteesaesesteessassessaassessesssessassesssassassasssassesseassassesseessassanseassassansesssansenses 409
AAPEX INLEITACES ...ttt ettt ettt ettt ettt b ettt b et e et ene 415
Auth.RegistrationHandler INterface.........coviuiuiiiiniiiiiicecreeeeceree et 416
Comparable TNtEITACE.coiuiiriiiiiii ettt 419
Chapter 13: Deploying APeX.....couuiiiiuiiiiniiiniiiiiiiiiiiiieiieeeiieniseessseesssessssssssssessssssssssssesssss 421
Using Change Sets T0 DEploy APEX......c.covriueuiirririeueieirininieieretrtneeseresetstseseesesests s sesttsesaeseseseatsssseseseassssssesesenessssesene 422
Using the Force.com IDE t0 Deploy APEX.....c.cciriiriiuiiiinnieieeiireeieieeereeeeteee e see e e see e e eesenene 422
Using the Force.com Migration TOOL....c.ccoviuiuiinniniueeinineiectineeeveeteseseesesees et ese ettt s s e sesesesassesesesesesssene 422
Understanding deploy.......ccoo ettt ettt 424
Understanding retrieVeCode. ..ottt 426
Understanding tunTests()....c.eeuerererrrrererininiciicceirieieeeretetesereseesesese sttt esestessesesesesesesesesesesesessassseseseseasasasscscsces 427
UsSing SOAP API t0 DEPloy APEX...veueueuiiniririeueiirinirieieiettntsaeteseetseseesesesetstsssaeseseststseesesestatsessssesestatssssesentassssssesesenessssesene 427
APPENAICES..ciiiinniiiitiiiiitiiiiirin e s s b s e a e s e b e s e s b b e e s aas 429
Appendix A: Shipping Invoice Example........cooviiivvuiiiiriiiiiuiininiiinnnniinnieinnicnneeneeneee. 429
Shipping Invoice Example Walk-TRrough.......ccccccevruriririrrinniiiiicceieieieierenesetesesesseseseses e esesesessessesesesesesesenes 429
Shipping Invoice Example Code.........coiiiiiiiiiiiiiiiiice e s 432
Appendix B: Reserved Keywords.......cccevvuiiiiiiiiiiiiiiiiiiiiniiiniiiinccincneccneccnne e 441
Appendix C: SOAP API and SOAP Headers for ApeX......ccoouierinueiiiineininneinnnnecinnnecnnneecsnneenes 443
APEXTeStQUEUCTLEI ...ttt ettt sene 444
APEXTESTRESULL ..ttt ettt ettt ettt b e eaes 445
COMPUEANATEST() vttt ettt e bbbt b bbb a ettt ceeaas 448
Compile AndTeStREGUEST....c.cueririeicieiiiririetcce ettt ettt ettt et sa et s ne 449
CompileAndTeStRESULL. .. .vvveicccce ettt s e 450
COMPILECTIASSES() . cvvnvrrervninirieieteieetrerteteteie ettt ettt ettt e bt a bttt a b b se s e b bt na et beseneneeseserenen 452
COMPILETIIZEEIS().cvvvvererererereteteirirer ettt b e sttt b b a s n s e e et acasans 453
EXECULEATNONYITIOUS(). vuveveveninrerurereueateteteteresestrteteseseattesesesesestseseseseatat st sseseseneatsesesestatetssesesesentassesesentassesseseneasasssnses 453
Execute AnonymousRESUIL........c.cuiiiiiiiiiiiccc e 454
FUITIESTS () eve ettt ettt ettt et e e e et e ete e et e eee et e e seeeseeeaesenseenseenseeaseeesseeneeenesenssenteeaseseresenssenssenseesseeenseeneeenees 454
RUNTESISREGUEST. . vttt a st 456
RUNTESTSRESULL. ...ttt ettt ettt et et te et et e ete e e ebeete e s anbeeasessetaessessenssessensanseessensanseas 456
Debug@ingIHeader.cviuiiiiiic e 460

Table of Contents
L8 LT T 463
IAEX o euuuernnieeeniieeeieeeeeeeeeneeeeseeeersseresssesesseesessssssssssssssesssssesssssesssssesssssessssssssssssssssesssssssssssessnssensnnnens 476

Chapter 1

Introducing Apex

In this chapter ...

* What is Apex?
* What's New?
* Apex Quick Start

Salesforce.com has changed the way organizations do business by moving
enterprise applications that were traditionally client-server-based into an
on-demand, multitenant Web environment, the Force.com platform. This
environment allows organizations to run and customize applications, such as
Database.com Automation and Service & Support, and build new custom
applications based on particular business needs.

With the addition of Database.com to the Force.com platform, a multitenant
cloud database service is provided to store data for custom mobile, social, and
desktop applications. Database.com is the database for applications that are
written in any language, and run on any platform or mobile device. Apex is an
object-oriented programming language that enables you to add business logic
and write triggers for your database on Database.com.

To learn more about Apex, see What is Apex?.

Introducing Apex What is Apex?

What is Apex?

Apex is a strongly typed, object-oriented programming language that allows developers to execute flow and transaction control
statements on Database.com in conjunction with calls to the Force.com API. Using syntax that looks like Java and acts like
database stored procedures, Apex enables developers to add business logic to most system events. Apex code can be initiated
by Web service requests and from triggers on objects.

As alanguage, Apex is:
Integrated

Apex provides built-in support for common Database.com idioms, including:

+ Data manipulation language (DML) calls, such as INSERT, UPDATE, and DELETE, that include built-in
DmlException handling

« Inline Database.com Object Query Language (SOQL) and Database.com Object Search Language (SOSL) queries
that return lists of sObject records

« Looping that allows for bulk processing of multiple records at a time
« Locking syntax that prevents record update conflicts
« Custom public Force.com API calls that can be built from stored Apex methods

« Warnings and errors issued when a user tries to edit or delete a custom object or field that is referenced by Apex

Easy to use

Apex is based on familiar Java idioms, such as variable and expression syntax, block and conditional statement syntax,
loop syntax, object and array notation, and so on. Where Apex introduces new elements, it uses syntax and semantics
that are easy to understand and encourage efficient use of Database.com. Consequently, Apex produces code that is both
succinct and easy to write.

Data focused

Apex is designed to thread together multiple query and DML statements into a single unit of work on Database.com,
much as developers use database stored procedures to thread together multiple transaction statements on a database
server. Note that like other database stored procedures, Apex does not attempt to provide general support for rendering
elements in the user interface.

Rigorous
Apex is a strongly-typed language that uses direct references to schema objects such as object and field names. It fails
quickly at compile time if any references are invalid, and stores all custom field, object, and class dependencies in metadata
to ensure they are not deleted while required by active Apex code.

Hosted

Apex is interpreted, executed, and controlled entirely by Database.com.

Multitenant aware

Like the rest of Database.com, Apex runs in a multitenant environment. Consequently, the Apex runtime engine is
designed to guard closely against runaway code, preventing them from monopolizing shared resources. Any code that
violate these limits fail with easy-to-understand error messages.

10

Introducing Apex How Does Apex Work?

Automatically upgradeable

Apex never needs to be rewritten when other parts of Database.com are upgraded. Because the compiled code is stored
as metadata in the platform, it always gets automatically upgraded with the rest of the system.

Easy to test

Apex provides built-in support for unit test creation and execution, including test results that indicate how much code
is covered, and which parts of your code could be more efficient. Database.com ensures that Apex code always work as
expected by executing all unit tests stored in metadata prior to any platform upgrades.

Versioned

You can save your Apex code against different versions of the Force.com API. This enables you to maintain behavior.

How Does Apex Work?

All Apex runs entirely on-demand on Database.com, as shown in the following architecture diagram:

Figure 1: Apex is compiled, stored, and run entirely on Database.com.

’ Database.com

o' 3 Uncompiled Compilad)
‘ Apex Apex
Developer User Application
Server
Internet
Metadata
API Request . . Apex Request
REqI.IESt pex Kuntime
Result N———’ Compilad
Apex

When a developer writes and saves Apex code to Database.com, the Database.com application server first compiles the code
into an abstract set of instructions that can be understood by the Apex runtime interpreter, and then saves those instructions
as metadata.

When Apex is executed, the Database.com application server retrieves the compiled instructions from the metadata and sends
them through the runtime interpreter before returning the result.

What is the Apex Development Process?
We recommend the following process for developing Apex:

1. Sign up for a Database.com Edition account and create a test database organization. For more information about test
database organizations, see Developing in a Test Database Organization.

2. Write your Apex.

3. While writing Apex, you should also be writing tests.

4. Deploy your Apex to your Database.com production organization.

11

Introducing Apex What is the Apex Development Process?

Developing in a Test Database Organization

There are two tprS of organizations where you can run your APCXZ

« A production organization: an organization that has live users accessing your data.

« A test database organization: an organization created on your production organization that is a copy of your production
organization.

You can't develop Apex in your Database.com production organization. Live users accessing the system while you're developing
can destabilize your data or corrupt your application. Instead, we recommend that you do all your development work in a test
database organization.

w® Note: You cannot make changes to Apex using the Database.com user interface in a Database.com production
organization.

Creating a Test Database Organization

To create or refresh a test database organization:

1. Click Data Management > Test Database.
2. Do one of the following:

« Click New Test Database.

Database.com deactivates the New Test Database button when an organization reaches its test database limit. If
necessary, contact salesforce.com to order more test databases for your organization.
Note that Database.com deactivates all refresh links if you have exceeded your test database limit.

+ Click Refresh to replace an existing test database with a new copy. Database.com only displays the Refresh link for
test databases that are eligible for refreshing. For staging databases, this is any time after 30 days from the previous
creation or refresh of that test database. For QA databases, you can refresh once per day. Your existing copy of this test
database remains available while you wait for the refresh to complete. The refreshed copy is inactive until you activate
1t.

3. Enter a name and description for the test database. You can only change the name when you create or refresh a test database.
. » ¢ Tip: We recommend that you choose a name that:

'V + Reflects the purpose of this test database, such as “QA.”

» Has few characters because Database.com automatically appends the test database name to usernames and
email addresses on user records in the test database environment. Names with fewer characters make test
database logins easier to type.

4. Select the type of test database:

+ QA Database: QA databases are intended for coding and testing by a single developer. They provide an environment
in which changes under active development can be isolated until they are ready to be shared. QA databases copy all
application and configuration information to the test database. QA databases are limited to 10 MB of test or sample
data, which is enough for many development and testing tasks. You can refresh a QA database once per day.

+ Staging Database: Staging databases copy your entire production organization and all its data, including custom object
records. You can refresh a staging database every 29 days.

o Note: Database.com enables you to create a QA database. To create a staging database, contact salesforce.com.

12

Introducing Apex What is the Apex Development Process?

If you have reduced the number of test databases you purchased, but you still have more test databases of a specific type
than allowed, you will be required to match your test databases to the number of test databases that you purchased. For
example, if you have two staging databases but purchased only one, you cannot refresh your staging database as a staging
database. Instead, you must choose one staging database to convert to a smaller test database, such as a QA database.

If you are refreshing an existing test database, the radio button usually preselects the test database type corresponding to
the test database you are refreshing.

Whether refreshing an existing test database or creating a new one, some radio buttons may be disabled if you have already
created the number of test databases of that test database type allowed for your organization.

5. For a staging test database, choose how much object history to copy. Object history is the field history tracking of custom
objects. You can copy from 0 to 180 days of object history, in 30 day increments. The default value is 30 days. Decreasing

the amount of data you copy can significantly speed up test database copy time.

6. Click Start Copy.
The process may take several minutes, hours, or even days, depending on the size of your organization.

. »# Tip: You should try to limit changes in your production organization while the test database copy proceeds.

7. You will receive a notification email when your newly created or refreshed test database has completed copying. If you are
creating a new test database, the newly created test database is now ready for use.

If you are refreshing an existing test database, an additional step is required to complete the test database copy process.
The new test database must be activated. To delete your existing test database and activate the new one:

a. Return to the test database list by logging into your production organization and navigating to Data Management >
Test Database.

b. Click the Activate link next to the test database you wish to activate.

This will take you to a page warning of removal of your existing test database.

c. Read the warning carefully and if you agree to the removal, enter the acknowledgment text at the prompt and click the
Activate button.

When the activation process is complete, you will receive a notification email.

Caution: Activating a replacement test database that was created using the Refresh link completely deletes the
test database it is refreshing. All configuration and data in the prior test database copy will be lost, including any
data changes you have made. Please read the warning carefully, and press the Activate link only if you have no
further need for the contents of the test database copy currently in use. Your production organization and its data
will not be aftected.

8. Once your new test database is complete, or your refreshed test database is activated, you can click the link in the notification
email to access your test database.

You can log into the test database at test .database.com/login.jspbyappending . test database name toyour
Database.com username. For example, if your username for your production organization is user1@acme . com, then your
username for a test database named “test” is userl@acme. com. test.

w#® Note: Database.com automatically changes test database usernames but does not change passwords.

13

Introducing Apex What is the Apex Development Process?

Writing Apex
You can write Apex code and tests in any of the following editing environments:

« The Force.com IDE is a plug-in for the Eclipse IDE. The Force.com IDE provides a unified interface for building and
deploying Force.com applications. Designed for developers and development teams, the IDE provides tools to accelerate
Force.com application development, including source code editors, test execution tools, wizards and integrated help. This
tool includes basic color-coding, outline view, integrated unit testing, and auto-compilation on save with error message
display. See the website for information about installation and usage.

wm Note: The Force.com IDE is a free resource provided by salesforce.com to support its users and partners but isn't
considered part of our services for purposes of the salesforce.com Master Subscription Agreement.

« The Database.com user interface. All classes and triggers are compiled when they are saved, and any syntax errors are
flagged. You cannot save your code until it compiles without errors. The Database.com user interface also numbers the
lines in the code, and uses color coding to distinguish different elements, such as comments, keywords, literal strings, and
$0 on.

0 For a trigger on a custom object, click Develop > Objects, and click the name of the object. In the Triggers related
list, click New, and then enter your code in the Body text box.

0 For a class, click Develop > Apex Classes. Click New, and then enter your code in the Body text box.

w#® Note: You cannot make changes to Apex using the Database.com user interface in a Database.com production
organization.

« Any text editor, such as Notepad. You can write your Apex code, then either copy and paste it into your application, or
use one of the API calls to deploy it.
. =+ Tip: If you want to extend the Eclipse plug-in or develop an Apex IDE of your own, the SOAP API includes methods
- V for compiling triggers and classes, and executing test methods, while the Metadata API includes methods for deploying
code to production environments. For more information, see Deploying Apex on page 421 and SOAP API and SOAP
Headers for Apex on page 443.

Writing Tests

Testing is the key to successful long term development, and is a critical component of the development process. We strongly
recommend that you use a test-driven development process, that is, test development that occurs at the same time as code
development.

To facilitate the development of robust, error-free code, Apex supports the creation and execution of unit tests. Unit tests are
class methods that verify whether a particular piece of code is working properly. Unit test methods take no arguments, commit
no data to the database, send no emails, and are flagged with the testMethod keyword in the method definition.

In addition, before you deploy Apex, the following must be true:
« 75% of your Apex code must be covered by unit tests, and all of those tests must complete successfully.

Note the following:

0 When deploying to a production organization, every unit test in your organization namespace is executed.
0 Calls to System.debug are not counted as part of Apex code coverage.

0 Test methods and test classes are not counted as part of Apex code coverage.

14

http://wiki.developerforce.com/index.php/Force.com_IDE

Introducing Apex When Should I Use Apex?

0 While only 75% of your Apex code must be covered by tests, your focus shouldn't be on the percentage of code that is
covered. Instead, you should make sure that every use case of your application is covered, including positive and negative
cases, as well as bulk and single record. This should lead to 75% or more of your code being covered by unit tests.

+ Every trigger has some test coverage.

« All classes and triggers compile successfully.

For more information on writing tests, see Testing Apex on page 140.

Deploying Apex to a Database.com Production Organization

After you have finished all of your unit tests and verified that your Apex code is executing properly, the final step is deploying
Apex to your Database.com production organization.

To deploy Apex from a local project in the Force.com IDE to a Database.com organization, use the Force.com Component
Deployment Wizard. For more information about the Force.com IDE, see
http://wiki.developerforce.com/index.php/Force.com IDE.

Also, you can deploy Apex through change sets in the Database.com user interface.

For more information and for additional deployment options, see Deploying Apex on page 421.

When Should | Use Apex?

Apex enables you to implement complex business processes and add custom functionality to your Database.com organization.

Apex
Use Apex if you want to:

. Create Web services.

« Perform complex validation over multiple objects.

+ Create complex business processes that are not supported by workflow.

« Create custom transactional logic (logic that occurs over the entire transaction, not just with a single record or object.)

« Attach custom logic to another operation, such as inserting a record, so that it occurs whenever the operation is executed.

SOAP API

Use standard SOAP API calls if you want to add functionality to a composite application that processes only one type of
record at a time and does not require any transactional control (such as setting a Savepoint or rolling back changes).

For more information, see the SOAP API Developer's Guide.

What are the Limitations of Apex?

Apex radically changes the way that developers create on-demand business applications, but it is not currently meant to be a
general purpose programming language. As of this release, Apex cannot be used to:

« Change standard functionality—Apex can only prevent the functionality from happening, or add additional functionality
« Create temporary files
« Spawn threads

15

http://wiki.developerforce.com/index.php/Force.com_IDE
http://www.salesforce.com/apidoc

Introducing Apex Warehouse Objects for Code Samples

.+ Tip:
-
All Apex runs on Database.com, which is a shared resource used by all other organizations. To guarantee consistent

performance and scalability, the execution of Apex is bound by governor limits that ensure no single Apex execution
impacts the overall service of Database.com. This means all Apex code is limited by the number of operations (such

as DML or SOQL) that it can perform within one process.

All Apex requests return a collection that contains from 1 to 50,000 records. You cannot assume that your code only
works on a single record at a time. Therefore, you must implement programming patterns that take bulk processing
into account. If you do not, you may run into the governor limits.

See Also:
Understanding Execution Governors and Limits
Trigger and Bulk Request Best Practices

Warehouse Objects for Code Samples

The code samples included in this guide are based on these custom objects:

*+ Merchandise c
+ Invoice Statement c

+ Line Item c

A master-detail relationship relates Invoice Statement cwithLine Item c.Similarly, Merchandise cisrelated
to Line Item c through another master-detail relationship.

You must create these objects in your development or test database organization before you can run the code samples. These
objects are based on the Warehouse application in the Force.com Workbook. See the workbook for more information about how
to create these objects and relationships.

What's New?

Review the Summer '12 Release Notes for a summary of new and changed Apex features in Summer '12.

Apex Quick Start

Once you have a test database organization, you may want to learn some of the core concepts of Apex. Because Apex is very
similar to Java, you may recognize much of the functionality.

After reviewing the basics, you are ready to write your first Apex program—a very simple class, trigger, and unit test.

In addition, there is a more complex shipping invoice example that you can also walk through. This example illustrates many
more features of the language.

16

http://www.salesforce.com/us/developer/docs/workbook/workbook.pdf
https://na1.salesforce.com/help/doc/en/dbcom_summer12_release_notes.pdf

Introducing Apex Documentation Typographical Conventions

Documentation Typographical Conventions

Apex documentation uses the following typographical conventions.

Courier font In descriptions of syntax, monospace font indicates items that you should type as shown,
except for brackets. For example:

Public class HelloWorld

Italics In description of syntax, italics represent variables. You supply the actual value. In the
following example, three values need to be supplied: datatype variable name| =

value];

If the syntax is bold and italic, the text represents a code element that needs a value
supplied by you, such as a class name or variable value:

public static class YourClassHere { ... }

[] In descriptions of syntax, anything included in brackets is optional. In the following
example, specifying value is optional:

data type variable name [= value];

In descriptions of syntax, the pipe sign means “or”. You can do one of the following
(not all). In the following example, you can create a new unpopulated set in one of two
ways, or you can populate the set:

Set<data_ type> set name
[= new Set<data_ type>();] |
[= new Set<data_ type{value [, value2. . .] };] |

’

Understanding Apex Core Concepts

Apex code typically contains many things that you might be familiar with from other programming languages:

17

Introducing Apex Understanding Apex Core Concepts

Variable S0aL
Declaration / Tnteger NUM = 10; Cluery

Invoice Statement c[] invs;

invs = [SELECT Id FROM Invoice Statement c
WHERE Description c LIKE 'p%'l:

@ Invoice Statement c¢|] newInvoices = new Invoice Statement o |[NUM];

for (Integer 1 = 0; i < NUM; i++4) |
Control newlnvoices[i] = new Invoice Statement o
Structure
Data {DML)
Operation

Description c='Invoice ' + i};
The section describes the basic functionality of Apex, as well as some of the core concepts.

insert newlnvoices;

Figure 2: Programming elements in Apex

Using Version Settings

In the Database.com user interface you can specify a version of the Salesforce.com API against which to save your Apex class
or trigger. This setting indicates not only the version of SOAP API to use, but which version of Apex as well. You can change
the version after saving. Every class or trigger name must be unique. You cannot save the same class or trigger against different
versions.

Naming Variables, Methods and Classes

You cannot use any of the Apex reserved keywords when naming variables, methods or classes. These include words that are
part of Apex and Database.com, such as 1ist, test, or account, as well as reserved keywords.

Using Variables and Expressions

Apex is a strongly-typed language, that is, you must declare the data type of a variable when you first refer to it. Apex data types
include basic types such as Integer, Date, and Boolean, as well as more advanced types such as lists, maps, objects and sObjects.

Variables are declared with a name and a data type. You can assign a value to a variable when you declare it. You can also
assign values later. Use the following syntax when declaring variables:

datatype variable name [= value];

. »# Tip: Note that the semi-colon at the end of the above is 7oz optional. You must end all statements with a semi-colon.
-

L3

The following are examples of variable declarations:

// The following variable has the data type of Integer with the name Count,

// and has the value of 0.

Integer Count = 0;

// The following variable has the data type of Decimal with the name Total. Note
// that no value has been assigned to it.

Decimal Total;

18

Introducing Apex Understanding Apex Core Concepts

// The following variable is an invoice statement, which is also referred to as an sObject.
Invoice Statement c¢ MyAcct = new Invoice Statement c(Description c='Invoice 1');

In Apex, all primitive data type arguments, such as Integer or String, are passed into methods by value. This means that any
changes to the arguments exist only within the scope of the method. When the method returns, the changes to the arguments
are lost.

Non-primitive data type arguments, such as sObjects, are also passed into methods by value. This means that when the method
returns, the passed-in argument still references the same object as before the method call and can't be changed to point to
another object. However, the values of the object's fields can be changed in the method.

Using Statements
A statement is any coded instruction that performs an action.
In Apex, statements must end with a semicolon and can be one of the following types:

« Assignment, such as assigning a value to a variable
. Conditional (if-else)

« Loops:
¢ Do-while
¢ While
¢ For

« Locking

« Data Manipulation Language (DML)
+ Transaction Control

« Method Invoking

+ Exception Handling

A block is a series of statements that are grouped together with curly braces and can be used in any place where a single statement
would be allowed. For example:

if (true) {
System.debug (1) ;
System.debug(2) ;

} else {
System.debug (3) ;
System.debug (4) ;

In cases where a block consists of only one statement, the curly braces can be left off. For example:

if (true)
System.debug (1) ;

else
System.debug(2) ;

Using Collections
Apex has the following types of collections:

« Lists (arrays)
« Maps
« Sets

19

Introducing Apex Understanding Apex Core Concepts

A istis a collection of elements, such as Integers, Strings, objects, or other collections. Use a list when the sequence of elements
is important. You can have duplicate elements in a list.

The first index position in a list is always 0.
To create a list:

« Use the new keyword
« Use the List keyword followed by the element type contained within <> characters.

Use the following syntax for creating a list:

List <datatype> list name
[= new List<datatype>();] |
[=new List<datatype>{value [, value2. . .]1};] |

’

The following example creates a list of Integer, and assigns it to the variable My List. Remember, because Apex is strongly
typed, you must declare the data type of My List as a list of Integer.

List<Integer> My List = new List<Integer>();

For more information, see Lists on page 37.

A set is a collection of unique, unordered elements. It can contain primitive data types, such as String, Integer, Date, and so
on. It can also contain more complex data types, such as sObjects.

To create a set:

« Use the new keyword
« Use the Set keyword followed by the primitive data type contained within <> characters

Use the following syntax for creating a set:

Set<datatype> set name
[= new Set<datatype>();] |
[= new Set<datatype>{value [, value2. . .] };]1 |

The following example creates a set of String. The values for the set are passed in using the curly braces { }.
Set<String> My String = new Set<String>{'a', 'b', 'c'};

For more information, see Sets on page 41.

A map is a collection of key-value pairs. Keys can be any primitive data type. Values can include primitive data types, as well
as objects and other collections. Use a map when finding something by key matters. You can have duplicate values in a map,
but each key must be unique.

To create a map:

« Use the new keyword

« Use the Map keyword followed by a key-value pair, delimited by a comma and enclosed in <> characters.

20

Introducing Apex Wiriting Your First Apex Class and Trigger

Use the following syntax for creating a map:

Map<key datatype, value datatype> map name
[=new map<key datatype, value datatype>();] |
[=new map<key datatype, value datatype>
{keyl value => valuel value
[, key2 value => value2 value. . .]1};] |

’

The following example creates a map that has a data type of Integer for the key and String for the value. In this example, the
values for the map are being passed in between the curly braces {} as the map is being created.

Map<Integer, String> My Map = new Map<Integer, String>{1l => 'a', 2 => 'b', 3 => 'c'};

For more information, see Maps on page 42.

Using Branching

An if statement is a true-false test that enables your application to do different things based on a condition. The basic syntax
is as follows:

if (Condition) {

// Do this if the condition is true

} else {

// Do this if the condition is not true

}

For more information, see Conditional (If-Else) Statements on page 59.

Using Loops

While the i £ statement enables your application to do things based on a condition, loops tell your application to do the same
thing again and again based on a condition. Apex supports the following types of loops:

. Do-while
. While
. For

A Do-while loop checks the condition after the code has executed.
A While loop checks the condition at the start, before the code executes.

A Forloop enables you to more finely control the condition used with the loop. In addition Apex supports traditional For
loops where you set the conditions, as well as For loops that use lists and SOQL queries as part of the condition.

For more information, see Loops on page 60.
Writing Your First Apex Class and Trigger

This step-by-step tutorial shows how to create a simple Apex class and trigger. It also shows how to deploy these components
to a production organization.

21

Introducing Apex Wiriting Your First Apex Class and Trigger

This tutorial is based on a custom object called Book that is created in the first step. This custom object is updated through
a trigger.

See Also:
Creating a Custom Object
Adding an Apex Class
Adding an Apex Trigger
Adding a Test Class
Deploying Components to Production

Creating a Custom Object
Prerequisites:

A Database.com account in a test database Database.com organization.

For more information about creating a test database organization, see “Test Database Overview” in the Database.com online

help.

In this step, you create a custom object called Book with one custom field called Price.

Log into your test database organization.

Click Create > Objects and click New Custom Object.

Enter Book for the label.

Enter Books for the plural label.

Click Save.

Ta dah! You've now created your first custom object. Now let's create a custom field.
In the Custom Fields & Relationships section of the Book detail page, click New.
Select Number for the data type and click Next.

Enter Price for the field label.

Enter 16 in the length text box.

10. Enter 2 in the decimal places text box, and click Next.

11. Click Save.

Nk W

$ ® N

You've just created a custom object called Book, and added a custom field to that custom object. Custom objects already have
some standard fields, like Name and CreatedBy, and allow you to add other fields that are more specific to your implementation.
For this tutorial, the Price field is part of our Book object and it is accessed by the Apex class you will write in the next step.

See Also:
Writing Your First Apex Class and Trigger
Adding an Apex Class

Adding an Apex Class
Prerequisites:

+ A Database.com account in a test database Database.com organization.
+ The Book custom object

22

Introducing Apex Wiriting Your First Apex Class and Trigger

In this step, you add an Apex class that contains a method for updating the book price. This method is called by the trigger
that you will be adding in the next step.

1. Click Develop > Apex Classes and click New.

2. In the class editor, enter this class definition:

public class MyHelloWorld {

}

The previous code is the class definition to which you will be adding one method in the next step. Apex code is generally
contained in c/asses. This class is defined as public, which means the class is available to other Apex classes and triggers.
For more information, see Classes, Objects, and Interfaces on page 98.

3. Add this method definition between the class opening and closing brackets.

public static void applyDiscount (Book c[] books) {
for (Book c¢ b :books) {
b.Price e *= 0.9p

}

This method is called applyDiscount, and is both public and static. Because it is a static method, you don't need to
create an instance of the class to access the method—you can just use the name of the class followed by a dot (.) and the
name of the method. For more information, see Static and Instance on page 109.

This method takes one parameter, a list of Book records, which is assigned to the variable books. Notice the ¢ in the
object name Book__c. This indicates that it is a custom object that you created.

The next section of code contains the rest of the method definition:

for (Book c b :books) {
b.Price ¢ *= 0.9;

}

Notice the ¢ after the field name Price c. This indicates it is a custom field that you created. The statement
b.Price ¢ *= 0.9; takesthe old value of b.Price ¢, multiplies it by 0.9, which means its value will be discounted
by 10%, and then stores the new value into the b.Price c field. The *= operator is a shortcut. Another way to write
this statement isb.Price ¢ = b.Price ¢ * 0.9;. See Understanding Expression Operators on page 50.

4. Click Save to save the new class. You should now have this full class definition.

public class MyHelloWorld {
public static void applyDiscount (Book c[] books) {
for (Book c b :books) {
b.Price c¢ *= 0.9;

}

23

Introducing Apex Wiriting Your First Apex Class and Trigger

You now have a class that contains some code which iterates over a list of books and updates the Price field for each book.
This code is part of the applyDiscount static method that is called by the trigger that you will create in the next step.

See Also:
Writing Your First Apex Class and Trigger
Creating a Custom Object
Adding an Apex Trigger

Adding an Apex Trigger

Prerequisites:

« A Database.com account in a test database Database.com organization.

« The MyHelloWorld Apex class.

In this step, you create a trigger for the Book ¢ custom object that calls the applyDiscount method of the MyHelloWorld
class that you created in the previous step.

A trigger is a piece of code that executes before or after records of a particular type are inserted, updated, or deleted from the
platform databaseDatabase.com. Every trigger runs with a set of context variables that provide access to the records that caused
the trigger to fire. All triggers run in bulk, that is, they process several records at once.

1. Click Create > Objects and click the name of the object you just created, Book.
2. In the triggers section, click New.
3. In the trigger editor, delete the default template code and enter this trigger definition:
trigger HelloWorldTrigger on Book c (before insert) {
Book c¢[] books = Trigger.new;

MyHelloWorld.applyDiscount (books) ;

The first line of code defines the trigger:
trigger HelloWorldTrigger on Book c¢ (before insert) ({

It gives the trigger a name, specifies the object on which it operates, and defines the events that cause it to fire. For example,
this trigger is called HelloWorld Trigger, it operates on the Book ¢ object, and runs before new books are inserted into
the database.

The next line in the trigger creates a list of book records named books and assigns it the contents of a trigger context
variable called Trigger.new. Trigger context variables such as Trigger . new are implicitly defined in all triggers and
provide access to the records that caused the trigger to fire. In this case, Trigger.new contains all the new books that
are about to be inserted.

Book c[] books = Trigger.new;

The next line in the code calls the method applyDiscount in the MyHelloWorld class. It passes in the array of new
books.

MyHelloWorld.applyDiscount (books) ;

24

Introducing Apex Wiriting Your First Apex Class and Trigger

You now have all the code that is needed to update the price of all books that get inserted. However, there is still one piece
of the puzzle missing. Unit tests are an important part of writing code and are required. In the next step, you will see why this
is so and you will be able to add a test class.

See Also:
Writing Your First Apex Class and Trigger
Adding an Apex Class
Adding a Test Class

Adding a Test Class
Prerequisites:

« A Database.com account in a test database Database.com organization.
« The HelloWorldTrigger Apex trigger.

In this step, you add a test class with one test method. You also run the test and verify code coverage. The test method exercises
and validates the code in the trigger and class. Also, it enables you to reach 100% code coverage for the trigger and class.

s Note: Testing is an important part of the development process. Before you can deploy Apex, the following must be
true:

« 75% of your Apex code must be covered by unit tests, and all of those tests must complete successfully.
Note the following:

0 When deploying to a production organization, every unit test in your organization namespace is executed.

0 Calls to System. debug are not counted as part of Apex code coverage.

0 Test methods and test classes are not counted as part of Apex code coverage.

0 While only 75% of your Apex code must be covered by tests, your focus shouldn't be on the percentage of code
that is covered. Instead, you should make sure that every use case of your application is covered, including

positive and negative cases, as well as bulk and single record. This should lead to 75% or more of your code
being covered by unit tests.

« Every trigger has some test coverage.
« All classes and triggers compile successfully.

1. Click Develop > Apex Classes and click New.
2. In the class editor, add this test class definition, and then click Save.

@isTest
private class HelloWorldTestClass {
static testMethod void validateHelloWorld() {
Book ¢ b = new Book c(Name='Behind the Cloud', Price c¢=100);
System.debug ('Price before inserting new book: ' + b.Price c);

// Insert book
insert b;

// Retrieve the new book
b = [SELECT Price c FROM Book c WHERE Id

=:b.Id];
System.debug ('Price after trigger fired: ' + b.

Price c);

// Test that the trigger correctly updated the price
System.assertEquals (90, b.Price c);

25

Introducing Apex Wiriting Your First Apex Class and Trigger

This class is defined using the @1 sTest annotation. Classes defined as such can only contain test methods. One advantage
to creating a separate class for testing as opposed to adding test methods to an existing class is that classes defined with
isTest don't count against your organization limit of 3 MB for all Apex code. You can also add the @isTest annotation
to individual methods. For more information, see IsTest Annotation on page 126 and Understanding Execution Governors
and Limits on page 203.

The method validateHelloWorld is defined as a testMethod. This means that if any changes are made to the
database, they are automatically rolled back when execution completes and you don't have to delete any test data created
in the test method.

First the test method creates a new book and inserts it into the database temporarily. The System. debug statement writes
the value of the price in the debug log.

Book ¢ b = new Book c(Name='Behind the Cloud', Price c¢=100);
System.debug ('Price before inserting new book: ' + b.Price c);

// Insert book
insert b;

Once the book is inserted, the code retrieves the newly inserted book, using the ID that was initially assigned to the book
when it was inserted, and then logs the new price, that the trigger modified:

// Retrieve the new book
b = [SELECT Price c FROM Book c WHERE Id

=:b.Id];
System.debug ('Price after trigger fired: ' + b.

Price c);

When the MyHelloWorld class runs, it updates the Price c field and reduces its value by 10%. The following line is
the actual test, verifying that the method applyDiscount actually ran and produced the expected result:

// Test that the trigger correctly updated the price
System.assertEquals (90, b.Price c);

3. Click Run Test in the class page to run all the test methods in this class. In this case, we have only one test method.
The Apex Test Result page appears after the test finishes execution. It contains the test result details such as the number
of test failures, code coverage information, and a link to a downloadable log file.

4. Click Download and select to open the log file. You can find logging information about the trigger event, the call to the
applyDiscount class method, and the debug output of the price before and after the trigger.

Alternatively, you can use the Developer Console for debugging Apex code. See “Developer Console” in the Database.com
online help.

5. You can also run the test through the Apex Test Execution page, which runs the test asynchronously, which means that
you don't have to wait for the test run to finish to get the test result, but you can perform other tasks in the user interface
while the test is still running and then visit this page later to check the test status.

a. Click Develop > Apex Test Execution.
b. Click Run Tests.
c. Select the class HelloWorldTestClass, and then click Run.

After a test finishes running, you can:

« Click the test to see result details; if a test fails, the first error message and the stack trace display.

26

Introducing Apex Wiriting Your First Apex Class and Trigger

+ Click View to see the source Apex code.

6. After the test execution completes, verify the amount of code coverage.

a. Click Develop > Apex Classes.

b. Click Calculate your organization's code coverage to see the amount of code in your organization that is covered by
unit tests.

c. In the Code Coverage column, click 100% to see the lines of code covered by unit tests.

Take alook at the list of triggers by clicking Develop > Apex Triggers. You'll see that the trigger you wrote also has 100%

of its code covered.

By now, you completed all the steps necessary for having some Apex code that has been tested and that runs in your development
environment. In the real world, after you've sufficiently tested your code and you're satisfied with it, you want to deploy the
code along with any other prerequisite components to a production organization. The next step will show you how to do this
for the code and custom object you've just created.

See Also:
Writing Your First Apex Class and Trigger
Adding an Apex Trigger
Deploying Components to Production

Deploying Components to Production
Prerequisites:

« A Database.com account in a test database Database.com organization.
« The HelloWorldTestClass Apex test class.

« A deployment connection between the test database and production organizations that allows inbound change sets to be
received by the production organization. See “Change Sets Overview” in the Database.com online help.

« Create and Upload Change Sets user permissions to create, edit, or upload outbound change sets.

In this step, you deploy the Apex code and the custom object you created previously to your production organization using
change sets.

Click Deploy > Outbound Changesets.

If a splash page appears, click Continue.

In the Change Sets list, click New.

Enter a name for your change set, for example, Hel1loWorldChangeSet, and optionally a description. Click Save.
In the change set components section, click Add.

Select Apex Class from the component type drop-down list, then select the MyHelloWorld and the HelloWorldTestClass
classes from the list and click Add to Change Set.

7. Click View/Add Dependencies to add the dependent components.
8. Select the top checkbox to select all components. Click Add To Change Set.

AN

9. In the change set detail section of the change set page, click Upload.

10. Select the target organization, in this case production, and click Upload.

11. After the change set upload completes, deploy it in your production organization.
a. Log into your production organization.
b. Click Deploy > Inbound Change Sets.
c. Ifasplash page appears, click Continue.

27

Introducing Apex Wiriting Your First Apex Class and Trigger

d. In the change sets awaiting deployment list, click your change set's name.

e. Click Deploy.

In this tutorial, you learned how to create a custom object, how to add an Apex trigger, class, and test class, and how to test
your code. Finally, you also learned how to upload the code and the custom object using Change Sets.

See Also:
Writing Your First Apex Class and Trigger
Adding a Test Class

28

Chapter 2

Language Constructs

In this chapter ...

* Data Types

* Variables

* Expressions

* Assignment Statements

* Conditional (If-Else) Statements
* Loops

+ SOQL and SOSL Queries

* Locking Statements

* Transaction Control

* Exception Statements

Apex is a strongly typed, object-oriented, and case-insensitive programming
language. The Apex language constructs are building blocks that enable you to
write programs in Apex. Using those language constructs, you can declare variables
and constants of built-in data types—primitives and sObjects—enumerations,
and custom data types based on system and user-provided Apex types. Apex
provides expressions, assignment, and conditional statements. Like other
programming languages, Apex provides exception handling and has different
types of loops. Unlike other languages, Apex has a special type of loop called
SOQL for loop, which allows for batching query results. Apex is integrated with
the database—it allows you to write inline queries, perform record locking, and
control transactions.

The following language constructs form the base parts of Apex:

« Data Types

. Variables

+ Expressions

« Assignment Statements

« Conditional (If-Else) Statements
« Loops

. SOQL and SOSL Queries

+ Locking Statements

« Transaction Control

« Exception Statements

Apex is contained in either a trigger or a class. For more information, see Triggers

on page 78 and Classes, Objects, and Interfaces on page 98.

29

Language Constructs Data Types

Data Types
In Apex, all variables and expressions have a data type that is one of the following:
« A primitive, such as an Integer, Double, Long, Date, Datetime, String, ID, or Boolean (see Primitive Data Types on page
30)
« An sObject, either as a generic sObject or as a specific sObject, such as Invoice_Statement__c (see sObject Types on page
32)
« A collection, including:
0 Alist (or array) of primitives, sObjects, user defined objects, objects created from Apex classes, or collections (see Lists
on page 37)
0 A set of primitives (see Sets on page 41)

0 A map from a primitive to a primitive, sObject, or collection (see Maps on page 42)

« A typed list of values, also known as an enum (see Enums on page 44)
+ Objects created from user-defined Apex classes (see Classes, Objects, and Interfaces on page 98)
+ Objects created from system supplied Apex classes (see Apex Classes on page 375)

« Null (for the null constant, which can be assigned to any variable)
Methods can return values of any of the listed types, or return no value and be of type Void.

Type checking is strictly enforced at compile time. For example, the parser generates an error if an object field of type Integer
is assigned a value of type String. However, all compile-time exceptions are returned as specific fault codes, with the line
number and column of the error. For more information, see Debugging Apex on page 188.

Primitive Data Types
Apex uses the same primitive data types as the SOAP API. All primitive data types are passed by value.

All Apex variables, whether they’re class member variables or method variables, are initialized to null. Make sure that you
initialize your variables to appropriate values before using them. For example, initialize a Boolean variable to false.

Apex primitive data types include:

Blob A collection of binary data stored as a single object. You can convert this datatype to String
or from String using the toStringand valueOf methods, respectively. Blobs can be accepted
as Web service arguments, stored in a document (the body of a document is a Blob), or sent
as attachments. For more information, see Crypto Class on page 395.

Boolean A value that can only be assigned true, false, or null. For example:

Boolean isWinner = true;

Date A value that indicates a particular day. Unlike Datetime values, Date values contain no
information about time. Date values must always be created with a system static method.

You cannot manipulate a Date value, such as add days, merely by adding a number to a Date
variable. You must use the Date methods instead.

30

Language Constructs Primitive Data Types

Datetime A value that indicates a particular day and time, such as a timestamp. Datetime values must
always be created with a system static method.

You cannot manipulate a Datetime value, such as add minutes, merely by adding a number
to a Datetime variable. You must use the Datetime methods instead.

Decimal A number that includes a decimal point. Decimal is an arbitrary precision number. Currency
fields are automatically assigned the type Decimal.

If you do not explicitly set the scale, that is, the number of decimal places, for a Decimal using
the setScale method, the scale is determined by the item from which the Decimal is created.

« Ifthe Decimal is created as part of a query, the scale is based on the scale of the field
returned from the query.

« Ifthe Decimal is created from a String, the scale is the number of characters after the
decimal point of the String.

« Ifthe Decimal is created from a non-decimal number, the scale is determined by converting
the number to a String and then using the number of characters after the decimal point.

Double A 64-bit number that includes a decimal point. Doubles have a minimum value of =23 and
a maximum value of 263-1. For example:

Double d=3.14159;

Note that scientific notation (e) for Doubles is not supported.

1D Any valid 18-character Force.com record identifier. For example:
ID 1id='00300000003T2PGAAO"';

Note that if you set ID to a 15-character value, Apex automatically converts the value to its
18-character representation. All invalid ID values are rejected with a runtime exception.

Integer A 32-bit number that does not include a decimal point. Integers have a minimum value of

-2,147,483,648 and a maximum value of 2,147,483,647. For example:

Integer i = 1;

Long A 64-bit number that does not include a decimal point. Longs have a minimum value of -2

23-1. Use this datatype when you need a range of values wider than
those provided by Integer. For example:

and a maximum value of

Long 1 = 2147483648L;

String Any set of characters surrounded by single quotes. For example,

String s = 'The quick brown fox jumped over the lazy dog.';

31

Language Constructs sObject Types

String size: Strings have no limit on the number of characters they can include. Instead, the
heap size limit is used to ensure that your Apex programs don't grow too large.

Empty Strings and Trailing Whitespace: sObject String field values follow the same rules
as in the SOAP API: they can never be empty (only nul1), and they can never include leading

and trailing whitespace. These conventions are necessary for database storage.

Conversely, Strings in Apex can be null or empty, and can include leading and trailing
whitespace (such as might be used to construct a message).

Escape Sequences: All Strings in Apex use the same escape sequences as SOQL strings: \b
(backspace), \t (tab), \n (line feed), \ £ (form feed), \ r (carriage return), \" (double quote),
\' (single quote), and \\ (backslash).

Comparison Operators: Unlike Java, Apex Strings support use of the comparison operators
==, =, <, <=, >, and >=. Since Apex uses SOQL comparison semantics, results for Strings
are collated according to the context user's locale, and “are not case sensitive. For more
information, see Operators on page 50.

String Methods: As in Java, Strings can be manipulated with a number of standard methods.
See String Methods for information.

Apex classes and triggers saved (compiled) using API version 15.0 and higher produce a
runtime error if you assign a String value that is too long for the field.

Time A value that indicates a particular time. Time values must always be created with a system

static method. See Time Methods on page 275.

In addition, two non-standard primitive data types cannot be used as variable or method types, but do appear in system static
methods:

« AnyType. The valueOf static method converts an sObject field of type AnyType to a standard primitive. AnyType is
used within Database.com exclusively for sObject fields in field history tracking tables.

« Currency. The Currency.newInstance static method creates a literal of type Currency. This method is for use solely
within SOQL and SOSL WHERE clauses to filter against sObject currency fields. You cannot instantiate Currency in any
other type of Apex.

For more information on the AnyType data type, see Field Types in the Object Reference for Database.com.

sObject Types

In this developer's guide, the term sObject refers to any object that can be stored in Database.com. An sObject variable
represents a row of data and can only be declared in Apex using the SOAP API name of the object. For example:

Invoice Statement ¢ co = new Invoice Statement c();

Similar to the SOAP API, Apex allows the use of the generic sObject abstract type to represent any object. The sObject data
type can be used in code that processes different types of sObjects.

32

http://www.salesforce.com/us/developer/docs/dbcom_objects/index_CSH.htm#field_types.htm

Language Constructs sObject Types

The new operator still requires a concrete sObject type, so all instances are specific sObjects. For example:
sObject s = new Invoice Statement c();
You can also use casting between the generic sObject type and the specific sObject type. For example:

// Cast the generic variable s from the example above
// into an invoice statement

Invoice Statement c a = (Invoice Statement c)s;
// The following generates a runtime error
Merchandise c¢ ¢ = (Merchandise c)s;

Because sObjects work like objects, you can also have the following:

Object obj = s;
// and
a = (Invoice Statement c)obj;

DML operations work on variables declared as the generic sObject data type as well as with regular sObjects.

sObject variables are initialized to null, but can be assigned a valid object reference with the new operator. For example:
Invoice Statement c a = new Invoice Statement c();

Developers can also specify initial field values with comma-separated name = value pairs when instantiating a new sObject.
For example:

Invoice Statement ¢ a = new Invoice Statement c(
Description c¢ = 'New invoice');

For information on accessing existing sObjects from Database.com, see SOQL and SOSL Queries on page 64.

s Note: The ID of an sObject is a read-only value and can never be modified explicitly in Apex unless it is cleared
during a clone operation, or is assigned with a constructor. Database.com assigns ID values automatically when an
=" object record is initially inserted to the database for the first time. For more information see Lists on page 37.

Custom Labels

Custom labels are not standard sObjects. You cannot create a new instance of a custom label. You can only access the value
of a custom label using system.label.label name. For example:

String errorMsg = System.Label.generic error;
For more information on custom labels, see “Custom Labels Overview” in the online help.
Accessing sObject Fields
As in Java, sObject fields can be accessed or changed with simple dot notation. For example:

Invoice Statement ¢ a = new Invoice Statement c();
a.Description ¢ = 'Invoice 1'; // Access the description field and assign it a value

33

Language Constructs sObject Types

System generated fields, such as Created By or Last Modified Date, cannot be modified. If you try, the Apex runtime
engine generates an error. Additionally, formula field values and values for other fields that are read-only for the context user
cannot be changed.

If you use the generic sObject type, instead of a specific object such as Invoice_Statement__c, you can only retrieve the ID

field. For example:

Invoice Statement ¢ a = new Invoice Statement c(
Description ¢ = 'Invoice 1');
insert a;
sObject s = [SELECT Id, Description c
FROM Invoice Statement c
WHERE Description c¢ = 'Invoice 1'
LIMIT 1];
// This is allowed
ID id = s.Id;
// The following lines result in errors when you try to save

String x = s.Description c;

s.Id = [SELECT Id
FROM Invoice Statement c¢
WHERE Description c¢ = 'Invoice 1'
LIMIT 1];

If you want to perform operations on an sObject, it is recommended that you first convert it into a specific object. For example:

Invoice Statement ¢ a = new Invoice Statement c(
Description c¢ = 'Invoice 1');

insert a;

sObject s = [SELECT Id, Description c¢ FROM Invoice Statement c

WHERE Description ¢ = 'Invoice 1' LIMIT 1];
ID id = s.1ID;
Invoice Statement c myInvoice = (Invoice Statement c)s;
myInvoice.Description c¢ = 'Updated description';

update myInvoice;

The following example shows how you can use SOSL over a set of records to determine their object types. Once you have
converted the generic sObject into a Merchandise cor Invoice Statement c object, you can modify its fields
accordingly:

static testmethod void testFields () {

List<Merchandise c¢> merchandise;
List<Invoice Statement c> invoices;

List<List<sObject>> results = [FIND 'pencil'
IN ALL FIELDS
RETURNING Merchandise c¢(Id, Description ¢, Price c),
Invoice Statement c(Id, Description ¢, Status c¢)];
sObject[] records = ((List<sObject>)results[0]);
system.debug ('Records returned: ' + records.size());

if (!records.isEmpty()) {

for (Integer 1 = 0; i < records.size(); i++) {
sObject record = records[i];
if (record.getSObjectType () == Merchandise c.sObjectType) {
merchandise.add ((Merchandise c¢) record);
} else if (record.getSObjectType() == Invoice Statement c.sObjectType) {

invoices.add((Invoice Statement c¢) record);

}

34

Language Constructs sObject Types

Accessing sObject Fields Through Relationships

sObject records represent relationships to other records with two fields: an ID and an address that points to a representation
of the associated sObject. For example, the Line_Item__c sObject has both an Invoice Statement c field of type ID,
and an Invoice Statement r field that points to the associated sObject record itself.

The ID field can be used to change the invoice statement with which the line item is associated, while the sObject reference
field can be used to access data from the invoice statement. The reference field is only populated as the result of a SOQL or
SOSL query (see note below).

For example, the following Apex code shows how an invoice statement and a line item can be associated with one another,
and then how the line item can be used to modify a field on the invoice statement:

w® Note: In order to provide the most complete example, this code uses some elements that are described later in this
guide:

|\
« For information on insert and update, see Insert Operation on page 239 and Update Operation on page 239.
« For information on SOQL and SOSL, see SOQL and SOSL Queries on page 64.

// Create a merchandise item to be set for the line item
Merchandise ¢ m = new Merchandise c(
Name="'Pencils',
Description c='Durable pencils',
Price c=1.25,
Total Inventory c¢=100);
// Inserting the record automatically assigns a
// value to its ID field.
insert m;

// Create an invoice statement

Invoice Statement c inv = new Invoice Statement c(
Description ¢ = 'Invoice 1');

insert inv;

// Create a new line item and associate it with
// the invoice statement and merchandise item
// through their respective IDs.
Line Item c¢ 1i = new Line Item c(
Name='Two pencils',
Units Sold c=2,
Unit Price c=5,
Merchandise c¢ = m.Id,
Invoice Statement c=inv.Id);
insert 1i;

// A SOQL query accesses data for the inserted line item,
// including a populated Invoice Statement r field
1i = [SELECT Invoice Statement r.Description c

FROM Line Item ¢ WHERE Id = :1i.Id];

// Now fields in both records can be changed through the

// returned line item object

li.Invoice Statement r.Description c¢ = 'Updated description';
1i.Units _Sold c¢ = 3;

// To update the database, the two types of records must be

// updated separately

update 1i; // This only changes the line item's units sold

update 1li.Invoice Statement r; // This updates the invoice's description

35

Language Constructs sObject Types

w® Note: The expression 1i.Invoice Statement r.Description _c,as well as any other expression that
traverses a relationship, displays slightly different characteristics when it is read as a value than when it is modified:

« When being read as a value, if 11 . Invoice Statement _r is null, then
li.Invoice Statement r.Description _c evaluates to null, but does nof yield a
NullPointerException. This design allows developers to navigate multiple relationships without the tedium
of having to check for null values.

« When being modified, if 1i.Invoice Statement r isnull, then
li.Invoice Statement r.Description__c doesyield a NullPointerException.

In addition, the sObject field key can be used with insert, update, or upsert to resolve foreign keys by external ID. For

example:

Invoice Statement c refInvoice = new Invoice Statement c(externalld c = '12345")
Merchandise c¢ refMerch = new Merchandise c(externalld c = '12345', ...)

Line Item c¢ 1li = new Line Item c(

Name='Two pencils',

Units Sold c=2,

Unit Price c=5,

Merchandise c¢ = refMerch,
Invoice Statement c=reflnvoice);

This inserts a new line item with the invoice statement ID equal to the invoice statement with the external id equal to
12345’. If there is no such invoice statement, the insert fails. The same is true also for the merchandise ID.

.+ Tip:

The following code is equivalent to the code above. However, because it uses a SOQL query, it is not as efficient. If
this code was called multiple times, it could reach the execution limit for the maximum number of SOQL queries.
For more information on execution limits, see Understanding Execution Governors and Limits on page 203.

Invoice Statement c¢ refInvoice = [SELECT Id FROM Invoice Statement c WHERE
externalld c¢='12345"'];

Merchandise c refMerch = [SELECT Id FROM Merchandise c WHERE externalld c='12345'"];

Line Item c¢ 1li = new Line Item c(
Name='Two pencils',
Units Sold c=2,
Unit Price_ c=5,
Merchandise c¢ = refMerch.Id,
Invoice Statement c=reflnvoice.Id);
insert 1i;

Validating sObjects and Fields

When Apex code is parsed and validated, all sObject and field references are validated against actual object and field names,
and a parse-time exception is thrown when an invalid name is used.

In addition, the Apex parser tracks the custom objects and fields that are used, both in the code's syntax as well as in embedded
SOQL and SOSL statements. The platform prevents users from making the following types of modifications when those

changes cause Apex code to become invalid:

« Changing a field or object name

« Converting from one data type to another

36

Language Constructs Collections

+ Deleting a field or object

« Making certain organization-wide changes, such as record sharing, field history tracking, or record types

Collections

Apex has the following types of collections:

. Lists
« Maps
. Sets

w# Note: There is no limit on the number of items a collection can hold. However, there is a general limit on heap size.

Lists

A list is an ordered collection of typed primitives, sObjects, user-defined objects, Apex objects or collections that are distinguished
by their indices. For example, the following table is a visual representation of a list of Strings:

'Red' 'Orange' Yellow' 'Green' 'Blue' "Purple’

The index position of the first element in a list is always 0.

Because lists can contain any collection, they can be nested within one another and become multidimensional. For example,
you can have a list of lists of sets of Integers. A list can only contain up to five levels of nested collections inside it.

To declare a list, use the List keyword followed by the primitive data, sObject, nested list, map, or set type within <> characters.
For example:

// Create an empty list of String
List<String> my list = new List<String>();
// Create a nested list
List<List<Set<Integer>>> my list 2 = new List<List<Set<Integer>>>();
// Create a list of invoice statement records from a SOQL query
List<Invoice_Statement_ c> accs =
[SELECT Id, Description c¢ FROM Invoice Statement c¢ LIMIT 1000];

To access elements in a list, use the system methods provided by Apex. For example:

List<Integer> MyList = new List<Integer>(); // Define a new list

MyList.add (47); // Adds a second element of value 47 to the end

// of the list
MyList.get (0) ; // Retrieves the element at index 0
MyList.set (0, 1); // Adds the integer 1 to the list at index 0
MyList.clear () ; // Removes all elements from the list

For more information, including a complete list of all supported methods, see List Methods on page 276.

37

Language Constructs Collections

Using Array Notation for One-Dimensional Lists of Primitives or sObjects
When using one-dimensional lists of primitives or sObjects, you can also use more traditional array notation to declare and
reference list elements. For example, you can declare a one-dimensional list of primitives or sObjects by following the data or
sObject type name with the [] characters:

String[] colors = new List<String>();

To reference an element of a one-dimensional list of primitives or sObjects, you can also follow the name of the list with the
element's index position in square brackets. For example:

colors[3] = 'Green';

All lists are initialized to null. Lists can be assigned values and allocated memory using literal notation. For example:

Defines an Integer list with no elements
List<Integer> ints = new Integer[0];

Defines an empty list that can hold Invoice_Statement__c

List<Invoice Statement c> accts = objects
new Invoice Statement cl[]{};

Defines an Integer list with memory allocated for six Integers

List<Integer> ints = new Integer[6];
Defines a list that can hold Invoice_Statement__c objects and
List<Invoice_Statement c¢> invs = allocates memory for three invoice statements, including a
new Invoice Statement c[] . . . e
—" — new Invoice_Statement__c object in the first position, null
{new Invoice Statement c(), . o .
null, in the second position, and another new Invoice_Statement__¢
new Invoice Statement c()}; object in the third position

Defines a list of Invoice_Statement__c objects with a new list
List<Invoice Statement c> invs =
new
List<Invoice Statement c>(otherList);

Lists of sObjects

Apex automatically generates IDs for each object in a list of sObjects when the list is successfully inserted or upserted into the
database with a data manipulation language (DML) statement. Consequently, a list of sObjects cannot be inserted or upserted
if it contains the same sObject more than once, even if it has a nul1 ID. This situation would imply that two IDs would need
to be written to the same structure in memory, which is illegal.

38

Language Constructs Collections

For example, the insert statement in the following block of code generates a ListException because it tries to insert a
list with two references to the same sObject (a):

try {
// Create a list with two references to the same sObject element
Invoice Statement ¢ a = new Invoice Statement c();
Invoice Statement c[] invs = new Invoice Statement c[]{a, a};

// Attempt to insert it
insert invs;

// Will not get here
System.assert (false) ;

} catch (ListException e) {
// But will get here

}

For more information on DML statements, see Apex Data Manipulation Language (DML) Operations on page 237.

You can use the generic sObject data type with lists. You can also create a generic instance of a list.

List Sorting

Using the List . sort method, you can sort lists of primitive data types, custom types (your Apex classes) that implement
the Comparable Interface, and sObjects.

Sorting is in ascending order for primitive data types.

For custom types, the sort criteria and sort order depends on the implementation that you provide for the compareTo method
of the Comparable interface. For more information on implementing the Comparable Interface for your own classes, see
Comparable Interface.

For sObjects, sorting is in ascending order and uses a sequence of comparison steps outlined in the next section. However,
you can also implement a custom sort order for sObjects by wrapping your sObject in an Apex class and implementing the
Comparable Interface, as shown in Custom Sort Order of sObjects.

Default Sort Order of sObjects

The List.sort method sorts sObjects in ascending order and compares sObjects using an ordered sequence of steps that
specify the labels or fields used. The comparison starts with the first step in the sequence and ends when two sObjects are
sorted using specified labels or fields. The following is the comparison sequence used:

1. The label of the sObject type.

2. The Name field, if applicable.

3. Standard fields, starting with the fields that come first in alphabetical order, except for the Id and Name fields.
4. Custom fields, starting with the fields that come first in alphabetical order.

Not all steps in this sequence are necessarily carried out. For example, if a list contains two sObjects of the same type and with
unique Name values, they're sorted based on the Name field and sorting stops at step 2. Otherwise, if the names are identical
or the sObject doesn’t have a Name field, sorting proceeds to step 3 to sort by standard fields.

For text fields, the sort algorithm uses the Unicode sort order. Also, empty fields precede non-empty fields in the sort order.

This is an example of sorting a list of Merchandise__c custom objects. This example shows how the Name field is used to
place the Notebooks merchandise ahead of Pens in the list. Since there are two merchandise sObjects with the Name field

39

Language Constructs Collections

value of Pens, the Description field is used to sort these remaining merchandise items because the Description field comes
before the Price and Total_Inventory fields in alphabetical order.

Merchandise c[] merchList = new List<Merchandise c>();
merchList.add(new Merchandise c(

Name="'Pens',

Description c='Red pens',

Price c=2,

Total Inventory c¢=1000));
merchList.add(new Merchandise c(

Name="'Notebooks"',

Description c='Cool notebooks',

Price ¢=3.50,

Total Inventory c¢=2000));
merchlList.add(new Merchandise c(

Name="'Pens',

Description c='Blue pens',

Priee e=1.75,

Total Inventory c¢=800));
System.debug (merchlList) ;

merchList.sort () ;

System.assertEquals ('Notebooks', merchList[0] .Name) ;
System.assertEquals ('Pens', merchList[1] .Name) ;
System.assertEquals ('Blue pens', merchList[1l].Description_ c);
System.assertEquals ('Pens', merchList[2] .Name) ;
System.assertEquals ('Red pens', merchList[2].Description c);
System.debug (merchlList) ;

Custom Sort Order of sObjects

To implement a custom sort order for sObjects in lists, create a wrapper class for the sObject and implement the Comparable
Interface. The wrapper class contains the sObject in question and implements the compareTo method, in which you specify
the sort logic.

This example shows how to create a wrapper class for the Merchandise__c custom object. The implementation of the
compareTo method in this class compares two merchandise objects based on the Price field—the class member variable
contained in this instance, and the merchandise object passed into the method.

global class MerchandiseWrapper implements Comparable {
public Merchandise c¢ merchItem;

// Constructor
public MerchandiseWrapper (Merchandise c¢ m) {
merchItem = m;

}

// Compare merchandise items based on the merchandise price.
global Integer compareTo (Object compareTo) {
// Cast argument to MerchandiseWrapper
MerchandiseWrapper compareToMerch = (MerchandiseWrapper)compareTo;

// The return value of 0 indicates that both elements are equal.
Integer returnValue = 0;
if (merchItem.Price c > compareToMerch.merchItem.Price c) {
// Set return value to a positive value.
returnValue = 1;
} else if (merchItem.Price c < compareToMerch.merchItem.Price c) {
// Set return value to a negative value.
returnValue = -1;

}

return returnValue;

40

Language Constructs Collections

This example provides a test for the MerchandiselWrapper class. It sorts a list of Merchandi seWrapper objects and verifies
that the list elements are sorted by the merchandise price.

@isTest
private class MerchandiseWrapperTest {
static testmethod void testl () {
MerchandiseWrapper[] merchlList = new List<MerchandiseWrapper>() ;
merchList.add(new MerchandiseWrapper (new Merchandise c(
Name="'Pens',
Description c='Red pens',
Price c=2,
Total Inventory c¢=1000)));
merchList.add(new MerchandiseWrapper (new Merchandise c(
Name="'Notebooks"',
Description c='Cool notebooks',
Priee ©=3.50,
Total Inventory c¢=2000)));
merchlList.add(new MerchandiseWrapper (new Merchandise c(
Name="'Pens',
Description_ c='Blue pens',
Price e=1.75,
Total Inventory c¢=800))):;

// Sort the wrapper objects using the implementation of the
// compareTo method.
merchList.sort () ;

// Verify the sort order

System.assertEquals ('Pens', merchList[0] .merchItem.Name) ;
System.assertEquals(1.75, merchList[0].merchItem.Price c);
System.assertEquals ('Pens', merchList[1l].merchItem.Name) ;
System.assertEquals (2, merchList[1l].merchItem.Price c);
System.assertEquals ('Notebooks', merchlList[2] .merchItem.Name) ;
System.assertEquals (3.5, merchList[2] .merchItem.Price c);

// Write the sorted list contents to the debug log.
System.debug (merchlList) ;

Sets

A set is an unordered collection of primitives or sObjects that do not contain any duplicate elements. For example, the following
table represents a set of String, that uses city names:

'San Francisco' 'New York' 'Paris' "Tokyo'

To declare a set, use the Set keyword followed by the primitive data type name within <> characters. For example:

new Set<String> ()

41

Language Constructs Collections

The following are ways to declare and populate a set:

Set<String> sl = new Set<String>{'a', 'b + c'}; // Defines a new set with two elements
Set<String> s2 = new Set<String>(sl); // Defines a new set that contains the
// elements of the set created in the previous step

To access elements in a set, use the system methods provided by Apex. For example:

Set<Integer> s = new Set<Integer>(); // Define a new set

s.add (1) ; // Add an element to the set
System.assert (s.contains (1)) ; // Assert that the set contains an element
s.remove (1) ; // Remove the element from the set

Uniqueness of sObjects is determined by comparing fields. For example, if you try to add two invoice statements with the
same name to a set, only one is added.

// Create two invoice statements, al and a2
Invoice Statement c¢ al = new Invoice Statement c(Description c='desc');
Invoice Statement c¢ a2 = new Invoice Statement c(Description c='desc');

// Add both invoices to the new set
Set<Invoice Statement c> mySet =
new Set<Invoice_ Statement_ c>{al, a2};

// Verify that the set only contains one item
System.assertEquals (mySet.size (), 1);

However, if you add a description to one of the invoice statements, it is considered unique:

// Create two invoice statements, al and a2.

// Add a description to a2.

Invoice Statement c¢ al = new Invoice Statement c();

Invoice Statement c a2 = new Invoice Statement c(Description c='desc');

// Add both invoices to the new set
Set<Invoice Statement c> mySet =
new Set<Invoice Statement c>{al, a2};

// Verify that the set only contains one item
System.assertEquals (mySet.size (), 2);

For more information, including a complete list of all supported set system methods, see Set Methods on page 287.
Note the following limitations on sets:

« Unlike Java, Apex developers do not need to reference the algorithm that is used to implement a set in their declarations
(for example, HashSet or TreeSet). Apex uses a hash structure for all sets.

« A setis an unordered collection. Do not rely on the order in which set results are returned. The order of objects returned
by sets may change without warning.

Maps

A map is a collection of key-value pairs where each unique key maps to a single value. Keys can be any primitive data type,
while values can be a primitive, sObject, collection type or an Apex object. For example, the following table represents a map
of countries and currencies:

42

Language Constructs Collections
Country (Key) "United States' "Japan' 'France' 'England' 'India’
Currency (Value) 'Dollar’ Yen' 'Euro’ "Pound' 'Rupee’

Similar to lists, map values can contain any collection, and can be nested within one another. For example, you can have a
map of Integers to maps, which, in turn, map Strings to lists. A map can only contain up to five levels of nested collections
inside it.

To declare a map, use the Map keyword followed by the data types of the key and the value within <> characters. For example:

Map<String, String> country currencies = new Map<String, String>();
Map<ID, Set<String>> m = new Map<ID, Set<String>>();
Map<ID, Map<ID, Merchandise c[]>> m2 = new Map<ID, Map<ID, Merchandise c[]>>();

You can use the generic sObject data type with maps. You can also create a generic instance of a map.

As with lists, you can populate map key-value pairs when the map is declared by using curly brace ({ }) syntax. Within the
curly braces, specify the key first, then specify the value for that key using =>. For example:

Map<String, String> MyStrings = new Map<String, String>
{'a' => 'b', 'c' => 'd'.toUpperCase() };

// Merchandise c[] is synonymous with List<Merchandise c>
Merchandise c[] merchList = new Merchandise c[5];
Map<Integer, List<Merchandise c¢>> m4 = new Map<

Integer, List<Merchandise c¢>>{1 => merchList};

In the first example, the value for the key a is b, and the value for the key c is d. In the second, the key 1 has the value of the
list merchList.

To access elements in a map, use the system methods provided by Apex. For example:

//Define a new merchandise item

Merchandise c¢ mer = new Merchandise c();

// Define a new map

Map<Integer, Merchandise c> m = new Map<Integer, Merchandise c>();
// Insert a new key-value pair in the map

m.put (1, mer);

// Assert that the map contains a key

System.assert (!m.containsKey (3));

// Retrieve a value, given a particular key
Merchandise ¢ a = m.get(1l);

// Return a set that contains all of the keys in the map
Set<Integer> s = m.keySet();

For more information, including a complete list of all supported map system methods, see Map Methods on page 283.

Note the following considerations on maps:

« Unlike Java, Apex developers do not need to reference the algorithm that is used to implement a map in their declarations
(for example, HashMap or TreeMap). Apex uses a hash structure for all maps.

« Do not rely on the order in which map results are returned. The order of objects returned by maps may change without
warning. Always access map elements by key.
« A map key can hold the nul1l value.

43

Language Constructs Enums

Maps from SObject Arrays

Maps from an ID or String data type to an sObject can be initialized from a list of sObjects. The IDs of the objects (which
must be non-null and distinct) are used as the keys. One common usage of this map type is for in-memory “joins” between
two tables. For instance, this example loads a map of IDs and invoice statements:

Map<ID, Invoice Statement c> m = new Map<ID, Invoice Statement c>([SELECT Id, Description c
FROM Invoice Statement c]);

In the example, the SOQL query returns a list of contacts with their Id and Description c fields. The new operator uses
the list to create a map. For more information, see SOQL and SOSL Queries on page 64.

Iterating Collections

Collections can consist of lists, sets, or maps. Modifying a collection's elements while iterating through that collection is not

supported and causes an error. Do not directly add or remove elements while iterating through the collection that includes
them.

Adding Elements During Iteration

To add elements while iterating a list, set or map, keep the new elements in a temporary list, set, or map and add them to the
original after you finish iterating the collection.

Removing Elements During Iteration

To remove elements while iterating a list, create a new list, then copy the elements you wish to keep. Alternatively, add the
elements you wish to remove to a temporary list and remove them after you finish iterating the collection.

w= Note:

The List.remove method performs linearly. Using it to remove elements has time and resource implications.

To remove elements while iterating a map or set, keep the keys you wish to remove in a temporary list, then remove them
after you finish iterating the collection.

Enums

An enum is an abstract data type with values that each take on exactly one of a finite set of identifiers that you specify. Enums
are typically used to define a set of possible values that do not otherwise have a numerical order, such as the suit of a card, or
a particular season of the year. Although each value corresponds to a distinct integer value, the enum hides this implementation
so that you do not inadvertently misuse the values, such as using them to perform arithmetic. After you create an enum,
variables, method arguments, and return types can be declared of that type.

w® Note: Unlike Java, the enum type itself has no constructor syntax.

To define an enum, use the enum keyword in your declaration and use curly braces to demarcate the list of possible values.
For example, the following code creates an enum called Season:

public enum Season {WINTER, SPRING, SUMMER, FALL}

Language Constructs Enums

By creating the enum Season, you have also created a new data type called Season. You can use this new data type as you
might any other data type. For example:

Season e = Season.WINTER;
Season m(Integer x, Season e) {

If (e == Season.SUMMER) return e;
/..

You can also define a class as an enum. Note that when you create an enum class you do not use the class keyword in the
definition.

public enum MyEnumClass { X, Y }

You can use an enum in any place you can use another data type name. If you define a variable whose type is an enum, any
object you assign to it must be an instance of that enum class.

Any webService methods can use enum types as part of their signature. When this occurs, the associated WSDL file includes
definitions for the enum and its values, which can then be used by the API client.

Apex provides the following system-defined enums:
e System.StatusCode

This enum corresponds to the API error code that is exposed in the WSDL document for all API operations. For example:

StatusCode.CANNOT INSERT UPDATE ACTIVATE ENTITY
StatusCode.INSUFFICIENT ACCESS ON CROSS REFERENCE ENTITY

The full list of status codes is available in the WSDL file for your organization. For more information about accessing the
WSDL file for your organization, see “Downloading Database.com WSDLs and Client Authentication Certificates” in
the Database.com online help.

¢ System.XmlTag:

This enum returns a list of XIML tags used for parsing the result XML from a webService method. For more information,
see XmlStreamReader Class on page 402.

+ System.ApplicationReadWriteMode: This enum indicates if an organization is in 5 Minute Upgrade read-only mode
during Database.com upgrades and downtimes. For more information, see Using the
System.ApplicationReadWriteMode Enum on page 358.

e System.LoggingLevel:

This enum is used with the system. debug method, to specify the log level for all debug calls. For more information,
see System Methods on page 352.

« System.RoundingMode:

This enum is used by methods that perform mathematical operations to specify the rounding behavior for the operation,
such as the Decimal divide method and the Double round method. For more information, see Rounding Mode on
page 266.

¢ System.SoapType:

This enum is returned by the field describe result get SoapType method. For more informations, see Schema. SOAPType
Enum Values on page 304.

45

Language Constructs Understanding Rules of Conversion

e System.DisplayType:

This enum is returned by the field describe result get Type method. For more information, see Schema.DisplayType
Enum Values on page 302.

¢ System.JSONToken:
This enum is used for parsing JSON content. For more information, see System.JSONToken Enum on page 338.
¢ Dom.XmlNodeType:

This enum specifies the node type in a DOM document. For more information, see Node Types on page 412.

w# Note: System-defined enums cannot be used in Web service methods.

All enum values, including system enums, have common methods associated with them. For more information, see Enum
Methods on page 291.

You cannot add user-defined methods to enum values.

Understanding Rules of Conversion

In general, Apex requires you to explicitly convert one data type to another. For example, a variable of the Integer data type
cannot be implicitly converted to a String. You must use the string. format method. However, a few data types can be
implicitly converted, without using a method.

Numbers form a hierarchy of types. Variables of lower numeric types can always be assigned to higher types without explicit
conversion. The following is the hierarchy for numbers, from lowest to highest:

Integer
Long
Double

Decimal

W=

w# Note: Once a value has been passed from a number of a lower type to a number of a higher type, the value is converted
to the higher type of number.

[

Note that the hierarchy and implicit conversion is unlike the Java hierarchy of numbers, where the base interface number is
used and implicit object conversion is never allowed.

In addition to numbers, other data types can be implicitly converted. The following rules apply:

+ IDs can always be assigned to Strings.
« Strings can be assigned to IDs. However, at runtime, the value is checked to ensure that it is a legitimate ID. If it is not,
a runtime exception is thrown.

« The instanceOf keyword can always be used to test whether a string is an ID.

Additional Considerations for Data Types
Data Types of Numeric Values

Numeric values represent Integer values unless they are appended with L for a Long or with .0 for a Double or Decimal.
For example, the expression Long d = 123; declares a Long variable named d and assigns it to an Integer numeric
value (123), which is implicitly converted to a Long. The Integer value on the right hand side is within the range for

46

Language Constructs Variables

Integers and the assignment succeeds. However, if the numeric value on the right hand side exceeds the maximum value
for an Integer, you get a compilation error. In this case, the solution is to append L to the numeric value so that it
represents a Long value which has a wider range, as shown in this example: Long d = 2147483648L;.

Overflow of Data Type Values

Arithmetic computations that produce values larger than the maximum value of the current type are said to overflow.
For example, Integer i = 2147483647 + 1; yields avalue of -2147483648 because 2147483647 is the maximum
value for an Integer, so adding one to it wraps the value around to the minimum negative value for Integers, ~2147483648.

If arithmetic computations generate results larger than the maximum value for the current type, the end result will be
incorrect because the computed values that are larger than the maximum will overflow. For example, the expression
Long MillsPerYear = 365 * 24 * 60 * 60 * 1000; results in an incorrect result because the products of
Integers on the right hand side are larger than the maximum Integer value and they overflow. As a result, the final
product isn't the expected one. You can avoid this by ensuring that the type of numeric values or variables you are using
in arithmetic operations are large enough to hold the results. In this example, append L to numeric values to make them
Long so the intermediate products will be Long as well and no overflow occurs. The following example shows how to
correctly compute the amount of milliseconds in a year by multiplying Long numeric values.

Long MillsPerYear = 365L * 24L * 60L * 60L * 1000L;
Long ExpectedValue = 31536000000L;
System.assertEquals (MillsPerYear, ExpectedValue) ;

Loss of Fractions in Divisions

When dividing numeric Integer or Long values, the fractional portion of the result, if any, is removed before performing
any implicit conversions to a Double or Decimal. For example, Double d = 5/3; returns 1.0 because the actual result
(1.666...) is an Integer and is rounded to 1 before being implicitly converted to a Double. To preserve the fractional
value, ensure that you are using Double or Decimal numeric values in the division. For example, Double d = 5.0/3.0;
returns 1.6666666666666667 because 5.0 and 3.0 represent Double values, which results in the quotient being a Double
as well and no fractional value is lost.

Variables

Local variables are declared with Java-style syntax. For example:

Integer i = 0;

String str;

Merchandise c¢ m;
Merchandise c[] merch;
Set<String> s;

Map<ID, Merchandise c¢> m;

As with Java, multiple variables can be declared and initialized in a single statement, using comma separation. For example:
Integer i, j, k;

All variables allow null as a value and are initialized to null if they are not assigned another value. For instance, in the
following example, 1, and k are assigned values, while 7 is set to null because it is not assigned:

Integer i = 0, j, k = 1;

47

Language Constructs Case Sensitivity

Variables can be defined at any point in a block, and take on scope from that point forward. Sub-blocks cannot redefine a
variable name that has already been used in a parent block, but parallel blocks can reuse a variable name. For example:

Integer i;
{

// Integer i; This declaration is not allowed

}

for (Integer j = 0; j < 10; Jj++);
for (Integer j 0; 7 < 10; j++);

Case Sensitivity
To avoid confusion with case-insensitive SOQL and SOSL queries, Apex is also case-insensitive. This means:

« Variable and method names are case insensitive. For example:

Integer I;
//Integer i; This would be an error.

+ References to object and field names are case insensitive. For example:

Merchandise c¢ ml;
MERCHANDISE C m2;

« SOQL and SOSL statements are case insensitive. For example:

Merchandise c¢[] merchItems = [sELect ID From MErchanDIse ¢ where nAme = 'Pencils'];

Also note that Apex uses the same filtering semantics as SOQL, which is the basis for comparisons in the SOAP API and
the Database.com user interface. The use of these semantics can lead to some interesting behavior. For example, if an end user
generates a report based on a filter for values that come before 'm' in the alphabet (that is, values < 'm'), null fields are returned
in the result. The rationale for this behavior is that users typically think of a field without a value as just a “space” character,
rather than its actual “null” value. Consequently, in Apex, the following expressions all evaluate to true:

String s;
System.assert ('a' == 'A'");
System.assert (s < 'b');
System.assert (! (s > 'b'"));

w# Note: Although s < 'b' evaluates to true in the example above, 'b. 'compareTo (s) generates an error because
you are trying to compare a letter to a null value.

Constants

Constants can be defined using the final keyword, which means that the variable can be assigned at most once, either in
the declaration itself, or with a static initializer method if the constant is defined in a class. For example:

public class myCls {
static final Integer PRIVATE INT CONST;
static final Integer PRIVATE INT CONST2 = 200;

48

Language Constructs Expressions

public static Integer calculate() {
return 2 + 7;

}

static {
PRIVATE INT CONST = calculate();
}

For more information, see Using the final Keyword on page 120.

Expressions

An expression is a construct made up of variables, operators, and method invocations that evaluates to a single value. This
section provides an overview of expressions in Apex and contains the following:

« Understanding Expressions

« Understanding Expression Operators

+ Understanding Operator Precedence

« Extending sObject and List Expressions

+ Using Comments

Understanding Expressions

An expression is a construct made up of variables, operators, and method invocations that evaluates to a single value. In Apex,
an expression is always one of the following types:

« A literal expression. For example:

« A new sObject, Apex object, list, set, or map. For example:

new Invoice Statement c(<field initializers>)

new Integer[<n>]

new Invoice_Statement__c[]{<elements>}

new List<Invoice Statement c>()

new Set<String>({}

new Map<String, Integer> ()

new myRenamingClass (string oldName, string newName)

« Any value that can act as the left-hand of an assignment operator (L-values), including variables, one-dimensional list
positions, and most sObject or Apex object field references. For example:

Integer i

myList [3]
myInvoice.Description ¢
myRenamingClass.oldName

+ Any sObject field reference that is not an L-value, including:

49

Language Constructs Understanding Expression Operators

0 The ID of an sObject in a list (see Lists)

0 A set of child records associated with an sObject (for example, the set of line items associated with a particular invoice
statement). This type of expression yields a query result, much like SOQL and SOSL queries.

« A SOQL or SOSL query surrounded by square brackets, allowing for on-the-fly evaluation in Apex. For example:

Invoice Statement c[] aa = [SELECT Id, Description_ c FROM Invoice Statement c
WHERE Description c ='some text'];

Integer i = [SELECT COUNT () FROM Merchandise c WHERE Description c¢ ='Pencils'];

List<List<SObject>> searchlList = [FIND 'map*' IN ALL FIELDS

RETURNING Merchandise c¢ (Id, Description_ c),
Invoice Statement ¢, Line Item c];

For information, see SOQL and SOSL Queries on page 64.

« A static or instance method invocation. For example:

System.assert (true)
myRenamingClass.replaceNames ()
changePoint (new Point (x, y));

Understanding Expression Operators

Expressions can also be joined to one another with operators to create compound expressions. Apex supports the following
operators:

= X =y Assignment operator (Right associative). Assigns the value of y to the L-value
x. Note that the data type of x must match the data type of y, and cannot be
null.

= X 4=y Addition assignment operator (Right associative). Adds the value of y to
the original value of x and then reassigns the new value to x. See + for
additional information. x and y cannot be null.

*= X *=y Multiplication assignment operator (Right associative). Multiplies the value
of y with the original value of x and then reassigns the new value to x. Note
that x and y must be Integers or Doubles, or a combination. x and y cannot
be null.

-= X -= vy Subtraction assignment operator (Right associative). Subtracts the value of
y from the original value of x and then reassigns the new value to x. Note
that x and y must be Integers or Doubles, or a combination. x and y cannot
be null.

/= X /=y Division assignment operator (Right associative). Divides the original value
of x with the value of y and then reassigns the new value to x. Note that x
and y must be Integers or Doubles, or a combination. x and y cannot be
null.

50

Language Constructs Understanding Expression Operators

|= X |=y OR assignment operator (Right associative). If x, a Boolean, and y, a Boolean,
are both false, then x remains false. Otherwise, x is assigned the value of true.

Note:

« This operator exhibits “short-circuiting” behavior, which means y is
evaluated only if x is false.

. xand y cannot be null.

G= X &= y AND assignment operator (Right associative). If x, a Boolean, and y, a
Boolean, are both true, then x remains true. Otherwise, x is assigned the value

of false.
Note:

« This operator exhibits “short-circuiting” behavior, which means y is
evaluated only if x is true.

. xand y cannot be null.

<<= X <<=y Bitwise shift left assignment operator. Shifts each bit in x to the left by y
bits so that the high order bits are lost, and the new right bits are set to 0.
This value is then reassigned to x.

S>= X >>=y Bitwise shift right signed assignment operator. Shifts each bit in x to the
right by vy bits so that the low order bits are lost, and the new left bits are set
to 0 for positive values of y and 1 for negative values of y. This value is then
reassigned to x.

>>>= X >>>=y Bitwise shift right unsigned assignment operator. Shifts each bit in x to the
right by v bits so that the low order bits are lost, and the new left bits are set
to O for all values of y. This value is then reassigned to x.

? ¢ X ?y:z Ternary operator (Right associative). This operator acts as a short-hand for
if-then-else statements. If x, a Boolean, is true, y is the result. Otherwise z
is the result. Note that x cannot be null.

&& X && Y AND logical operator (Left associative). If x, a Boolean, and vy, a Boolean,
are both true, then the expression evaluates to true. Otherwise the expression
evaluates to false.

Note:

+ && has precedence over | |

« This operator exhibits “short-circuiting” behavior, which means y is
evaluated only if x is true.

- xand y cannot be null.

51

Language Constructs Understanding Expression Operators

| x |ly OR logical operator (Left associative). If x, a Boolean, and y, a Boolean, are
both false, then the expression evaluates to false. Otherwise the expression
evaluates to true.

Note:

+ && has precedence over | |
« This operator exhibits “short-circuiting” behavior, which means y is
evaluated only if x is false.

. xand y cannot be null.

== X ==y Equality operator. If the value of x equals the value of y, the expression
evaluates to true. Otherwise, the expression evaluates to false.

Note:

« Unlike Java, == in Apex compares object value equality, not reference

equality. Consequently:

0 String comparison using == is case insensitive

0 ID comparison using == is case sensitive, and does not distinguish
between 15-character and 18-character formats

« For sObjects and sObject arrays, == performs a deep check of all sObject
field values before returning its result.

« For records, every field must have the same value for == to evaluate to
true.

. xory can be the literal null.

« The comparison of any two values can never result in null.

« SOQL and SOSL use = for their equality operator, and not ==. Although
Apex and SOQL and SOSL are strongly linked, this unfortunate syntax
discrepancy exists because most modern languages use = for assignment
and == for equality. The designers of Apex deemed it more valuable to
maintain this paradigm than to force developers to learn a new assignment
operator. The result is that Apex developers must use == for equality tests
in the main body of the Apex code, and = for equality in SOQL and SOSL

queries.

=== 2= Exact equality operator. If x and y reference the exact same location in
memory, the expression evaluates to true. Otherwise, the expression evaluates
to false. Note that this operator only works for sObjects or collections (such
as a Map or list). For an Apex object (such as an Exception or instantiation
of a class) the exact equality operator is the same as the equality operator.

52

Language Constructs Understanding Expression Operators

< x <y Less than operator. If x is less than y, the expression evaluates to true.
Otherwise, the expression evaluates to false.

Note:

+ Unlike other database stored procedures, Apex does not support tri-state
Boolean logic, and the comparison of any two values can never result in
null.

« Ifxoryequal null and are Integers, Doubles, Dates, or Datetimes, the
expression is false.

« Anon-null String or ID value is always greater than a null value.

« Ifxand y are IDs, they must reference the same type of object. Otherwise,
a runtime error results.

« IfxoryisanID and the other value is a String, the String value is
validated and treated as an ID.

- xand y cannot be Booleans.

« The comparison of two strings is performed according to the locale of the
context user.

> X >y Greater than operator. If x is greater than y, the expression evaluates to true.
Otherwise, the expression evaluates to false.

Note:

« The comparison of any two values can never result in null.

« Ifxoryequal null and are Integers, Doubles, Dates, or Datetimes, the
expression is false.

« A non-null String or ID value is always greater than a null value.

« Ifxand y are IDs, they must reference the same type of object. Otherwise,
a runtime error results.

« IfxoryisanID and the other value is a String, the String value is
validated and treated as an ID.

« xand y cannot be Booleans.

« The comparison of two strings is performed according to the locale of the
context user.

<= X <=y Less than or equal to operator. If x is less than or equal to y, the expression
evaluates to true. Otherwise, the expression evaluates to false.

Note:

« The comparison of any two values can never result in null.

« Ifxoryequal null and are Integers, Doubles, Dates, or Datetimes, the
expression is false.

« Anon-null String or ID value is always greater than a null value.

« Ifxand y are IDs, they must reference the same type of object. Otherwise,
a runtime error results.

53

Language Constructs Understanding Expression Operators

« IfxoryisanID and the other value is a String, the String value is
validated and treated as an ID.

. xand y cannot be Booleans.

« The comparison of two strings is performed according to the locale of the
context user.

>= X >=y Greater than or equal to operator. If x is greater than or equal to y, the
expression evaluates to true. Otherwise, the expression evaluates to false.

Note:

« The comparison of any two values can never result in null.

« Ifxoryequal null and are Integers, Doubles, Dates, or Datetimes, the
expression is false.

« A non-null String or ID value is always greater than a null value.

« Ifxandy areIDs, they must reference the same type of object. Otherwise,
a runtime error results.

« IfxoryisanID and the other value is a String, the String value is
validated and treated as an ID.

- xand y cannot be Booleans.

+ The comparison of two strings is performed according to the locale of the
context user.

= x l=y Inequality operator. If the value of x does not equal the value of y, the
expression evaluates to true. Otherwise, the expression evaluates to false.

Note:

« Unlike Java, ! = in Apex compares object value equality, not reference
equality.

« For sObjects and sObject arrays, ! = performs a deep check of all sObject
field values before returning its result.

. For records, ! = evaluates to true if the records have different values for
any field.

« xory can be the literal null.

« The comparison of any two values can never result in null.

== x l==y Exactinequality operator. If x and y do not reference the exact same location
in memory, the expression evaluates to true. Otherwise, the expression evaluates
to false. Note that this operator only works for sObjects, collections (such as
a Map or list), or an Apex object (such as an Exception or instantiation of a
class).

+ X +y Addition operator. Adds the value of x to the value of y according to the
following rules:

« Ifx and y are Integers or Doubles, adds the value of x to the value of y.
If a Double is used, the result is a Double.

54

Language Constructs Understanding Expression Operators

« IfxisaDate and y is an Integer, returns a new Date that is incremented
by the specified number of days.

« IfxisaDatetime and y is an Integer or Double, returns a new Date that
is incremented by the specified number of days, with the fractional portion
corresponding to a portion of a day.

« IfxisaString and y is a String or any other type of non-null argument,
concatenates y to the end of x.

= X -y Subtraction operator. Subtracts the value of y from the value of x according

to the following rules:

« Ifxand y are Integers or Doubles, subtracts the value of x from the value
of y. If a Double is used, the result is a Double.

« IfxisaDateand y is an Integer, returns a new Date that is decremented
by the specified number of days.

« IfxisaDatetime and y is an Integer or Double, returns a new Date that
is decremented by the specified number of days, with the fractional portion
corresponding to a portion of a day.

* X *y Multiplication operator. Multiplies x, an Integer or Double, with y, another
Integer or Double. Note that if a double is used, the result is a Double.

/ x /vy Division operator. Divides x, an Integer or Double, by y, another Integer or
Double. Note that if a double is used, the result is a Double.

! Ix Logical complement operator. Inverts the value of a Boolean, so that true
becomes false, and false becomes true.

- -x Unary negation operator. Multiplies the value of x, an Integer or Double,
by -1. Note that the positive equivalent + is also syntactically valid, but does
not have a mathematical effect.

++ X+ Increment operator. Adds 1 to the value of x, an Integer or Double. If prefixed
(++x), the increment occurs before the rest of the statement is executed. If
postfixed (x--), the increment occurs after the rest of the statement is
executed.

== R== Decrement operator. Subtracts 1 from the value of x, an Integer or Double.
If prefixed (--x), the decrement occurs before the rest of the statement is
executed. If postfixed (x--), the decrement occurs after the rest of the
statement is executed.

& X &y Bitwise AND operator. ANDs each bit in x with the corresponding bit in y
so that the result bit is set to 1 if both of the bits are set to 1. This operator
is not valid for types Long or Integer.

x |y Bitwise OR operator. ORs each bit in x with the corresponding bit in y so
that the result bit is set to 1 if at least one of the bits is set to 1. This operator
is not valid for types Long or Integer.

55

Language Constructs Understanding Operator Precedence

A x "Ny Bitwise exclusive OR operator. Exclusive ORs each bit in x with the
corresponding bit in y so that the result bit is set to 1 if exactly one of the bits
is set to 1 and the other bit is set to 0.

~= X "=y Bitwise exclusive OR operator. Exclusive ORs each bit in x with the
corresponding bit in y so that the result bit is set to 1 if exactly one of the bits
is set to 1 and the other bit is set to 0.

<< x <<y Bitwise shift left operator. Shifts each bit in x to the left by y bits so that the
high order bits are lost, and the new right bits are set to 0.

>> X >> vy Bitwise shift right signed operator. Shifts each bit in x to the right by y bits
so that the low order bits are lost, and the new left bits are set to 0 for positive
values of y and 1 for negative values of y.

>>> X >>> y Bitwise shift right unsigned operator. Shifts each bit in x to the right by v
bits so that the low order bits are lost, and the new left bits are set to 0 for all
values of y.

() (x) Parentheses. Elevates the precedence of an expression x so that it is evaluated

first in a compound expression.

Understanding Operator Precedence

Apex uses the following operator precedence rules:

1 (y O ++ —- Grouping and prefix increments and decrements

2 ! -x +x (type) new Unary negation, type cast and object creation

3 * / Multiplication and division

4 + - Addition and subtraction

5 < <= > >= instanceof Greater-than and less-than comparisons, reference
tests

6 = [= Comparisons: equal and not-equal

7 && Logical AND

8 I Logical OR

9 = += -= *= /= g&= Assignment operators

56

Language Constructs Extending sObject and List Expressions

Extending sObject and List Expressions

As in Java, sObject and list expressions can be extended with method references and list expressions, respectively, to form new
expressions.

In the following example, a new variable containing the length of the new Invoice_Statement__c name is assigned to
descriptionLength.

Integer descriptionLength = new Invoice Statement c []{
new Invoice Statement c¢ (Description c¢c='My invoice')}[0].Description c.length();

In the above, new Invoice Statement c[] generates a list.

The list is populated by the SOQL statement {new Invoice Statement c(Description c='My invoice')}.
Item O, the first item in the list, is then accessed by the next part of the string [0].

The name of the sObject in the list is accessed, followed by the method returning the length Description c.length().

In the following example, a name that has been shifted to lower case is returned.

String descChange = [SELECT Description c
FROM Invoice Statement c][0].Description c.toLowerCase();

Using Comments
Both single and multiline comments are supported in Apex code:

« To create a single line comment, use //. All characters on the same line to the right of the // are ignored by the parser.
For example:

Integer i = 1; // This comment is ignored by the parser
+ To create a multiline comment, use /* and */ to demarcate the beginning and end of the comment block. For example:

Integer i = 1; /* This comment can wrap over multiple
lines without getting interpreted by the
parser. */

Assignment Statements

An assignment statement is any statement that places a value into a variable, generally in one of the following two forms:

[LValue] [new value expression];
[LValue] = [[inline sogl query]];

In the forms above, [Lvalue] stands for any expression that can be placed on the left side of an assignment operator. These
include:

57

Language Constructs Assignment Statements

« A simple variable. For example:

Integer i = 1;
Invoice Statement ¢ a = new Invoice Statement c();
Invoice Statement c[] invs = [SELECT Id FROM Invoice Statement c];

+ A de-referenced list element. For example:

ints[0] = 1;
Invoice Statement c[0].Description c¢ = 'description';

« An sObject field reference that the context user has permission to edit. For example:

Invoice Statement ¢ a = new Invoice Statement c();

// IDs cannot be set manually
// a.Id = 'a00900000013R8Q'; This code is invalid!

// Instead, insert the record. The system automatically assigns it an ID.
insert a;

// Fields also must be writeable for the context user
// a.CreatedDate = System.today(); This code is invalid because
// createdDate is read-only!

// Create a merchandise item to use for the line item
Merchandise c¢ m = new Merchandise c(
Name="'Pencils',
Description c='Durable pencils',
Price c=1.25,
Total Inventory c¢=100);
insert m;

// Since the invoice a has been inserted, it is now possible to

// create a new line item that is related to it

Line Item c¢ 1i = new Line Item c(
Name='Two pencils',
Units_Sold c=2,
Unit Price c=5,
Merchandise c¢ = m.id,
Invoice Statement c=a.Id);

insert 1i;

Line Item c¢ 1i2 = [SELECT Id,Invoice Statement r.Description c
FROM Line Item ¢ WHERE Id=:1i.Id];

// Notice that you can write to an invoice statement field directly

// through the relationship field on the line item

1i2.Invoice Statement r.Description c¢ = 'new description';

Assignment is always done by reference. For example:

Invoice Statement ¢ a = new Invoice Statement c();
Invoice Statement c b;

Invoice Statement c[] ¢ = new Invoice Statement cl[]{};
a.Description ¢ = 'Invoice 1';

b = a;

c.add(a);

// These asserts should now be true. You can reference the data
// originally allocated to invoice a through invoice b and invoice list c.

58

Language Constructs Conditional (If-Else) Statements

System.assertEquals (b.Description ¢, 'Invoice 1');
System.assertEquals(c[0] .Description ¢, 'Invoice 1');

Similarly, two lists can point at the same value in memory. For example:

Invoice Statement c[] a = new Invoice Statement c[]{new Invoice Statement c()};
Invoice Statement c[] b = a;

a[0] .Description c¢ = 'Invoice 1';

System.assert (b[0] .Description c¢ == 'Invoice 1');
In addition to =, other valid assignment operators include +=, *=, /=, | =, &=, ++, and --. See Understanding Expression
Operators on page 50.

Conditional (If-Else) Statements

The conditional statement in Apex works similarly to Java:

if ([Boolean condition])
// Statement 1

else
// Statement 2

The else portion is always optional, and always groups with the closest i £. For example:

Integer x, sign;
// Your code
if (x <= 0) if (x == 0) sign = 0; else sign = -1;

is equivalent to:

Integer x, sign;
// Your code
if (x <= 0) {

if (x == 0) {
sign = 0;
} else {
sign = -1;

}

Repeated else if statements are also allowed. For example:

if (place == 1) {
medal color = 'gold';
} else if (place == 2) {
medal color = 'silver';
} else if (place == 3) {
medal color = 'bronze';
} else {

medal color = null;

}

59

Language Constructs Loops

Loops
Apex supports the following five types of procedural loops:

+ do {statement} while (Boolean condition);

+ while (Boolean condition) statement;

« for (initialization; Boolean exit condition; increment) statement;
« for (variable : array or set) statement;

« for (variable : [inline_soql_query]) statement;
All loops allow for loop control structures:

« break; exits the entire loop

« continue; skips to the next iteration of the loop

Do-While Loops

The Apex do-while loop repeatedly executes a block of code as long as a particular Boolean condition remains true. Its syntax
is:

do {
code block
} while (condition);

@ Note: Curly braces ({}) are always required around a code_block.

4
As in Java, the Apex do-while loop does not check the Boolean condition statement until after the first loop is executed.
Consequently, the code block always runs at least once.

As an example, the following code outputs the numbers 1 - 10 into the debug log:

Integer count = 1;

do {
System.debug (count) ;
count++;

} while (count < 11);

While Loops

The Apex while loop repeatedly executes a block of code as long as a particular Boolean condition remains true. Its syntax
1s:

while (condition) {
code block
}

60

Language Constructs For Loops

w» Note: Curly braces ({ }) are required around a code_block only if the block contains more than one statement.
4

Unlike do-while, the while loop checks the Boolean condition statement before the first loop is executed. Consequently,
it is possible for the code block to never execute.

As an example, the following code outputs the numbers 1 - 10 into the debug log:

Integer count = 1;

while (count < 11) {
System.debug (count) ;
count++;

For Loops
Apex supports three variations of the for loop:

« The traditional for loop:

for (init stmt; exit condition; increment stmt) ({
code block
}

« The list or set iteration for loop:

for (variable : list or_ set) ({
code block
}

where variable must be of the same primitive or sObject type as list or_set.

« The SOQL for loop:

for (variable : [sogl query]) {
code block
}

or

for (variable list : [sogl query]) {
code block
}
Both variableand variable list must be of the same sObject type as is returned by the soql_gquery.
w» Note: Curly braces ({}) are required around a code_block only if the block contains more than one statement.
-

Each is discussed further in the sections that follow.

61

Language Constructs For Loops

Traditional For Loops

The traditional for loop in Apex corresponds to the traditional syntax used in Java and other languages. Its syntax is:

for (init_stmt; exit condition; increment stmt) {
code block
}

When executing this type of for loop, the Apex runtime engine performs the following steps, in order:

1. Execute the init_stmt component of the loop. Note that multiple variables can be declared and/or initialized in this
statement.

Perform the exit condition check. If true, the loop continues. If false, the loop exits.
Execute the code block.
Execute the incremen t_stmt statement.

Return to Step 2.

b O

As an example, the following code outputs the numbers 1 - 10 into the debug log. Note that an additional initialization variable,
j, is included to demonstrate the syntax:

for (Integer i =0, j = 0; i < 10; i++) {
System.debug (i+l) ;
}

List or Set Iteration For Loops

The list or set iteration for loop iterates over all the elements in a list or set. Its syntax is:

for (variable : list or_set) ({
code block
}

where variable must be of the same primitive or sObject type as list_or_set.

When executing this type of for loop, the Apex runtime engine assigns variable to each elementin list or_set, and
runs the code_block for each value.

For example, the following code outputs the numbers 1 - 10 to the debug log:

Integer[] myInts = new Integer[]{1l, 2, 3, 4, 5, 6, 7, 8, 9, 10};
for (Integer i : myInts) {

System.debug (i) ;
}

SOQL For Loops
SOQL for loops iterate over all of the sObject records returned by a SOQL query. The syntax of a SOQL for loop is either:

for (variable : [soql query]) {
code block
}

62

Language Constructs For Loops

or

for (variable list : [sogl query]) ({
code block
}

Both variableand variable list must be of the same type as the sObjects that are returned by the sogl query.
As in standard SOQL queries, the [sogl_gquery] statement can refer to code expressions in their WHERE clauses using the
syntax. For example:

String s = 'Pen';
for (Merchandise c¢ a : [SELECT Id, Name from Merchandise c
where Name LIKE :(s+'%")]) {

// Your code

The following example combines creating a list from a SOQL query, with the DML update method.

// Create a list of merchandise records from a SOQL query
List<Merchandise c¢> merch = [SELECT Id, Name

FROM Merchandise c

WHERE Name = 'Pen'];

// Loop through the list and update the Name field
for (Merchandise c¢ m : merch) {
m.Name = 'Pencil';

}

// Update the database
update merch;

SOQL For Loops Versus Standard SOQL Queries

SOQL for loops differ from standard SOQL statements because of the method they use to retrieve sObjects. While the
standard queries discussed in SOQL and SOSL Queries can retrieve either the count of a query or a number of object records,
SOQL for loops retrieve all sObjects, using efficient chunking with calls to the query and queryMore methods of the
SOAP API. Developers should always use a SOQL for loop to process query results that return many records, to avoid the
limit on heap size.

Note that queries including an aggregate function don't support queryMore. A runtime exception occurs if you use a query
containing an aggregate function that returns more than 2000 rows in a for loop.

SOQL For Loop Formats

SOQL for loops can process records one at a time using a single sObject variable, or in batches of 200 sObjects at a time
using an sObject list:

« The single sObject format executes the for loop's <code block> once per sObject record. Consequently, it is easy to
understand and use, but is grossly inefficient if you want to use data manipulation language (DML) statements within the
for loop body. Each DML statement ends up processing only one sObject at a time.

« The sObject list format executes the for loop's <code_block> once per list of 200 sObjects. Consequently, it is a little
more difficult to understand and use, but is the optimal choice if you need to use DML statements within the for loop
body. Each DML statement can bulk process a list of sObjects at a time.

63

Language Constructs SOQL and SOSL Queries

For example, the following code illustrates the difference between the two types of SOQL query for loops:

// Create a savepoint because the data should not be committed to the database
Savepoint sp = Database.setSavepoint () ;

insert new Invoice Statement c[]{
new Invoice Statement c(Description c = 'yyy'),
new Invoice Statement c(Description c 'vyy'),
new Invoice Statement c(Description c 'vyy') };

// The single sObject format executes the for loop once per returned record
Integer i = 0;

for (Invoice Statement c¢ tmp : [SELECT Id FROM Invoice Statement c
WHERE Description c = 'yyy']) {
kg
}
System.assert (i == 3); // Since there were three invoices named 'yyy' in the

// database, the loop executed three times

// The sObject list format executes the for loop once per returned batch
// of records

i = 0;
Integer j;
for (Invoice Statement c[] tmp : [SELECT Id FROM Invoice Statement c
WHERE Description c = 'yyy']) {

J = tmp.size();

i++;
}
System.assert(j == 3); // The list should have contained the three invoices

// named 'yyy'

System.assert (i == 1); // Since a single batch can hold up to 100 records and,

// only three records should have been returned, the
// loop should have executed only once

// Revert the database to the original state
Database.rollback (sp) ;

=% Note:

.~ + Thebreakand continue keywords can be used in both types of inline query for loop formats. When using the
sObject list format, continue skips to the next list of sObjects.

« DML statements can only process up to 10,000 records at a time, and sObject list for loops process records in
batches of 200. Consequently, if you are inserting, updating, or deleting more than one record per returned record
in an sObject list for loop, it is possible to encounter runtime limit errors. See Understanding Execution Governors
and Limits on page 203.

SOQL and SOSL Queries

You can evaluate Database.com Object Query Language (SOQL) or Database.com Object Search Language (SOSL) statements
on-the-fly in Apex by surrounding the statement in square brackets.

SOQL Statements

SOQL statements evaluate to a list of sObjects, a single sObject, or an Integer for count method queries.

64

Language Constructs SOQL and SOSL Queries

For example, you could retrieve a list of merchandise items that are named Pen:
List<Merchandise c¢> aa = [SELECT Id, Name FROM Merchandise c¢ WHERE Name = 'Pen'];
From this list, you can access individual elements:

if (laa.isEmpty()) {
// Execute commands

}

You can also create new objects from SOQL queries on existing ones. The following example creates a new line item for the
first merchandise with a total inventory greater than 1000:

Line Item c¢ 1i = new Line Item c(
Merchandise c¢ = [SELECT Name FROM Merchandise c
WHERE Total Inventory c¢ > 1000 LIMIT 1].Id);
1li.Name='Two items';
li.Invoice Statement c=invoicelD;

Note that the newly created object contains null values for its fields, which will need to be set.
The count method can be used to return the number of rows returned by a query. The following example returns the total
number of merchandise items with a total inventory greater than 1000:
Integer i = [SELECT COUNT () FROM Merchandise c¢ WHERE Total Inventory c¢ > 1000];
You can also operate on the results using standard arithmetic:

Integer j = 5 * [SELECT COUNT () FROM Merchandise c];

For a full description of SOQL query syntax, see the Database.com SOQL and SOSL Reference Guide.

SOSL Statements

SOSL statements evaluate to a list of lists of sObjects, where each list contains the search results for a particular sObject type.
The result lists are always returned in the same order as they were specified in the SOSL query. SOSL queries are only supported
in Apex classes and anonymous blocks. You cannot use a SOSL query in a trigger. If a SOSL query does not return any records
for a specified sObject type, the search results include an empty list for that sObject.

For example, you can return a list of merchandise items, inventory statements, and line items that have fields that begin with
the phrase map:

List<List<SObject>> searchList = [FIND 'map*' IN ALL FIELDS RETURNING
Merchandise c¢ (Id, Name), Invoice Statement c,
Line Item c];

w» Note:

- The syntax of the FIND clause in Apex differs from the syntax of the FIND clause in the SOAP API:

« In Apex, the value of the FIND clause is demarcated with single quotes. For example:

FIND 'map*' IN ALL FIELDS RETURNING Merchandise c¢ (Id, Name), Invoice Statement c,
Line Item c

65

http://www.salesforce.com/us/developer/docs/dbcom_soql_sosl/index.htm

Language Constructs Working with SOQL and SOSL Query Results

+ In the Force.com API, the value of the FIND clause is demarcated with braces. For example:

FIND {map*} IN ALL FIELDS RETURNING Merchandise c¢ (Id, Name), Invoice Statement c,
Line Item c

From searchList, you can create arrays for each object returned:

Merchandise c¢ [] merch = ((List<Merchandise c>)searchList[0]);
Invoice Statement ¢ [] invoices = ((List<Invoice Statement c¢>)searchList[1]);
Line Item c¢ [] 1i = ((List<Line Item c>)searchList[2]);

For a full description of SOSL query syntax, see the Database.com SOQL and SOSL Reference Guide.

Working with SOQL and SOSL Query Results

SOQL and SOSL queries only return data for sObject fields that are selected in the original query. If you try to access a field
that was not selected in the SOQL or SOSL query (other than ID), you receive a runtime error, even if the field contains a
value in the database. The following code example causes a runtime error:

insert new Invoice Statement c(Description c¢ = 'Singha');
Invoice Statement c¢ inv = [SELECT Id FROM Invoice Statement c
WHERE Description ¢ = 'Singha' LIMIT 1];
// Note that description is not queried
String s = [SELECT Id FROM Invoice Statement c
WHERE Description ¢ = 'Singha' LIMIT 1].Description c;

The following is the same code example rewritten so it does not produce a runtime error. Note that Description c has
been added as part of the select statement, after Id.

insert new Invoice Statement c(Description c¢ = 'Singha');
Invoice Statement c inv = [SELECT Id FROM Invoice Statement c
WHERE Description c¢ = 'Singha' LIMIT 1];
// Note that description is now queried
String s = [SELECT Id,Description c¢ FROM Invoice Statement c
WHERE Description c¢ = 'Singha' LIMIT 1].Description c;

Even if only one sObject field is selected, a SOQL or SOSL query always returns data as complete records. Consequently,
you must dereference the field in order to access it. For example, this code retrieves an sObject list from the database with a
SOQL query, accesses the first merchandise record in the list, and then dereferences the record's Price c field:

Decimal price = [SELECT Price c¢ FROM Merchandise c
WHERE Name = 'Pen'] [0].Price c;

// When only one result is returned in a SOQL query, it is not necessary
// to include the list's index.
Decimal price = [SELECT Price c¢ FROM Merchandise c

WHERE Name = 'Pen' LIMIT 1].Price c;

The only situation in which it is not necessary to dereference an sObject field in the result of an SOQL query, is when the
query returns an Integer as the result of a COUNT operation:

Integer 1 = [SELECT COUNT () FROM Merchandise c];

Fields in records returned by SOSL queries must always be dereferenced.

66

http://www.salesforce.com/us/developer/docs/dbcom_soql_sosl/index.htm

Language Constructs Working with SOQL Aggregate Functions

Also note that sObject fields that contain formulas return the value of the field at the time the SOQL or SOSL query was
issued. Any changes to other fields that are used within the formula are not reflected in the formula field value until the record
has been saved and re-queried in Apex. Like other read-only sObject fields, the values of the formula fields themselves cannot
be changed in Apex.

Working with SOQL Aggregate Functions

Aggregate functions in SOQL, such as SUM () and MAX (), allow you to roll up and summarize your data in a query. For more
information on aggregate functions, see "Aggregate Functions” in the Database.com SOQL and SOSL Reference Guide.

You can use aggregate functions without using a GROUP BY clause. For example, you could use the AVG () aggregate function
to find the average Amount for all your opportunities.

AggregateResult[] groupedResults
= [SELECT AVG (Amount)aver FROM Opportunity];
Object avgAmount = groupedResults[0].get('aver');

Note that any query that includes an aggregate function returns its results in an array of AggregateResult objects. AggregateResult
is a read-only sObject and is only used for query results.

Aggregate functions become a more powerful tool to generate reports when you use them with a GROUP BY clause. For
example, you could find the average Amount for all your opportunities by campaign.

AggregateResult[] groupedResults
= [SELECT CampaignId, AVG (Amount)
FROM Opportunity
GROUP BY CampaignId];
for (AggregateResult ar : groupedResults) {
System.debug ('Campaign ID' + ar.get ('CampaignId'));
System.debug ('Average amount' + ar.get ('expr0'));

Any aggregated field in a SELECT list that does not have an alias automatically gets an implied alias with a format expri,
where i denotes the order of the aggregated fields with no explicit aliases. The value of i starts at 0 and increments for every
aggregated field with no explicit alias. For more information, see "Using Aliases with GROUP BY” in the Database.com SOQL
and SOSL Reference Guide.

w® Note: Queries that include aggregate functions are subject to the same governor limits as other SOQL queries for
the total number of records returned. This limit includes any records included in the aggregation, not just the number
of rows returned by the query. If you encounter this limit, you should add a condition to the WHERE clause to reduce
the amount of records processed by the query.

Working with Very Large SOQL Queries

Your SOQL query may return so many sObjects that the limit on heap size is exceeded and an error occurs. To resolve, use
a SOQL query for loop instead, since it can process multiple batches of records through the use of internal calls to query
and queryMore.

For example, if the results are too large, the syntax below causes a runtime exception:

Merchandise c[] merchandise = [SELECT Id FROM Merchandise c];

67

http://www.salesforce.com/us/developer/docs/dbcom_soql_sosl/index.htm
http://www.salesforce.com/us/developer/docs/dbcom_soql_sosl/index.htm
http://www.salesforce.com/us/developer/docs/dbcom_soql_sosl/index.htm

Language Constructs Working with Very Large SOQL Queries

Instead, use a SOQL query for loop as in one of the following examples:

// Use this format if you are not executing DML statements
// within the for loop
for (Merchandise c¢ m : [SELECT Id, Name FROM Merchandise c
WHERE Name LIKE 'p%']) {
// Your code without DML statements here

}

// Use this format for efficiency if you are executing DML statements
// within the for loop

for (List<Merchandise c¢> ml : [SELECT Id, Name FROM Merchandise c
WHERE Name LIKE 'p$%']) {

// Your code here
update ml;

The following example demonstrates a SOQL query for loop used to mass update records. Suppose you want to increase the
price of a merchandise item by 10% across all records for merchandise items whose names includes the word "pen':

public void massUpdate () {
for (List<Merchandise c¢> merchList : [SELECT Name FROM Merchandise c]) {
for (Merchandise ¢ m : merchList) {
if (m.Name.contains('pen')) {
m.Price c *= 1.1;
}
}

update merchList;

Instead of using a SOQL query in a for loop, the preferred method of mass updating records is to use batch Apex, which
minimizes the risk of hitting governor limits.

For more information, see SOQL For Loops on page 62.

More Efficient SOQL Queries

For best performance, SOQL queries must be selective, particularly for queries inside of triggers. To avoid long execution
times, non-selective SOQL queries may be terminated by the system. Developers will receive an error message when a
non-selective query in a trigger executes against an object that contains more than 100,000 records. To avoid this error, ensure
that the query is selective.

Selective SOQL Query Criteria

+ A query is selective when one of the query filters is on an indexed field and the query filter reduces the resulting
number of rows below a system-defined threshold. The performance of the SOQL query improves when two or
more filters used in the WHERE clause meet the mentioned conditions.

« The selectivity threshold is 10% of the records for the first million records and less than 5% of the records after the
first million records, up to a maximum of 333,000 records. In some circumstances, for example with a query filter
that is an indexed standard field, the threshold may be higher. Also, the selectivity threshold is subject to change.

Custom Index Considerations for Selective SOQL Queries

+ The following fields are indexed by default: primary keys (Id, Name and Owner fields), foreign keys (lookup or
master-detail relationship fields), audit dates (such as LastModifiedDate), and custom fields marked as External ID
or Unique.

+ Salesforce.com Support can add custom indexes on request for customers.

68

Language Constructs Working with Very Large SOQL Queries

+ A custom index can't be created on these types of fields: formula fields, multi-select picklists, currency fields in a
multicurrency organization, long text fields, and binary fields (fields of type blob, file, or encrypted text.) Note that
new data types, typically complex ones, may be added to Database.com and fields of these types may not allow custom
indexing.

« Typically, a custom index won't be used in these cases:
ypically,

0 The value(s) queried for exceeds the system-defined threshold mentioned above

0 The filter operator is a negative operator such as NOT EQUAL TO (or !=), NOT CONTAINS, and NOT STARTS
WITH

0 The CONTAINS operator is used in the filter and the number of rows to be scanned exceeds 333,000. This is
because the CONTAINS operator requires a full scan of the index. Note that this threshold is subject to change.
0 When comparing with an empty value (Name != ''")

However, there are other complex scenarios in which custom indexes won't be used. Contact your salesforce.com
representative if your scenario isn't covered by these cases or if you need further assistance with non-selective queries.

Examples of Selective SOQL Queries

To better understand whether a query on a large object is selective or not, let's analyze some queries. For these queries,
we will assume there are more than 100,000 records (including soft-deleted records, that is, deleted records that are still
in the Recycle Bin) for the Merchandise__c sObject.

Query 1:
SELECT Id FROM Merchandise ¢ WHERE Id IN (<list of merchandise IDs>)

The WHERE clause is on an indexed field (Id). If SELECT COUNT () FROM Merchandise c WHERE Id IN (<list
of merchandise IDs>) returns fewer records than the selectivity threshold, the index on Id is used. This will typically
be the case since the list of IDs only contains a small amount of records.

Query 2:
SELECT Id FROM Merchandise ¢ WHERE Name != "'

Since Merchandise__c is a large object even though Name is indexed (primary key), this filter returns most of the records,
making the query non-selective.

Query 3:
SELECT Id FROM Merchandise c WHERE Name != '' AND CustomField c = 'ValueA'

Here we have to see if each filter, when considered individually, is selective. As we saw in the previous example the first
filter isn't selective. So let's focus on the second one. If the count of records returned by SELECT COUNT () FROM
Merchandise c WHERE CustomField c¢ = 'ValueA' islower than the selectivity threshold, and CustomField_ ¢
is indexed, the query is selective.

Query 4:
SELECT Id FROM Merchandise c¢ WHERE FormulaField c¢ = 'ValueA'
Since a formula field can't be custom indexed, the query won't be selective, regardless of how many records have actually

"ValueA'. Remember that filtering on a formula field should be avoided, especially when querying on large objects, since
the formula needs to be evaluated for every Merchandise__c record on the fly.

69

Language Constructs Using SOQL Queries That Return One Record

Using SOQL Queries That Return One Record

SOQL queries can be used to assign a single sObject value when the result list contains only one element. When the L-value
of an expression is a single sObject type, Apex automatically assigns the single sObject record in the query result list to the
L-value. A runtime exception results if zero sObjects or more than one sObject is found in the list. For example:

List<Merchandise c¢c> merchandiseItems = [SELECT Id FROM Merchandise c];

// These lines of code are only valid if one row is returned from

// the query. Notice that the second line dereferences the field from the
// query without assigning it to an intermediary sObject variable.
Merchandise c¢ merch = [SELECT Id FROM Merchandise c];

String name = [SELECT Name FROM Merchandise c].Name;

Improving Performance by Not Searching on Null Values

In your SOQL and SOSL queries, avoid searching records that contain null values. Filter out null values first to improve
performance. In the following example, any records where the treadID value is null are filtered out of the returned values.

Public class TagWS {
/* getThreadTags
*

* a quick method to pull tags not in the existing list
*
*/
public static webservice List<String>
getThreadTags (String threadId, List<String> tags) {
system.debug (LoggingLevel.Debug, tags) ;

List<String> retVals = new List<String>();
Set<String> tagSet = new Set<String>();
Set<String> origTagSet = new Set<String>();
origTagSet.addAll (tags) ;

// Note WHERE clause verifies that threadId is not null

for (CSO_CaseThread Tag c t :
[SELECT Name FROM CSO CaseThread Tag c
WHERE Thread c¢ = :threadId AND
WHERE threadID != null])

tagSet.add (t.Name) ;

for (String x : origTagSet) ({

// return a minus version of it so the UI knows to clear it
if (!tagSet.contains (x)) retVals.add('-' + x);

for (String x : tagSet) {

// return a plus version so the UI knows it's new
if (!origTagSet.contains (x)) retvals.add('+' + x);

return retVals;

70

Language Constructs Understanding Foreign Key and Parent-Child Relationship SOQL Queries

Understanding Foreign Key and Parent-Child Relationship SOQL Queries

The SELECT statement of a SOQL query can be any valid SOQL statement, including foreign key and parent-child record

joins. If foreign key joins are included, the resulting sObjects can be referenced using normal field notation. For example:

System.debug ([SELECT Merchandise r.Name FROM Line Item c
WHERE Name = 'Two pencils'].Merchandise r.Name);

Additionally, parent-child relationships in sObjects act as SOQL queries as well. For example:

for (Invoice Statement c¢ inv : [SELECT Id, Description_ c,
(SELECT Name FROM Line Items r)
FROM Invoice Statement c

WHERE Descriﬁtion__c = 'Invoice 1']) {
Line Item c[] lis = inv.Line Items r;
system.debug('lis.size(): ' + lis.size());

Using Apex Variables in SOQL and SOSL Queries

SOQL and SOSL statements in Apex can reference Apex code variables and expressions if they are preceded by a colon (:).
This use of a local code variable within a SOQL or SOSL statement is called a 4ind. The Apex parser first evaluates the local
variable in code context before executing the SOQL or SOSL statement. Bind expressions can be used as:

« The search string in FIND clauses.

« The filter literals in WHERE clauses.

« The value of the IN or NOT 1IN operator in WHERE clauses, allowing filtering on a dynamic set of values. Note that this is
of particular use with a list of IDs or Strings, though it works with lists of any type.

« The division names in WITH DIVISION clauses.

« The numeric value in LIMIT clauses.
Bind expressions can't be used with other clauses, such as INCLUDES.

For example:

Merchandise c¢ A = new Merchandise c(
Name="'Pen',
Description_ c='Black pens',
Priee e=1.25,
Total Inventory c¢=100);
insert A;
Merchandise c B;

// A simple bind
B = [SELECT Id FROM Merchandise c¢ WHERE Id = :A.Id];

// A bind with arithmetic
B = [SELECT Id FROM Merchandise c
WHERE Name = :('x' + 'xx')];

String s = 'XXX';
// A bind with expressions

B = [SELECT Id FROM Merchandise c
WHERE Name = :'XXXX'.substring(0,3)];

71

Language Constructs Using Apex Variables in SOQL and SOSL Queries

// A bind with an expression that is itself a query result

B = [SELECT Id FROM Merchandise c
WHERE Name = :[SELECT Name FROM Merchandise c
WHERE Id = :A.Id].Name];

Line Item c¢ C = new Line Item c(
Name='Two pens',
Units Sold c=2,
Unit Price c=1.25,
Merchandise c¢ = m.Id,
Invoice Statement c=inv.Id));

insert new Line Item c[]{C,
new Line Item c
Units Sold c
Unit Price c=1.25,
Merchandise c¢ = m.Id,
Invoice Statement c=inv.Id)};

ame='Five pens',

(N
=5,
1.

// Binds in both the parent and aggregate queries
B = [SELECT Id, (SELECT Id FROM Line Item c
WHERE Id = :C.Id)
FROM Merchandise c¢
WHERE Id = :A.Id];

// One line item returned
SObject D = B.getSObjects('Line Items r');
Line Item c¢ 1i = (Line Item c)D;

// A limit bind
Integer 1 = 1;
B = [SELECT Id FROM Merchandise__c LIMIT :1];

// BAn IN-bind with an Id list. Note that a list of sObjects

// can also be used--the Ids of the objects are used for

// the bind

Invoice Statement c[] cc = [SELECT Id FROM Invoice Statement c¢ LIMIT 2];

Line Item c[] tt = [SELECT Id,Name FROM Line Item c WHERE Invoice Statement c¢ IN :cc];

// An IN-bind with a String list
String[] ss = new String[]{'a0290000000UuT7', 'a0290000000UusSn"'};
Merchandise c[] aa = [SELECT Id FROM Merchandise c

WHERE Id IN :ss];

// A SOSL query with binds in all possible clauses

String myStringl 'aaa';
String myString2 = 'bbb';
Integer myInt3 = 11;
String myString4 = 'ccc';
Integer myInt5 = 22;

List<List<SObject>> searchlList = [FIND :myStringl IN ALL FIELDS

RETURNING

Merchandise c¢ (Id, Name WHERE Name LIKE :myString2
LIMIT :myInt3),

Invoice Statement c,
Line Item c,

WITH DIVISION =:myString4

LIMIT :myInt5];

72

Language Constructs Querying All Records with a SOQL Statement

Querying All Records with a SOQL Statement

SOQL statements can use the ALL ROWS keywords to query all records in an organization, including deleted records For
example:

System.assertEquals (2, [SELECT COUNT () FROM Merchandise ¢ WHERE Name LIKE 'p%' ALL ROWS]);

You can use ALL ROWS to query records in your organization's Recycle Bin. You cannot use the ALL ROWS keywords with
the FOR UPDATE keywords.

Locking Statements

Apex allows developers to lock sObject records while they are being updated in order to prevent race conditions and other
thread safety problems. While an sObject record is locked, no other program or user is allowed to make updates.

To lock a set of sObject records in Apex, embed the keywords FOR UPDATE after any inline SOQL statement. For example,
the following statement, in addition to querying for two merchandise items, also locks the merchandise items that are returned:

Merchandise c¢ [] merchandise = [SELECT Id FROM Merchandise c¢ LIMIT 2 FOR UPDATE];

w## Note: You cannot use the ORDER BY keywords in any SOQL query that uses locking. However, query results are
automatically ordered by ID.

e

While the merchandise items are locked by this call, data manipulation language (DML) statements can modify their field
values in the database in the transaction.

j Caution: Use care when setting locks in your Apex code. See Avoiding Deadlocks, below.

Locking in a SOQL For Loop

The FOR UPDATE keywords can also be used within SOQL for loops. For example:

for (Merchandise c[] merchandise : [SELECT Id FROM Merchandise c
FOR UPDATE]) {
// Your code

}

As discussed in SOQL For Loops, the example above corresponds internally to calls to the query () and queryMore ()
methods in the SOAP API.

Note that there is no commit statement. If your Apex trigger completes successfully, any database changes are automatically
committed. If your Apex trigger does not complete successfully, any changes made to the database are rolled back.

73

Language Constructs Avoiding Deadlocks

Avoiding Deadlocks

Note that Apex has the possibility of deadlocks, as does any other procedural logic language involving updates to multiple
database tables or rows. To avoid such deadlocks, the Apex runtime engine:

1. First locks sObject parent records, then children.
2. Locks sObject records in order of ID when multiple records of the same type are being edited.

As a developer, use care when locking rows to ensure that you are not introducing deadlocks. Verify that you are using standard
deadlock avoidance techniques by accessing tables and rows in the same order from all locations in an application.

Transaction Control

All requests are delimited by the trigger, class method, Web Service, or anonymous block that executes the Apex code. If the
entire request completes successfully, all changes are committed to the database. If the request does not complete successtully,
all database changes are rolled back.

However, sometimes during the processing of records, your business rules require that partial work (already executed DML
statements) be “rolled back” so that the processing can continue in another direction. Apex gives you the ability to generate a
savepoint, that is, a point in the request that specifies the state of the database at that time. Any DML statement that occurs
after the savepoint can be discarded, and the database can be restored to the same condition it was in at the time you generated
the savepoint.

The following limitations apply to generating savepoint variables and rolling back the database:

« Ifyou set more than one savepoint, then roll back to a savepoint that is not the last savepoint you generated, the later
savepoint variables become invalid. For example, if you generated savepoint SP1 first, savepoint SP2 after that, and then
you rolled back to SP1, the variable SP2 would no longer be valid. You will receive a runtime error if you try to use it.

« References to savepoints cannot cross trigger invocations, because each trigger invocation is a new execution context. If
you declare a savepoint as a static variable then try to use it across trigger contexts you will receive a runtime error.

« Each savepoint you set counts against the governor limit for DML statements.

- Each rollback counts against the governor limit for DML statements. You will receive a runtime error if you try to rollback
the database additional times.

The following is an example using the setSavepoint and rollback Database methods.

Invoice Statement c a = new Invoice Statement c();

insert a;

System.assertEquals (null, [SELECT Description c¢ FROM Invoice Statement c
WHERE Id = :a.Id].Description c);

// Create a savepoint while the description field is null
Savepoint sp = Database.setSavepoint () ;

// Change the description

a.Description c¢ = '123';
update a;
System.assertEquals('123', [SELECT Description ¢ FROM Invoice Statement c

WHERE Id = :a.Id].Description_ c);

// Rollback to the previous null value
Database.rollback (sp) ;

74

Language Constructs Exception Statements

System.assertEquals (null, [SELECT Description c¢ FROM Invoice Statement c
WHERE Id = :a.Id].Description c);

Exception Statements

Apex uses exceptions to note errors and other events that disrupt the normal flow of code execution. throw statements can be
used to generate exceptions, while try, catch, and finally can be used to gracefully recover from an exception.

You can also create your own exceptions using the Exception class. For more information, see Exception Class on page 376.

Throw Statements

A throw statement allows you to signal that an error has occurred. To throw an exception, use the throw statement and
provide it with an exception object to provide information about the specific error. For example:

throw exceptionObject;

Try-Catch-Finally Statements
The try, catch, and £inally statements can be used to gracefully recover from a thrown exception:

« The try statement identifies a block of code in which an exception can occur.

« The catch statement identifies a block of code that can handle a particular type of exception. A single try statement can
have multiple associated catch statements, however, each catch statement must have a unique exception type.

« The finally statement optionally identifies a block of code that is guaranteed to execute and allows you to clean up after
the code enclosed in the try block. A single try statement can have only one associated £inally statement.

Syntax

The syntax of these statements is as follows:

try {

code block

} catch (exceptionType) {

code block

}

// Optional catch statements for other exception types.
// Note that the general exception type, 'Exception',
// must be the last catch block when it is used.

} catch (Exception e) {

code block

}

// Optional finally statement

} finally {

code block

75

Language Constructs Try-Catch-Finally Statements

Example

For example:

try {
// Your code here
} catch (ListException e) {
// List Exception handling code here
} catch (Exception e) {
// Generic exception handling code here

}

Note: Limit exceptions caused by an execution governor cannot be caught. See Understanding Execution Governors

I’) and Limits on page 203.

76

Chapter 3

Invoking Apex

In this chapter ...

+ Triggers
* Apex Scheduler
* Anonymous Blocks

* Apexin AJAX

You can invoke your Apex code using one of several mechanisms. You can write
an Apex trigger and have your trigger code invoked for the events your trigger
specifies—before or after a certain operation for a specified sObject type. You
can also write an Apex class and schedule it to run at specified intervals, or run
code snippets in an anonymous block. Finally, you can use the Ajax toolkit to
invoke Web service methods implemented in Apex.

This chapter includes the following:

« Triggers
« Apex scheduler (for Apex classes only)
« Anonymous Blocks

- AJAX Toolkit

77

Invoking Apex Triggers

Triggers

Apex can be invoked through the use of #riggers. A trigger is Apex code that executes before or after the following types of

operations:
+ insert

+ update
+ delete

+ upsert

. undelete

For example, you can have a trigger run before an object's records are inserted into the database, after records have been deleted,
or even after a record is restored from the Recycle Bin.

Triggers can be divided into two types:

+ Before triggers can be used to update or validate record values before they are saved to the database.

« After triggers can be used to access field values that are set by the database (such as a record's Id or lastUpdated field),
and to affect changes in other records, such as logging into an audit table or firing asynchronous events with a queue.

Triggers can also modify other records of the same type as the records that initially fired the trigger. For example, suppose
you created a merchandise object, if a trigger fires after an update of merchandise record 4, the trigger can also modify
merchandise record B, ¢, and D. Because triggers can cause other records to change, and because these changes can, in turn,
fire more triggers, the Apex runtime engine considers all such operations a single unit of work and sets limits on the number
of operations that can be performed to prevent infinite recursion. See Understanding Execution Governors and Limits on

page 203.

Additionally, if you update or delete a record in its before trigger, or delete a record in its after trigger, you will receive a runtime
error. This includes both direct and indirect operations.

Implementation Considerations

Before creating triggers, consider the following:

« upsert triggers fire both before and after insert or before and after update triggers as appropriate.

« Triggers that execute after a record has been undeleted only work with specific objects. See Triggers and Recovered Records
on page 85.

« Field history is not recorded until the end of a trigger. If you query field history in a trigger, you will not see any history
for the current transaction.

« For Apex saved using Salesforce.com API version 20.0 or earlier, if an API call causes a trigger to fire, the batch of 200
records to process is further split into batches of 100 records. For Apex saved using Salesforce.com API version 21.0 and
later, no further splits of API batches occur. Note that static variable values are reset between batches, but governor limits
are not. Do not use static variables to track state information between batches.

Bulk Triggers

All triggers are bulk triggers by default, and can process multiple records at a time. You should always plan on processing more
than one record at a time.

78

Invoking Apex Trigger Syntax

wm Note: An Event object that is defined as recurring is not processed in bulk for insert, delete, or update triggers.
|\
Bulk triggers can handle both single record updates and bulk operations like:

+ Data import
« Force.com Bulk API calls
« Mass actions, such as record owner changes and deletes

« Recursive Apex methods and triggers that invoke bulk DML statements

Trigger Syntax

To define a trigger, use the following syntax:

trigger triggerName on ObjectName (trigger events) ({
code block
}

where trigger events can be a comma-separated list of one or more of the following events:

e before insert
e Dbefore update
¢ before delete
« after insert
« after update
« after delete

« after undelete

w» Note:

.+ You can only use the webService keyword in a trigger when it is in a method defined as asynchronous; that is,
when the method is defined with the @ future keyword.
« A trigger invoked by an insert, delete, or update of a recurring event or recurring task results in a runtime
error when the trigger is called in bulk from the Force.com API.

For example, the following code defines a trigger for the before insert and before update events on the
Invoice_Statement__c object:

trigger myInvoiceTrigger on Invoice Statement c¢ (before insert, before update) {
// Your code here

}

The code block of a trigger cannot contain the static keyword. Triggers can only contain keywords applicable to an inner
class. In addition, you do not have to manually commit any database changes made by a trigger. If your Apex trigger completes
successfully, any database changes are automatically committed. If your Apex trigger does not complete successfully, any
changes made to the database are rolled back.

79

Invoking Apex Trigger Context Variables

Trigger Context Variables

All triggers define implicit variables that allow developers to access runtime context. These variables are contained in the
System.Trigger class:

isExecuting Returns true if the current context for the Apex code is a trigger, not a Web service or an

executeanonymous () call.

isInsert Returns true if this trigger was fired due to an insert operation.

isUpdate Returns true if this trigger was fired due to an update operation.

isDelete Returns true if this trigger was fired due to a delete operation.

isBefore Returns true if this trigger was fired before any record was saved.

isAfter Returns true if this trigger was fired after all records were saved.

isUndelete Returns true if this trigger was fired after a record is recovered from the Recycle Bin (that is,

after an undelete operation from Apex or the API.)
new Returns a list of the new versions of the sObject records.

Note that this sObject list is only available in insert and update triggers, and the records
can only be modified in before triggers.

newMap A map of IDs to the new versions of the sObject records.

Note that this map is only available in before update, after insert,and after
update triggers.

old Returns a list of the old versions of the sObject records.

Note that this sObject list is only available in update and delete triggers.

oldMap A map of IDs to the old versions of the sObject records.

Note that this map is only available in update and delete triggers.

size The total number of records in a trigger invocation, both old and new.

w# Note: If any record that fires a trigger includes an invalid field value (for example, a formula that divides by zero),

that value is set to null in the new, newMap, old, and o1ldMap trigger context variables.
T

For example, in this simple trigger, Trigger.new is a list of sObjects and can be iterated over in a for loop, or used as a

bind variable in the IN clause of a SOQL query:

Trigger t on Invoice Statement c¢ (after insert) {
for (Invoice Statement c¢ a : Trigger.new) ({
// Iterate over each sObject

}

// This single query finds every line item that is
// associated with any of the triggering invoice statements.

80

Invoking Apex Trigger Context Variables

// Note that although Trigger.new is a collection of
// records, when used as a bind variable in a SOQL query, Apex automatically
// transforms the list of records into a list of corresponding Ids.
Line Item c[] 1i = [SELECT Name FROM Line Item cC
WHERE Invoice Statement r.Id IN :Trigger.new];

This trigger uses Boolean context variables like Trigger.isBefore and Trigger.isDelete to define code that only
executes for specific trigger conditions:

trigger myInvoiceTrigger on Invoice Statement c(before delete, before insert, before update,

after delete, after insert, after update) {
if (Trigger.isBefore) {
if (Trigger.isDelete) {

// In a before delete trigger, the trigger accesses the records that will be
// deleted with the Trigger.old list.
for (Invoice Statement c¢ a : Trigger.old) {

if (a.Description c¢ != 'okToDelete') ({

a.addError ('You can\'t delete this record!');

}

}

} else {

// In before insert or before update triggers, the trigger accesses the new records
// with the Trigger.new list.
for (Invoice Statement c¢ a : Trigger.new) {
if (a.Description ¢ == 'bad') {
a.name.addError ('Invalid invoice');
}
}
if (Trigger.isInsert) {
for (Invoice Statement c¢ a : Trigger.new) ({
System.assertEquals ('some description', a.Description c);
System.assertEquals('Open', a.Status c);

}

// If the trigger is not a before trigger, it must be an after trigger.

} else {
if (Trigger.isInsert) {

List<Line Item c¢> 1li = new List<Line Item c>();

Merchandise ¢ m = new Merchandise c(
Name='Pencils',
Description_c='Durable pencils',
Price_ e=H,
Total Inventory c¢=100);

insert m;

for (Invoice Statement c¢ a : Trigger.new) ({

if (a.Description ¢ == 'Invoice A') {
li.add(new Line Item c(Name='Some pencils',

Units Sold c¢ =2,
Unit Price c=5,
Invoice Statement c¢ = a.Id,
Merchandise c¢ = m.Id));

}

}

insert 1i;

81

Invoking Apex

Context Variable Considerations

Be aware of the following considerations for trigger context variables:

+ trigger.newand trigger.old cannot be used in Apex DML operations.

Context Variable Considerations

+ You can use an object to change its own field values using trigger.new, but only in before triggers. In all after triggers,

trigger.new is not saved, so a runtime exception is thrown.

+ trigger.old is always read-only.

« You cannot delete trigger.new.

The following table lists considerations about certain actions in different trigger events:

before insert

after insert

before update

after update

before delete

after delete

after undelete

Allowed.

Not allowed. A runtime error
is thrown, as trigger.new
is already saved.

Allowed.

Not allowed. A runtime error
is thrown, as trigger.new
is already saved.

Not allowed. A runtime error
is thrown. trigger.newis
not available in before delete
triggers.

Not allowed. A runtime error
is thrown. trigger.new is
not available in after delete
triggers.

Not allowed. A runtime error
is thrown. trigger.oldis
not available in after undelete
triggers.

Not applicable. The original
object has not been created;
nothing can reference it, so
nothing can update it.

Allowed.

Not allowed. A runtime error
is thrown.

Allowed. Even though bad
code could cause an infinite
recursion doing this
incorrectly, the error would be
found by the governor limits.

Allowed. The updates are
saved before the object is
deleted, so if the object is
undeleted, the updates become
visible.

Not applicable. The object has
already been deleted.

Allowed.

Not applicable. The original
object has not been created,
nothing can reference it, so
nothing can update it.

Allowed, but unnecessary. The
object is deleted immediately
after being inserted.

Not allowed. A runtime error
1s thrown.

Allowed. The updates are
saved before the object is
deleted, so if the object is
undeleted, the updates become
visible.

Not allowed. A runtime error
is thrown. The deletion is
already in progress.

Notapplicable. The object has
already been deleted.

Allowed, but unnecessary. The
object is deleted immediately
after being inserted.

82

Invoking Apex Common Bulk Trigger Idioms

Common Bulk Trigger Idioms

Although bulk triggers allow developers to process more records without exceeding execution governor limits, they can be
more difficult for developers to understand and code because they involve processing batches of several records at a time. The
following sections provide examples of idioms that should be used frequently when writing in bulk.

Using Maps and Sets in Bulk Triggers

Set and map data structures are critical for successful coding of bulk triggers. Sets can be used to isolate distinct records, while
maps can be used to hold query results organized by record ID.

For example, this bulk trigger from the sample quoting application first adds each pricebook entry associated with the
OpportunityLineltem records in Trigger . new to a set, ensuring that the set contains only distinct elements. It then queries
the PricebookEntries for their associated product color, and places the results in a map. Once the map is created, the trigger
iterates through the OpportunityLineltems in Trigger.new and uses the map to assign the appropriate color.

// When a new line item is added to an opportunity, this trigger copies the value of the
// associated product's color to the new record.
trigger oppLineTrigger on OpportunityLineIltem (before insert) ({

// For every OpportunityLineltem record, add its associated pricebook entry

// to a set so there are no duplicates.

Set<Id> pbelds = new Set<Id>();

for (OpportunityLineItem oli : Trigger.new)
pbelds.add(oli.pricebookentryid) ;

// Query the PricebookEntries for their associated product color and place the results
// in a map.
Map<Id, PricebookEntry> entries = new Map<Id, PricebookEntry> (

[select product2.color c¢ from pricebookentry

where id in :pbelds]):;

// Now use the map to set the appropriate color on every OpportunityLineltem processed
// by the trigger.
for (OpportunitylLineltem oli : Trigger.new)

oli.color c = entries.get(oli.pricebookEntryId).product2.color c;

Correlating Records with Query Results in Bulk Triggers

Use the Trigger.newMap and Trigger . oldMap ID-to-sObject maps to correlate records with query results. For example,
this trigger from the sample quoting app uses Trigger.oldMap to create a set of unique IDs (Trigger.oldMap. keySet ()).
The set is then used as part of a query to create a list of quotes associated with the opportunities being processed by the trigger.
For every quote returned by the query, the related opportunity is retrieved from Trigger . oldMap and prevented from being
deleted:

trigger oppTrigger on Opportunity (before delete) {
for (Quote c¢ g : [SELECT opportunity c¢ FROM quote c
WHERE opportunity c¢ IN :Trigger.oldMap.keySet()]) {
Trigger.oldMap.get (g.opportunity c).addError ('Cannot delete
opportunity with a quote');

83

Invoking Apex Defining Triggers

Using Triggers to Insert or Update Records with Unique Fields

When an insert or upsert event causes a record to duplicate the value of a unique field in another new record in that batch,
the error message for the duplicate record includes the ID of the first record. However, it is possible that the error message
may not be correct by the time the request is finished.

When there are triggers present, the retry logic in bulk operations causes a rollback/retry cycle to occur. That retry cycle assigns
new keys to the new records. For example, if two records are inserted with the same value for a unique field, and you also have
an insert event defined for a trigger, the second duplicate record fails, reporting the ID of the first record. However, once
the system rolls back the changes and re-inserts the first record by itself, the record receives a new ID. That means the error
message reported by the second record is no longer valid.

Defining Triggers
Trigger code is stored as metadata under the object with which they are associated. To define a trigger in Database.com:

For a custom object, click Create > Objects and click the name of the object.
In the Triggers related list, click New.
Click Version Settings to specify the version of Apex and the API used with this trigger.

b=

Select the Is Active checkbox if the trigger should be compiled and enabled. Leave this checkbox deselected if you only
want to store the code in your organization's metadata. This checkbox is selected by default.

5. In the Body text box, enter the Apex for the trigger. A single trigger can be up to 1 million characters in length.

To define a trigger, use the following syntax:

trigger triggerName on ObjectName (trigger events) {
code block
}

where trigger events can be a comma-separated list of one or more of the following events:

+ before insert
¢ Dbefore update
« before delete
« after insert
« after update
« after delete

¢« after undelete
w# Note:

+ You can only use the webService keyword in a trigger when it is in a method defined as asynchronous; that
is, when the method is defined with the @ future keyword.

+ A triggerinvoked by an insert, delete, or update of a recurring event or recurring task results in a runtime
error when the trigger is called in bulk from the Force.com API.

6. Click Save.

s Note: Triggers are stored with an 1svalid flag that is set to true as long as dependent metadata has not changed
since the trigger was last compiled. If any changes are made to object names or fields that are used in the trigger,
including superficial changes such as edits to an object or field description, the isvalid flag is set to false until the

84

Invoking Apex Triggers and Recovered Records

Apex compiler reprocesses the code. Recompiling occurs when the trigger is next executed, or when a user re-saves
the trigger in metadata.

The Apex Trigger Editor
When editing Apex, an editor is available with the following functionality:
Syntax highlighting
The editor automatically applies syntax highlighting for keywords and all functions and operators.

Search (Q,)
Search enables you to search for text within the current page, class, or trigger. To use search, enter a string in the Search

textbox and click Find Next.

« To replace a found search string with another string, enter the new string in the Replace textbox and click replace
to replace just that instance, or Replace All to replace that instance and all other instances of the search string that
occur in the page, class, or trigger.

+ To make the search operation case sensitive, select the Match Case option.

« To use a regular expression as your search string, select the Regular Expressions option. The regular expressions
follow Javascript's regular expression rules. A search using regular expressions can find strings that wrap over more
than one line.

If'you use the replace operation with a string found by a regular expression, the replace operation can also bind regular
expression group variables ($1, $2, and so on) from the found search string. For example, to replace an <H1> tag
with an <H2> tag and keep all the attributes on the original <H1> intact, search for <HI (\s+) (.*) > and replace it
with <H2$152>.

Go to line (%)

This button allows you to highlight a specified line number. If the line is not currently visible, the editor scrolls to that
line.

Undo (®) and Redo (7)
Use undo to reverse an editing action and redo to recreate an editing action that was undone.

Font size

Select a font size from the drop-down list to control the size of the characters displayed in the editor.

Line and column position
The line and column position of the cursor is displayed in the status bar at the bottom of the editor. This can be used

with go to line (*)to quickly navigate through the editor.

Line and character count

The total number of lines and characters is displayed in the status bar at the bottom of the editor.

Triggers and Recovered Records

The after undelete trigger event only works with recovered records—that is, records that were deleted and then recovered
through the undelete DML statement. These are also called undeleted records.

The after undelete trigger events only run on top-level objects.

85

Invoking Apex Triggers and Order of Execution

Triggers and Order of Execution

When you save a record with an insert, update, or upsert statement, Database.com performs the following events in
order.

w® Note: Before Database.com executes these events on the server, the browser runs JavaScript validation if the record
contains any dependent picklist fields. The validation limits each dependent picklist field to its available values. No
other validation occurs on the client side.

On the server, Database.com:

1. Loads the original record from the database or initializes the record for an upsert statement.

Loads the new record field values from the request and overwrites the old values.Database.com doesn't perform system
validation in this step when the request comes from other sources, such as an Apex application or a SOAP API call.

3. Executes all before triggers.

4. Runs most system validation steps again, such as verifying that all required fields have a non-nul1l value, and runs any
user-defined validation rules. The only system validation that Database.com doesn't run a second time (when the request
comes from a standard Ul edit page) is the enforcement of layout-specific rules.

5. Saves the record to the database, but doesn't commit yet.

6. Executes all after triggers.

7. Executes assignment rules.

8. Executes auto-response rules.

9. Executes workflow rules.

10. If there are workflow field updates, updates the record again.

11. If the record was updated with workflow field updates, fires before and after triggers one more time (and only one
more time), in addition to standard validations. Custom validation rules are not run again.

w® Note: The before and after triggers fire one more time only if something needs to be updated. If the fields
have already been set to a value, the triggers are not fired again.

12. If the record contains a roll-up summary field or is part of a cross-object workflow, performs calculations and updates the
roll-up summary field in the parent record. Parent record goes through save procedure.

13. If the parent record is updated, and a grand-parent record contains a roll-up summary field or is part of a cross-object
workflow, performs calculations and updates the roll-up summary field in the parent record. Grand-parent record goes
through save procedure.

14. Executes Criteria Based Sharing evaluation.
15. Commits all DML operations to the database.

16. Executes post-commit logic, such as sending email.

w# Note: During a recursive save, Database.com skips steps 7 through 13.

Additional Considerations

Trigger.old contains a version of the objects before the specific update that fired the trigger. However, there is an exception.
When a record is updated and subsequently triggers a workflow rule field update, Trigger.old in the last update trigger
won’t contain the version of the object immediately prior to the workflow update, but the object before the initial update was
made. For example, suppose an existing record has a number field with an initial value of 1. A user updates this field to 10,

86

Invoking Apex Operations That Don't Invoke Triggers

and a workflow rule field update fires and increments it to 11. In the update trigger that fires after the workflow field update,
the field value of the object obtained from Trigger.old is the original value of 1, rather than 10, as would typically be the
case.

Operations That Don't Invoke Triggers

Triggers are only invoked for data manipulation language (DML) operations that are initiated or processed by the Java
application server. Consequently, some system bulk operations don't currently invoke triggers. Some examples include:

« Cascading delete operations. Records that did not initiate a delete don't cause trigger evaluation.
« Cascading updates of child records that are reparented as a result of a merge operation
+ Mass campaign status changes

« Mass division transfers

« Mass address updates

« Mass approval request transfers

« Mass email actions

« Modifying custom field data types

« Renaming or replacing picklists

« Managing price books

« Changing a user's default division with the transfer division option checked

« Changes to the following objects:

0 BrandTemplate
0 MassEmailTemplate
¢ Folder

Note the following for the ContentVersion object:
« Content pack operations involving the ContentVersion object, including slides and slide autorevision, don't invoke triggers.

w# Note: Content packs are revised when a slide inside of the pack is revised.

« Values for the TagCsv and VersionData fields are only available in triggers if the request to create or update
ContentVersion records originates from the APL

+ Youcan'tuse before or after delete triggers with the ContentVersion object.
Things to consider about FeedItem and FeedComment triggers:

+ Feedltem and FeedComment objects don't support updates. Don't use before update or after update triggers.
+ FeedItem and FeedComment objects can't be undeleted. Don't use the after undelete trigger.

+ Only FeedItems of Type TextPost, LinkPost, and ContentPost can be inserted, and therefore invoke the before
orafter insert trigger. User status updates don't cause the FeedItem triggers to fire.

« While FeedPost objects were supported for API versions 18.0, 19.0, and 20.0, don't use any insert or delete triggers saved
against versions prior to 21.0.

+ For FeedItem the following fields are not available in the before insert trigger:

¢ ContentSize
0 ContentType

87

Invoking Apex Fields that Aren’t Available or Can’t Be Updated in Triggers

In addition, the ContentData field is not available in any delete trigger.

+ For FeedComment before insert and after insert triggers, the fields of a ContentVersion associated with the
FeedComment (obtained through FeedComment .RelatedRecordId) are not available.

« Apex code uses additional security when executing in a Chatter context. To post to a private group, the user running the
code must be a member of that group. If the running user isn't a member, you can set the CreatedById field to be a
member of the group in the FeedItem record.

Fields that Aren’t Available or Can’t Be Updated in Triggers

QuestionDataCategorySelection Entity Not Available in After Insert Triggers

The after insert trigger that fires after inserting one ore more Question records doesn’t have access to the
QuestionDataCategorySelection records that are associated with the inserted Questions. For example, the following
query doesn’t return any results in an after insert trigger:

QuestionDataCategorySelection[] dcList =

[select Id,DataCategoryName from QuestionDataCategorySelection where ParentId IN :questions];

Fields Not Updateable in Before Triggers

Some field values are set during the system save operation, which occurs after before triggers have fired. As a result, these
fields cannot be modified or accurately detected in before insert or before update triggers. Some examples include:

« Task.isClosed

« Opportunity.amount®

e Opportunity.ForecastCategory
e Opportunity.isWon

e Opportunity.isClosed

e Contract.activatedDate

e Contract.activatedById

e Case.isClosed

¢ Solution.isReviewed

« Id (for all records)™

« createdDate (for all records)*
« lastUpdated (for all records)

*When Opportunity has no lineitems, Amount can be modified by a before trigger.

* Id and createdDate can be detected in before update triggers, but cannot be modified.

Trigger Exceptions

Triggers can be used to prevent DML operations from occurring by calling the addError () method on a record or field.
When used on Trigger.new records in insert and update triggers, and on Trigger.old records in delete triggers,
the custom error message is displayed in the application interface and logged.

w® Note: Users experience less of a delay in response time if errors are added to before triggers.

88

Invoking Apex Trigger and Bulk Request Best Practices

A subset of the records being processed can be marked with the addError () method:

« Ifthe trigger was spawned by a DML statement in Apex, any one error results in the entire operation rolling back. However,
the runtime engine still processes every record in the operation to compile a comprehensive list of errors.

« If the trigger was spawned by a bulk DML call in the Force.com API, the runtime engine sets aside the bad records and
attempts to do a partial save of the records that did not generate errors. See Bulk DML Exception Handling on page 252.

If a trigger ever throws an unhandled exception, all records are marked with an error and no further processing takes place.

Trigger and Bulk Request Best Practices

A common development pitfall is the assumption that trigger invocations never include more than one record. Apex triggers
are optimized to operate in bulk, which, by definition, requires developers to write logic that supports bulk operations.

This is an example of a flawed programming pattern. It assumes that only one record is pulled in during a trigger invocation.
This doesn't support bulk operations invoked through SOAP API.

trigger MileageTrigger on Mileage c (before insert, before update) {
User ¢ = [SELECT Id FROM User WHERE mileageid c¢ = Trigger.new[0].id];
}

This is another example of a flawed programming pattern. It assumes that less than 100 records are pulled in during a trigger
invocation. If more than 20 records are pulled into this request, the trigger would exceed the SOQL query limit of 100 SELECT
statements:

trigger MileageTrigger on Mileage c (before insert, before update) {
for(mileage ¢ m : Trigger.new) {

User ¢ = [SELECT Id FROM user WHERE mileageid c¢ = m.Id];
}

For more information on governor limits, see Understanding Execution Governors and Limits on page 203.

This example demonstrates the correct pattern to support the bulk nature of triggers while respecting the governor limits:

Trigger MileageTrigger on Mileage c¢ (before insert, before update) ({
Set<ID> ids = Trigger.new.keySet () ;
List<User> c = [SELECT Id FROM user WHERE mileageid c in :ids];

This pattern respects the bulk nature of the trigger by passing the Trigger.new collection to a set, then using the setin a
single SOQL query. This pattern captures all incoming records within the request while limiting the number of SOQL queries.

Best Practices for Designing Bulk Programs

The following are the best practices for this design pattern:

+ Minimize the number of data manipulation language (DML) operations by adding records to collections and performing
DML operations against these collections.

89

Invoking Apex Apex Scheduler

« Minimize the number of SOQL statements by preprocessing records and generating sets, which can be placed in single
SOQL statement used with the TN clause.

See Also:
What are the Limitations of Apex?

Apex Scheduler

To invoke Apex classes to run at specific times, first implement the Schedulable interface for the class, then specify the
schedule using either the Schedule Apex page in the Database.com user interface, or the System. schedule method.

For more information about the Schedule Apex page, see “Scheduling Apex” in the Database.com online help.

Important: Database.com only adds the process to the queue at the scheduled time. Actual execution may be delayed
based on service availability.

You can only have 25 classes scheduled at one time. You can evaluate your current count by viewing the Scheduled
Jobs page in Database.com or programmatically using SOAP API to query the CronTrigger object.

Use extreme care if you are planning to schedule a class from a trigger. You must be able to guarantee that the trigger
will not add more scheduled classes than the 25 that are allowed. In particular, consider API bulk updates, import
wizards, mass record changes through the user interface, and all cases where more than one record can be updated at

a time.

Implementing the Schedulable Interface

To schedule an Apex class to run at regular intervals, first write an Apex class that implements the Database.com-provided
interface Schedulable.

The scheduler runs as system: all classes are executed, whether the user has permission to execute the class or not. For more
information on setting class permissions, see “Apex Class Security Overview” in the Database.com online help.

T'o monitor or stop the execution of a scheduled Apex job using the Database.com user interface, click Monitoring > Scheduled
Jobs. For more information, see “Monitoring Scheduled Jobs” in the Database.com online help.

The schedulable interface contains one method that must be implemented, execute.
global void execute (SchedulableContext sc) {}

Use this method to instantiate the class you want to schedule.

. »# Tip: Though it's possible to do additional processing in the execute method, we recommend that all processing
- V take place in a separate class.

L3

The following example implements the Schedulable interface for a class called mergeNumbers:

global class scheduledMerge implements Schedulable({
global void execute (SchedulableContext SC) ({
mergeNumbers M = new mergeNumbers () ;

}

90

Invoking Apex Apex Scheduler

The following example uses the System. Schedule method to implement the above class.

scheduledMerge m = new scheduledMerge () ;
String sch = '20 30 8 10 2 2';
system.schedule ('Merge Job', sch, m);

You can also use the Schedulable interface with batch Apex classes. The following example implements the Schedulable
interface for a batch Apex class called batchable:

global class scheduledBatchable implements Schedulable(
global void execute (SchedulableContext sc) {
batchable b = new batchable();
database.executebatch (b) ;

Use the SchedulableContext object to keep track of the scheduled job once it's scheduled. The SchedulableContext method
getTriggerID returns the Id of the CronTrigger object associated with this scheduled job as a string. Use this method to
track the progress of the scheduled job.

To stop execution of a job that was scheduled, use the System. abortJob method with the ID returned by the.getTriggerID
method.

Testing the Apex Scheduler
The following is an example of how to test using the Apex scheduler.

The system. schedule method starts an asynchronous process. This means that when you test scheduled Apex, you must
ensure that the scheduled job is finished before testing against the results. Use the Test methods startTest and stopTest
around the System. schedule method to ensure it finishes before continuing your test. All asynchronous calls made after
the startTest method are collected by the system. When stopTest is executed, all asynchronous processes are run
synchronously. If you don’t include the System. schedule method within the startTest and stopTest methods, the
scheduled job executes at the end of your test method for Apex saved using Salesforce.com API version 25.0 and later, but
not in earlier versions.

This is the class to be tested.

global class TestScheduledApexFromTestMethod implements Schedulable {
// This test runs a scheduled job at midnight Sept. 3rd. 2022
public static String CRON EXP = '0 0 0 3 9 2 2022°';
global void execute (SchedulableContext ctx) {
CronTrigger ct = [SELECT Id, CronExpression, TimesTriggered, NextFireTime
FROM CronTrigger WHERE Id = :ctx.getTriggerId()];
System.assertEquals (CRON_EXP, ct.CronExpression);

System.assertEquals (0, ct.TimesTriggered) ;
System.assertEquals ('2022-09-03 00:00:00"', String.valueOf (ct.NextFireTime)) ;

Merchandise c¢ a = [SELECT Id, Name FROM Merchandise ¢ WHERE Name =
'Merchandise A'];

a.name = 'Updated Merchandise';

update a;

91

http://www.salesforce.com/us/developer/docs/dbcom_objects/index_CSH.htm#sforce_api_objects_crontrigger.htm

Invoking Apex Apex Scheduler

The following tests the above class:

@istest
class TestClass {

static testmethod void test () {
Test.startTest () ;

Merchandise c¢ a = new Merchandise c();
a.Name = 'Merchandise A';

a.Description c='Office supplies';
g.Prilee e=1.25g

a.Total Inventory c¢=100;

insert a;

// Schedule the test job
String jobId = System.schedule ('testBasicScheduledApex',
TestScheduledApexFromTestMethod.CRON EXP,
new TestScheduledApexFromTestMethod()) ;
// Get the information from the CronTrigger API object

CronTrigger ct = [SELECT Id, CronExpression, TimesTriggered,
NextFireTime
FROM CronTrigger WHERE id = :jobId];

// Verify the expressions are the same
System.assertEquals (TestScheduledApexFromTestMethod.CRON EXP,
ct.CronExpression) ;

// Verify the job has not run
System.assertEquals (0, ct.TimesTriggered) ;

// Verify the next time the job will run
System.assertEquals ('2022-09-03 00:00:00",
String.valueOf (ct.NextFireTime)) ;
System.assertNotEquals ('Updated Merchandise',
[SELECT id, name FROM Merchandise ¢ WHERE id = :a.id].name);
Test.stopTest () ;

System.assertEquals ('Updated Merchandise',
[SELECT Id, Name FROM Merchandise c¢ WHERE Id = :a.Id].Name);

}

Using the System. Schedule Method

After you implement a class with the Schedulable interface, use the System. Schedule method to execute it. The scheduler
runs as system: all classes are executed, whether the user has permission to execute the class or not.

w# Note: Use extreme care if you are planning to schedule a class from a trigger. You must be able to guarantee that the
trigger will not add more scheduled classes than the 25 that are allowed. In particular, consider API bulk updates,

" import wizards, mass record changes through the user interface, and all cases where more than one record can be
updated at a time.

The system.Schedule method takes three arguments: a name for the job, an expression used to represent the time and
date the job is scheduled to run, and the name of the class. This expression has the following syntax:

Seconds Minutes Hours Day of month Month Day of week optional year

92

Invoking Apex Apex Scheduler

wm Note: Database.com only adds the process to the queue at the scheduled time. Actual execution may be delayed based
on service availability.

The system.Schedule method uses the user's timezone for the basis of all schedules.

The following are the values for the expression:

Seconds 0-59 None
Minutes 0-59 None
Hours 0-23 g =
Day of month 1-31 , - *2 /LW
Month 1-12 or the following: p =/

« JAN

« FEB

¢« MAR

« APR

« MAY

« JUN

« JUL

« AUG

¢« SEP

« OCT

« NOV

e DEC
Day of week 1-7 or the following: ;= * 2 /L%

« SUN

« MON

« TUE

« WED

« THU

e FRI

¢ SAT
optional year null or 1970-2099 g = %

The special characters are defined as follows:

, Delimits values. For example, use JAN, MAR, APR to specify more than one
month.

= Specifies a range. For example, use JAN-MAR to specify more than one month.

93

Invoking Apex Apex Scheduler

e Specifies all values. For example, if Month is specified as *, the job is scheduled
for every month.

? Specifies no specific value. This is only available for Day of month and
Day of week, and is generally used when specifying a value for one and not
the other.

/ Specifies increments. The number before the slash specifies when the intervals

will begin, and the number after the slash is the interval amount. For example,
if you specify 1/5 for Day of month, the Apex class runs every fifth day of the
month, starting on the first of the month.

i Specifies the end of a range (last). This is only available for Day of month and
Day of week. When used with Day of month, L always means the last day
of the month, such as January 31, February 28 for leap years, and so on. When
used with Day of week by itself, it always means 7 or SAT. When used with
a Day of week value, it means the last of that type of day in the month. For
example, if you specify 2L, you are specifying the last Monday of the month.
Do not use a range of values with L as the results might be unexpected.

W Specifies the nearest weekday (Monday-Friday) of the given day. This is only
available for Day of month. For example, if you specify 20W, and the 20th is
a Saturday, the class runs on the 19th. If you specify 1w, and the first is a
Saturday, the class does not run in the previous month, but on the third, which
is the following Monday.

. * + Tip: Use the L and W together to specify the last weekday of the month.

L=

Specifies the nth day of the month, in the format weekday#day of month.
This is only available for Day of week. The number before the # specifies
weekday (SUN-SAT). The number after the # specifies the day of the month.
For example, specifying 2#2 means the class runs on the second Monday of
every month.

The following are some examples of how to use the expression.

DO 13 ¥ = 7 Class runs every day at 1 PM.

00222 * 6L Class runs the last Friday of every month at 10 PM.
0 0 10 ? * MON-FRI Class runs Monday through Friday at 10 AM.

0 0 20 * * 2 2010 Class runs every day at 8 PM during the year 2010.

94

Invoking Apex Anonymous Blocks

In the following example, the class proschedule implements the Schedulable interface. The class is scheduled to run at
8 AM, on the 13th of February.

proschedule p = new proschedule();
String sch = '0 0 8 13 2 ?';
system.schedule ('One Time Pro', sch, p);

Apex Scheduler Best Practices and Limits

« Database.com only adds the process to the queue at the scheduled time. Actual execution may be delayed based on service
availability.

« Use extreme care if you are planning to schedule a class from a trigger. You must be able to guarantee that the trigger will

not add more scheduled classes than the 25 that are allowed. In particular, consider API bulk updates, import wizards,
mass record changes through the user interface, and all cases where more than one record can be updated at a time.

« Though it's possible to do additional processing in the execute method, we recommend that all processing take place in
a separate class.

« You can only have 25 classes scheduled at one time. You can evaluate your current count by viewing the Scheduled Jobs

page in Database.com or programmatically using SOAP API to query the CronTrigger object.

Anonymous Blocks

An anonymous block is Apex code that does not get stored in the metadata, but that can be compiled and executed using one
of the following:

« Developer Console
. Force.com IDE
« The executeAnonymous SOAP API call:

ExecuteAnonymousResult executeAnonymous (String code)

You can use anonymous blocks to quickly evaluate Apex on the fly, such as in the Developer Console or the Force.com IDE,
or to write code that changes dynamically at runtime. For example, you might write a client Web application that takes input
from a user and then uses an anonymous block of Apex to insert a new record with using the given input.

Note the following about the content of an anonymous block (for executeanonymous, the code String):

« Can include user-defined methods and exceptions.

+ User-defined methods cannot include the keyword static.

« You do not have to manually commit any database changes.

« Ifyour Apex trigger completes successfully, any database changes are automatically committed. If your Apex trigger does
not complete successfully, any changes made to the database are rolled back.

« Unlike classes and triggers, anonymous blocks execute as the current user and can fail to compile if the code violates the
user's object- and field-level permissions.

« Do not have a scope other than local. For example, though it is legal to use the global access modifier, it has no meaning.
The scope of the method is limited to the anonymous block.

95

|
Invoking Apex Apex in AJAX

Even though a user-defined method can refer to itself or later methods without the need for forward declarations, variables
cannot be referenced before their actual declaration. In the following example, the Integer int must be declared while
myProcedurel does not:

Integer intl = 0;

void myProcedurel () {
myProcedure?2 () ;

}

void myProcedure2 () {
el g
}

myProcedurel () ;

The return result for anonymous blocks includes:

« Status information for the compile and execute phases of the call, including any errors that occur
« The debug log content, including the output of any calls to the System.debug method (see Understanding the Debug
Log on page 189)

« The Apex stack trace of any uncaught code execution exceptions, including the class, method, and line number for each
call stack element

For more information on executeAnonymous (), see SOAP APl and SOAP Headers for Apex. See also Using the Developer
Console and the Force.com IDE.

Apexin AJAX

The AJAX toolkit includes built-in support for invoking Apex through anonymous blocks or public webService methods.
To do so, include the following lines in your AJAX code:

<script src="/soap/ajax/15.0/connection.js" type="text/javascript"></script>
<script src="/soap/ajax/15.0/apex.]js" type="text/javascript"></script>

wm Note: For AJAX buttons, use the alternate forms of these includes.
\—
To invoke Apex, use one of the following two methods:

« Execute anonymously via sforce.apex.executeAnonymous (script). This method returns a result similar to the
APT's result type, but as a JavaScript structure.

« Use a class WSDL. For example, you can call the following Apex class:

global class myClass {
webService static Id CreatelInvoiceLineltem (
Integer units, Decimal price, Invoice Statement c inv) {
Line Item c¢ i = new Line Item c(
Units Sold c=units,
Unit Price c=price,
Invoice Statement r=inv);
return i.id;

96

http://wiki.developerforce.com/index.php/Force.com_IDE

Invoking Apex Apex in AJAX

By using the following JavaScript code:

var invoice = sforce.sObject ("Invoice Statement c");
var id = sforce.apex.execute ("myClass","CreateInvoiceLineItem",
{units:"5",
price:"1.25",
inv:invoice}) ;

The execute method takes primitive data types, sObjects, and lists of primitives or sObjects.

To call awebService method with no parameters, use { } as the third parameter for sforce. apex.execute. For example,
to call the following Apex class:

global class myClass({
webService static String getContextUserName () {
return UserInfo.getFirstName () ;

}

Use the following JavaScript code:
var contextUser = sforce.apex.execute ("myClass", "getContextUserName", {});

Both examples result in native JavaScript values that represent the return type of the methods.
Use the following line to display a popup window with debugging information:

sforce.debug.trace=true;

97

Chapter 4

Classes, Objects, and Interfaces

In this chapter ...

* Understanding Classes

* Interfaces and Extending Classes
* Keywords

* Annotations

* Classes and Casting

* Differences Between Apex Classes
and Java Classes

* (lass Definition Creation
* Class Security
* Enforcing Object and Field

Permissions
* Namespace Prefix
* Version Settings

A class is a template or blueprint from which Apex objects are created. Classes
consist of other classes, user-defined methods, variables, exception types, and
static initialization code. They are stored in the application under Develop >

Apex Classes.

Once successfully saved, class methods or variables can be invoked by other Apex
code, or through the SOAP API (or AJAX Toolkit) for methods that have been
designated with the webService keyword.

In most cases, the class concepts described here are modeled on their counterparts
in Java, and can be quickly understood by those who are familiar with them.

+ Understanding Classes—more about creating classes in Apex
« Interfaces and Extending Classes—information about interfaces

« Keywords and Annotations—additional modifiers for classes, methods or
variables

« Classes and Casting—assigning a class of one data type to another

« Differences Between Apex Classes and Java Classes—how Apex and Java
differ

« Class Definition Creation and Class Security—creating a class in the
Database.com user interface as well as enabling users to access a class

« Namespace Prefix and Version Settings—using a namespace prefix and
versioning Apex classes

98

Classes, Objects, and Interfaces Understanding Classes

Understanding Classes

As in Java, you can create classes in Apex. A class is a template or blueprint from which objects are created. An object is an
instance of a class. For example, the PurchaseOrder class describes an entire purchase order, and everything that you can
do with a purchase order. An instance of the PurchaseOrder class is a specific purchase order that you send or receive.

All objects have state and bebavior, that is, things that an object knows about itself, and things that an object can do. The state
of a PurchaseOrder object—what it knows—includes the user who sent it, the date and time it was created, and whether it
was flagged as important. The behavior of a PurchaseOrder object—what it can do—includes checking inventory, shipping
a product, or notifying a customer.

A class can contain variables and methods. Variables are used to specify the state of an object, such as the object's Name or
Type. Since these variables are associated with a class and are members of it, they are commonly referred to as member variables.
Methods are used to control behavior, such as getOtherQuotes or copyLineItems.

An interface is like a class in which none of the methods have been implemented—the method signatures are there, but the
body of each method is empty. To use an interface, another class must implement it by providing a body for all of the methods
contained in the interface.

For more general information on classes, objects, and interfaces, see
http://java.sun.com/docs/books/tutorial/java/concepts/index.html

Defining Apex Classes

In Apex, you can define top-level classes (also called outer classes) as well as inner classes, that s, a class defined within another
class. You can only have inner classes one level deep. For example:

public class myOuterClass {
// Additional myOuterClass code here
class myInnerClass {
// myInnerClass code here

}

To define a class, specify the following:
1. Access modifiers:

+ You must use one of the access modifiers (such as public or global) in the declaration of a top-level class.

« You do not have to use an access modifier in the declaration of an inner class.

2. Optional definition modifiers (such as virtual, abstract, and so on)
3. Required: The keyword class followed by the name of the class
4. Optional extensions and/or implementations

Use the following syntax for defining classes:

private | public | global

[virtual | abstract | with sharing | without sharing | (none)]

class ClassName [implements InterfaceNameList | (none)] [extends ClassName | (none)]
{

// The body of the class

}

99

http://java.sun.com/docs/books/tutorial/java/concepts/index.html

Classes, Objects, and Interfaces Extended Class Example

« The private access modifier declares that this class is only known locally, that is, only by this section of code. This is the
default access for inner classes—that is, if you don't specify an access modifier for an inner class, it is considered private.
This keyword can only be used with inner classes.

« The public access modifier declares that this class is visible in your application or namespace.

« Theglobal access modifier declares that this class is known by all Apex code everywhere. All classes that contain methods
defined with the webService keyword must be declared as global. If a method or inner class is declared as global,
the outer, top-level class must also be defined as global.

« Thewith sharingand without sharing keywords specify the sharing mode for this class. For more information,
see Using the with sharing or without sharing Keywords on page 123.

« Thevirtual definition modifier declares that this class allows extension and overrides. You cannot override a method
with the override keyword unless the class has been defined as virtual.

« The abstract definition modifier declares that this class contains abstract methods, that is, methods that only have their
signature declared and no body defined.

A class can implement multiple interfaces, but only extend one existing class. This restriction means that Apex does not support
multiple inheritance. The interface names in the list are separated by commas. For more information about interfaces, see
Interfaces and Extending Classes on page 114.

For more information about method and variable access modifiers, see Access Modifiers on page 108.

Extended Class Example

The following is an extended example of a class, showing all the features of Apex classes. The keywords and concepts introduced
in the example are explained in more detail throughout this chapter.

// Top-level (outer) class must be public or global (usually public unless they contain
// a Web Service, then they must be global)
public class OuterClass {

// Static final variable (constant) - outer class level only
private static final Integer MY INT;

// Non-final static variable - use this to communicate state across triggers
// within a single request)
public static String sharedState;

// Static method - outer class level only
public static Integer getInt() { return MY INT; }

// Static initialization (can be included where the variable is defined)
static {

MY INT = 2;
}

// Member variable for outer class
private final String m;

// Instance initialization block - can be done where the variable is declared,
// or in a constructor

// Because no constructor is explicitly defined in this outer class, an implicit,
// no-argument, public constructor exists

// Inner interface
public virtual interface MylInterface {

100

Classes, Objects, and Interfaces Extended Class Example

// No access modifier is necessary for interface methods - these are always
// public or global depending on the interface visibility
void myMethod () ;

}

// Interface extension

interface MySecondInterface extends MylInterface {
Integer method2 (Integer 1) ;

}

// Inner class - because it is virtual it can be extended.

// This class implements an interface that, in turn, extends another interface.
// Consequently the class must implement all methods.

public virtual class InnerClass implements MySecondInterface {

// Inner member variables
private final String s;
private final String s2;

// Inner instance initialization block (this code could be located above)
{
this.s = 'x';

}

// Inline initialization (happens after the block above executes)
private final Integer i = s.length();

// Explicit no argument constructor

InnerClass () {
// This invokes another constructor that is defined later

this ('none') ;

}

// Constructor that assigns a final variable value
public InnerClass (String s2) {

this.s2 = s2;
}

// Instance method that implements a method from MyInterface.
// Because it is declared virtual it can be overridden by a subclass.
public virtual void myMethod() { /* does nothing */ }

// Implementation of the second interface method above.
// This method references member variables (with and without the "this" prefix)
public Integer method2 (Integer i) { return this.i + s.length(); }

}

// Abstract class (that subclasses the class above). No constructor is needed since
// parent class has a no-argument constructor
public abstract class AbstractChildClass extends InnerClass {

// Override the parent class method with this signature.
// Must use the override keyword
public override void myMethod() { /* do something else */ }

// Same name as parent class method, but different signature.

// This is a different method (displaying polymorphism) so it does not need
// to use the override keyword

protected void method2 () {}

// Abstract method - subclasses of this class must implement this method
abstract Integer abstractMethod();
}

// Complete the abstract class by implementing its abstract method
public class ConcreteChildClass extends AbstractChildClass {

101

Classes, Objects, and Interfaces Extended Class Example

// Here we expand the visibility of the parent method - note that visibility
// cannot be restricted by a sub-class
public override Integer abstractMethod() { return 5; }

}

// A second sub-class of the original InnerClass
public class AnotherChildClass extends InnerClass {
AnotherChildClass (String s) {
// Explicitly invoke a different super constructor than one with no arguments
super (s) ;
}
}

// Exception inner class

public virtual class MyException extends Exception {
// Exception class member variable
public Double d;

// Exception class constructor

MyException (Double d) {
this.d = d;

}

// Exception class method, marked as protected
protected void doIt () {}
}

// Exception classes can be abstract and implement interfaces
public abstract class MySecondException extends Exception implements MyInterface ({

}

This code example illustrates:

« A top-level class definition (also called an outer class)

« Static variables and static methods in the top-level class, as well as static initialization code blocks

« Member variables and methods for the top-level class

« Classes with no user-defined constructor — these have an implicit, no-argument constructor

« An interface definition in the top-level class

« An interface that extends another interface

« Inner class definitions (one level deep) within a top-level class

« A class that implements an interface (and, therefore, its associated sub-interface) by implementing public versions of the
method signatures

« An inner class constructor definition and invocation

« An inner class member variable and a reference to it using the this keyword (with no arguments)

« Aninner class constructor that uses the this keyword (with arguments) to invoke a different constructor

« Initialization code outside of constructors — both where variables are defined, as well as with anonymous blocks in curly
braces ({ }). Note that these execute with every construction in the order they appear in the file, as with Java.

« Class extension and an abstract class

« Methods that override base class methods (which must be declared virtual)
« The override keyword for methods that override subclass methods

+ Abstract methods and their implementation by concrete sub-classes

« The protected access modifier

« Exceptions as first class objects with members, methods, and constructors

102

Classes, Objects, and Interfaces Declaring Class Variables

This example shows how the class above can be called by other Apex code:

// Construct an instance of an inner concrete class, with a user-defined constructor
OuterClass.InnerClass ic = new OuterClass.InnerClass('x');

// Call user-defined methods in the class
System.assertEquals (2, ic.method2 (1)) ;

// Define a variable with an interface data type, and assign it a value that is of
// a type that implements that interface
OuterClass.MyInterface mi = ic;

// Use instanceof and casting as usual

OuterClass.InnerClass ic2 = mi instanceof OuterClass.InnerClass °?
(OuterClass.InnerClass)mi : null;

System.assert (ic2 != null);

// Construct the outer type
OuterClass o = new OuterClass();
System.assertEquals (2, OuterClass.getInt());

// Construct instances of abstract class children
System.assertEquals (5, new OuterClass.ConcreteChildClass () .abstractMethod());

// Illegal - cannot construct an abstract class
// new OuterClass.AbstractChildClass/() ;

// Illegal - cannot access a static method through an instance
// o.getInt();

// Illegal - cannot call protected method externally
// new OuterClass.ConcreteChildClass () .method2 () ;

This code example illustrates:

« Construction of the outer class
« Construction of an inner class and the declaration of an inner interface type
« A variable declared as an interface type can be assigned an instance of a class that implements that interface

« Casting an interface variable to be a class type that implements that interface (after verifying this using the instanceof
operator)

Declaring Class Variables
To declare a variable, specify the following:

« Optional: Modifiers, such as public or final, as well as static.
« Required: The data type of the variable, such as String or Boolean.
+ Required: The name of the variable.

« Optional: The value of the variable.

Use the following syntax when defining a variable:

[public | private | protected | global | final] [static] data type variable name
[= value]

103

Classes, Objects, and Interfaces Defining Class Methods

For example:

private static final Integer MY INT;
private final Integer i = 1;

Defining Class Methods

To define a method, specify the following:

« Optional: Modifiers, such as public or protected.
+ Required: The data type of the value returned by the method, such as String or Integer. Use void if the method does not
return a value.

+ Required: A list of input parameters for the method, separated by commas, each preceded by its data type, and enclosed
in parentheses () . If there are no parameters, use a set of empty parentheses. A method can only have 32 input parameters.

+ Required: The body of the method, enclosed in braces {}. All the code for the method, including any local variable
declarations, is contained here.

Use the following syntax when defining a method:

public | private | protected | global) [override] [static] data_ type method name
input parameters)

(
(
{
// The body of the method
}

% Note: You can only use override to override methods in classes that have been defined as virtual.

For example:

public static Integer getInt () {
return MY INT;
}

As in Java, methods that return values can also be run as a statement if their results are not assigned to another variable.
Note that user-defined methods:

« Can be used anywhere that system methods are used.

« Can be recursive.

« Can have side effects, such as DML insert statements that initialize sObject record IDs. See Apex Data Manipulation
Language (DML) Operations on page 237.

« Can refer to themselves or to methods defined later in the same class or anonymous block. Apex parses methods in two
phases, so forward declarations are not needed.

« Can be polymorphic. For example, a method named foo can be implemented in two ways, one with a single Integer
parameter and one with two Integer parameters. Depending on whether the method is called with one or two Integers,
the Apex parser selects the appropriate implementation to execute. If the parser cannot find an exact match, it then seeks
an approximate match using type coercion rules. For more information on data conversion, see Understanding Rules of
Conversion on page 46.

104

Classes, Objects, and Interfaces Defining Class Methods

w® Note: If the parser finds multiple approximate matches, a parse-time exception is generated.

« When using void methods that have side effects, user-defined methods are typically executed as stand-alone procedure
statements in Apex code. For example:

System.debug ('Here is a note for the log.');

+ Can have statements where the return values are run as a statement if their results are not assigned to another variable.
This is the same as in Java.

Passing Method Arguments By Value

In Apex, all primitive data type arguments, such as Integer or String, are passed into methods by value. This means that any
changes to the arguments exist only within the scope of the method. When the method returns, the changes to the arguments
are lost.

Non-primitive data type arguments, such as sObjects, are also passed into methods by value. This means that when the method
returns, the passed-in argument still references the same object as before the method call and can't be changed to point to
another object. However, the values of the object's fields can be changed in the method.

The following are examples of passing primitive and non-primitive data type arguments into methods.
Example: Passing Primitive Data Type Arguments

This example shows how a primitive argument of type String is passed by value into another method. The
debugStatusMessage method in this example creates a String variable, msg, and assigns it a value. It then passes this
variable as an argument to another method, which modifies the value of this String. However, since String is a primitive type,
it is passed by value, and when the method returns, the value of the original variable, msg, is unchanged. An assert statement
verifies that the value of msg is still the old value.

public class PassPrimitiveTypeExample {
public static void debugStatusMessage () {
String msg = 'Original value';
processString (msqg) ;
// The value of the msg variable didn't
// change; it is still the old value.
System.assertEquals (msg, 'Original value');

}

public static void processString(String s) {
s = 'Modified value';

}

Example: Passing Non-Primitive Data Type Arguments

This example shows how a List argument is passed by value into another method and can be modified. It also shows that the
List argument can’t be modified to point to another List object. First, the createTemperatureHistory method creates
a variable, £i11Me, that is a List of Integers and passes it to a method. The called method fills this list with Integer values
representing rounded temperature values. When the method returns, an assert verifies that the contents of the original List
variable has changed and now contains five values. Next, the example creates a second List variable, createMe, and passes it
to another method. The called method assigns the passed-in argument to a newly created List that contains new Integer values.

105

Classes, Objects, and Interfaces Using Constructors

When the method returns, the original createMe variable doesn’t point to the new List but still points to the original List,
which is empty. An assert verifies that createMe contains no values.

public class PassNonPrimitiveTypeExample {

public static void createTemperatureHistory () {
List<Integer> fillMe = new List<Integer>();
reference (fillMe) ;
// The list is modified and contains five items
// as expected.
System.assertEquals (fillMe.size(),5)

List<Integer> createMe = new List<Integer>();
referenceNew (createMe) ;

// The list is not modified because it still points
// to the original list, not the new list

// that the method created.

System.assertEquals (createMe.size (),0);

}

public static void reference (List<Integer> m) {
// Add rounded temperatures for the last five days.
m.add (70) ;
m.add (68) ;
m.add (75) ;
m.add (80) ;
m.add (82) ;
}

public static void referenceNew (List<Integer> m) {
// Assign argument to a new List of

// five temperature values.
m = new List<Integer>{55, 59, 62, 60, 63};

Using Constructors

A constructor is code that is invoked when an object is created from the class blueprint. You do not need to write a constructor
for every class. If a class does not have a user-defined constructor, an implicit, no-argument, public one is used.

The syntax for a constructor is similar to a method, but it differs from a method definition in that it never has an explicit return
type and it is not inherited by the object created from it.

After you write the constructor for a class, you must use the new keyword in order to instantiate an object from that class,
using that constructor. For example, using the following class:

public class TestObject {

// The no argument constructor
public TestObject () {
// more code here

A new object of this type can be instantiated with the following code:

TestObject myTest = new TestObject();

106

Classes, Objects, and Interfaces Using Constructors

If you write a constructor that takes arguments, you can then use that constructor to create an object using those arguments.
If you create a constructor that takes arguments, and you still want to use a no-argument constructor, you must include one
in your code. Once you create a constructor for a class, you no longer have access to the default, no-argument public constructor.
You must create your own.

In Apex, a constructor can be overloaded, that is, there can be more than one constructor for a class, each having different
parameters. The following example illustrates a class with two constructors: one with no arguments and one that takes a simple
Integer argument. It also illustrates how one constructor calls another constructor using the this (. ..) syntax, also know as
constructor chaining.

public class TestObject2 {
private static final Integer DEFAULT SIZE = 10;
Integer size;
//Constructor with no arguments
public TestObject2 () {
this (DEFAULT SIZE); // Using this(...) calls the one argument constructor
}
// Constructor with one argument
public TestObject2 (Integer ObjectSize) {

size = ObjectSize;

}

New objects of this type can be instantiated with the following code:

TestObject2 myObjectl
TestObject2 myObject2

new TestObject2 (42);
new TestObject2 () ;

Every constructor that you create for a class must have a different argument list. In the following example, all of the constructors
are possible:

public class Leads {

// First a no-argument constructor
public Leads () {}

// A constructor with one argument
public Leads (Boolean call) ({}

// A constructor with two arguments
public Leads (String email, Boolean call) {}

// Though this constructor has the same arguments as the
// one above, they are in a different order, so this is legal
public Leads (Boolean call, String email) {}

When you define a new class, you are defining a new data type. You can use class name in any place you can use other data
type names, such as String or Boolean. If you define a variable whose type is a class, any object you assign to it must be an
instance of that class or subclass.

107

Classes, Objects, and Interfaces Access Modifiers

Access Modifiers

Apex allows you to use the private, protected, public, and global access modifiers when defining methods and
variables.

While triggers and anonymous blocks can also use these access modifiers, they are not as useful in smaller portions of Apex.
For example, declaring a method as global in an anonymous block does not enable you to call it from outside of that code.

For more information on class access modifiers, see Defining Apex Classes on page 99.

w# Note: Interface methods have no access modifiers. They are always global. For more information, see Interfaces and
Extending Classes on page 114.

e

By default, a method or variable is visible only to the Apex code within the defining class. You must explicitly specify a method
or variable as public in order for it to be available to other classes in the same application namespace (see Namespace Prefix
on page 137). You can change the level of visibility by using the following access modifiers:

private
This is the default, and means that the method or variable is accessible only within the Apex class in which it is defined.
If you do not specify an access modifier, the method or variable is private.

protected
This means that the method or variable is visible to any inner classes in the defining Apex class. You can only use this
access modifier for instance methods and member variables. Note that it is strictly more permissive than the default
(private) setting, just like Java.

public

This means the method or variable can be used by any Apex in this application or namespace.

w® Note: In Apex, the public access modifier is not the same as it is in Java. This was done to discourage joining
applications, to keep the code for each application separate. In Apex, if you want to make something public like
== itisin Java, you need to use the global access modifier.

global

This means the method or variable can be used by any Apex code that has access to the class, not just the Apex code in
the same application. This access modifier should be used for any method that needs to be referenced outside of the
application, either in the SOAP API or by other Apex code. If you declare a method or variable as global, you must
also declare the class that contains it as global.

w® Note: We recommend using the global access modifier rarely, if at all. Cross-application dependencies are
difficult to maintain.

To use the private, protected, public, or global access modifiers, use the following syntax:
[(none) |private|protected|public|global] declaration
For example:

private string sl = '1';

108

Classes, Objects, and Interfaces Static and Instance

public string getsl () {
return this.sl;

}

Static and Instance

In Apex, you can have szatic methods, variables, and initialization code. Apex classes can’t be static. You can also have instance
methods, member variables, and initialization code (which have no modifier), and local variables:

« Static methods, variables, or initialization code are associated with a class, and are only allowed in outer classes. When you
declare a method or variable as static, it's initialized only once when a class is loaded.

« Instance methods, member variables, and initialization code are associated with a particular object and have no definition
modifier. When you declare instance methods, member variables, or initialization code, an instance of that item is created
with every object instantiated from the class.

+ Local variables are associated with the block of code in which they are declared. All local variables should be initialized
before they are used.

The following is an example of a local variable whose scope is the duration of the if code block:

Boolean myCondition = true;
if (myCondition) {
integer localVariable = 10;

}

Using Static Methods and Variables

You can only use static methods and variables with outer classes. Inner classes have no static methods or variables. A static
method or variable does not require an instance of the class in order to run.

All static member variables in a class are initialized before any object of the class is created. This includes any static initialization
code blocks. All of these are run in the order in which they appear in the class.

Static methods are generally used as utility methods and never depend on a particular instance member variable value. Because
a static method is only associated with a class, it cannot access any instance member variable values of its class.

Static variables are only static within the scope of the request. They are not static across the server, or across the entire
organization.

Use static variables to store information that is shared within the confines of the class. All instances of the same class share a
single copy of the static variables. For example, all triggers that are spawned by the same request can communicate with each
other by viewing and updating static variables in a related class. A recursive trigger might use the value of a class variable to
determine when to exit the recursion.

Suppose you had the following class:

public class p {
public static boolean firstRun = true;

}
A trigger that uses this class could then selectively fail the first run of the trigger:

trigger tl on Invoice Statement c (
before delete, after delete, after undelete) {
if (Trigger.isBefore) {

109

Classes, Objects, and Interfaces Static and Instance

if (Trigger.isDelete) {
if(p.firstRun) {
Trigger.old[0] .addError ('Before Invoice Delete Error');

p.firstRun=false;

Class static variables cannot be accessed through an instance of that class. So if class C has a static variable S, and x is an

instance of C, then x. S is not a legal expression.

The same is true for instance methods: if M () is a static method then x.M () is not legal. Instead, your code should refer to

those static identifiers using the class: C. S and C.M().
If a local variable is named the same as the class name, these static methods and variables are hidden.

Inner classes behave like static Java inner classes, but do not require the static keyword. Inner classes can have instance
member variables like outer classes, but there is no implicit pointer to an instance of the outer class (using the this keyword).

w# Note: For Apex saved using Salesforce.com API version 20.0 or earlier, if an API call causes a trigger to fire, the
batch of 200 records to process is further split into batches of 100 records. For Apex saved using Salesforce.com API

== version 21.0 and later, no further splits of API batches occur. Note that static variable values are reset between batches,
but governor limits are not. Do not use static variables to track state information between batches.

Using Instance Methods and Variables
Instance methods and member variables are used by an instance of a class, that is, by an object. Instance member variables are
declared inside a class, but not within a method. Instance methods usually use instance member variables to affect the behavior
of the method.
Suppose you wanted to have a class that collects two dimensional points and plot them on a graph. The following skeleton
class illustrates this, making use of member variables to hold the list of points and an inner class to manage the two-dimensional

list of points.
public class Plotter {
// This inner class manages the points

class Point {
Double x;

Double y;

Point (Double x, Double y) {
this.x = x;
this.y = y;

}
Double getXCoordinate () {

return x;

}

Double getYCoordinate () {
return y;
}
}

List<Point> points = new List<Point>();
public void plot (Double x, Double y) {

points.add(new Point(x, y));

}

110

Classes, Objects, and Interfaces Static and Instance

// The following method takes the list of points and does something with them
public void render () {

}

Using Initialization Code

Instance initialization code is a block of code in the following form that is defined in a class:

//code body

The instance initialization code in a class is executed every time an object is instantiated from that class. These code blocks
run before the constructor.

If you do not want to write your own constructor for a class, you can use an instance initialization code block to initialize
instance variables. However, most of the time you should either give the variable a default value or use the body of a constructor
to do initialization and not use instance initialization code.

Static initialization code is a block of code preceded with the keyword static:

static {

//code body

Similar to other static code, a static initialization code block is only initialized once on the first use of the class.

A class can have any number of either static or instance initialization code blocks. They can appear anywhere in the code body.
The code blocks are executed in the order in which they appear in the file, the same as in Java.

You can use static initialization code to initialize static final variables and to declare any information that is static, such as a
map of values. For example:
public class MyClass {
class RGB {
Integer red;
Integer green;
Integer blue;
RGB (Integer red, Integer green, Integer blue) {
this.red = red;
this.green = green;
this.blue = blue;
}
static Map<String, RGB> colorMap = new Map<String, RGB>();
static {
colorMap.put ('red', new RGB (255, 0, 0));

colorMap.put ('cyan', new RGB(0, 255, 255));
colorMap.put ('magenta', new RGB (255, 0, 255));

111

Classes, Objects, and Interfaces Apex Properties

Apex Properties

An Apex property is similar to a variable, however, you can do additional things in your code to a property value before it is
accessed or returned. Properties can be used in many different ways: they can validate data before a change is made; they can
prompt an action when data is changed, such as altering the value of other member variables; or they can expose data that is
retrieved from some other source, such as another class.

Property definitions include one or two code blocks, representing a gez accessor and a set accessor:

« The code in a get accessor executes when the property is read.

« The code in a set accessor executes when the property is assigned a new value.

A property with only a get accessor is considered read-only. A property with only a set accessor is considered write-only. A
property with both accessors is read-write.

To declare a property, use the following syntax in the body of a class:

Public class BasicClass {

// Property declaration
access _modifier return_ type property name {
get {
//Get accessor code block

}
set {
//Set accessor code block

}

Where:

« access_modifieris the access modifier for the property. All modifiers that can be applied to variables can also be applied
to properties. These include: public, private, global, protected, static, virtual, abstract, override and
transient. For more information on access modifiers, see Access Modifiers on page 108.

« return type is the type of the property, such as Integer, Double, sObject, and so on. For more information, see Data
Types on page 30.

« property name is the name of the property

For example, the following class defines a property named prop. The property is public. The property returns an integer data
type.

public class BasicProperty {
public integer prop {
get { return prop; }
set { prop = value; }

112

Classes, Objects, and Interfaces Apex Properties

The following code segment calls the class above, exercising the get and set accessors:

BasicProperty bp = new BasicProperty():;

bp.prop = 5; // Calls set accessor
System.assert (bp.prop == 5); // Calls get accessor
Note the following:

+ The body of the get accessor is similar to that of a method. It must return a value of the property type. Executing the get
accessor is the same as reading the value of the variable.

« The get accessor must end in a return statement.

« We recommend that your get accessor should not change the state of the object that it is defined on.

« The set accessor is similar to a method whose return type is void.

« When you assign a value to the property, the set accessor is invoked with an argument that provides the new value.

« When the set accessor is invoked, the system passes an implicit argument to the setter called value of the same data type
as the property.

« Properties cannot be defined on interface.

« Apex properties are based on their counterparts in C#, with the following differences:

0 Properties provide storage for values directly. You do not need to create supporting members for storing values.

0 Itis possible to create automatic properties in Apex. For more information, see Using Automatic Properties on page
113.

Using Automatic Properties

Properties do not require additional code in their get or set accessor code blocks. Instead, you can leave get and set accessor
code blocks empty to define an automatic property. Automatic properties allow you to write more compact code that is easier
to debug and maintain. They can be declared as read-only, read-write, or write-only. The following example creates three
automatic properties:

public class AutomaticProperty {
public integer MyReadOnlyProp { get; }
public double MyReadWriteProp { get; set; }
public string MyWriteOnlyProp { set; }

The following code segment exercises these properties:

AutomaticProperty ap = new AutomaticProperty() ;

ap.MyReadOnlyProp = 5; // This produces a compile error: not writable
ap.MyReadWriteProp = 5; // No error
System.assert (MyWriteOnlyProp == 5); // This produces a compile error: not readable

Using Static Properties

When a property is declared as static, the property's accessor methods execute in a static context. This means that the
accessors do not have access to non-static member variables defined in the class. The following example creates a class with
both static and instance properties:

public class StaticProperty ({
public static integer StaticMember;
public integer NonStaticMember;
public static integer MyGoodStaticProp {
get{return MyGoodStaticProp;}

113

Classes, Objects, and Interfaces Interfaces and Extending Classes

}
// The following produces a system error
// public static integer MyBadStaticProp { return NonStaticMember; }

public integer MyGoodNonStaticProp {
get{return NonStaticMember;}

}

The following code segment calls the static and instance properties:

StaticProperty sp = new StaticProperty():;

// The following produces a system error: a static variable cannot be
// accessed through an object instance

// sp.MyGoodStaticProp = 5;

// The following does not produce an error
StaticProperty.MyGoodStaticProp = 5;

Using Access Modifiers on Property Accessors

Property accessors can be defined with their own access modifiers. If an accessor includes its own access modifier, this modifier
overrides the access modifier of the property. The access modifier of an individual accessor must be more restrictive than the
access modifier on the property itself. For example, if the property has been defined as public, the individual accessor cannot
be defined as global. The following class definition shows additional examples:

global virtual class PropertyVisibility ({
// X is private for read and public for write
public integer X { private get; set; }
// Y can be globally read but only written within a class
global integer Y { get; public set; }
// 7 can be read within the class but only subclasses can set it
public integer Z { get; protected set; }

Interfaces and Extending Classes

An interface is like a class in which none of the methods have been implemented—the method signatures are there, but the
body of each method is empty. To use an interface, another class must implement it by providing a body for all of the methods
contained in the interface.

Interfaces can provide a layer of abstraction to your code. They separate the specific implementation of a method from the
declaration for that method. This way you can have different implementations of a method based on your specific application.

Defining an interface is similar to defining a new class. For example, a company might have two types of purchase orders,
ones that come from customers, and others that come from their employees. Both are a type of purchase order. Suppose you
needed a method to provide a discount. The amount of the discount can depend on the type of purchase order.

You can model the general concept of a purchase order as an interface and have specific implementations for customers and
employees. In the following example the focus is only on the discount aspect of a purchase order.
public class PurchaseOrders {
// An interface that defines what a purchase order looks like in general

public interface PurchaseOrder ({
// All other functionality excluded

114

Classes, Objects, and Interfaces Parameterized Typing and Interfaces

Double discount() ;

}

// One implementation of the interface for customers
public virtual class CustomerPurchaseOrder implements PurchaseOrder ({
public virtual Double discount () {
return .05; // Flat 5% discount
}
}

// Employee purchase order extends Customer purchase order, but with a
// different discount
public class EmployeePurchaseOrder extends CustomerPurchaseOrder{

public override Double discount () {
return .10; // It’s worth it being an employee! 10% discount

Note the following about the above example:

« The interface PurchaseOrder is defined as a general prototype. Methods defined within an interface have no access
modifiers and contain just their signature.

« The CustomerPurchaseOrder class implements this interface; therefore, it must provide a definition for the discount
method. As with Java, any class that implements an interface must define all of the methods contained in the interface.

« The employee version of the purchase order extends the customer version. A class extends another class using the keyword
extends. A class can only extend one other class, but it can implement more than one interface.

When you define a new interface, you are defining a new data type. You can use an interface name in any place you can use
another data type name. If you define a variable whose type is an interface, any object you assign to it zus# be an instance of
a class that implements the interface, or a sub-interface data type.

An interface can extend another interface. As with classes, when an interface extends another interface, all the methods and
properties of the extended interface are available to the extending interface.

See also Classes and Casting on page 130.

Parameterized Typing and Interfaces

Apex, in general, is a statically-typed programming language, which means users must specify the data type for a variable
before that variable can be used. For example, the following is legal in Apex:

Integer x = 1;
The following is not legal if x has not been defined earlier:
x = 1;

Lists, maps and sets are parameterized in Apex: they take any data type Apex supports for them as an argument. That data
type must be replaced with an actual data type upon construction of the list, map or set. For example:

List<String> myList = new List<String>();

Parameterized typing allows interfaces to be implemented with generic data type parameters that are replaced with actual data
types upon construction.

115

Classes, Objects, and Interfaces Parameterized Typing and Interfaces

The following gives an example of how the syntax of a parameterized interface works. In this example, the interface Pair has
two #ype variables, T and U. A type variable can be used like a regular type in the body of the interface.

public virtual interface Pair<T, U> ({
T getFirst();
U getSecond() ;
void setFirst (T val):;
vold setSecond (U val);
Pair<u, T> swap/();

The following interface DoubleUp extends the Pair interface. It uses the type variable T:
public interface DoubleUp<T> extends Pair<T, T> {}

. »# Tip: Notice that Pair must be defined as virtual for it to be extended by DoubleUp.
-

s

Implementing Parameterized Interfaces

A class that implements a parameterized interface must pass data types in as arguments to the interface's type parameters.

public class StringPair implements DoubleUp<String> {
private String sl;
private String s2;

public StringPair (String sl, String s2) {
this.sl = sl;
this.s2 = s2;

}

public String getFirst() { return this.sl; }
public String getSecond() { return this.s2; }

public void setFirst (String val) { this.sl = val; }
public void setSecond(String val) { this.s2 = val; }

public Pair<String, String> swap() {
return new StringPair (this.s2, this.sl);

}

Type variables can never appear outside an interface declaration, such as in a class. However, fully instantiated types, such as
Pair<String, String> are allowed anywhere in Apex that any other data type can appear. For example, the following
are legal in Apex:

Pair<String, String> y = x.swap|();
DoubleUp<String> z = (DoubleUp<String>) y;

In this example, when the compiler compiles the class StringPair, it must check that the class implements all of the methods
in DoubleUp<String>andin Pair<String, String>.So the compliler substitutes String for T and String for U inside
the body of interface Pair<T, U>.

DoubleUp<String> x = new StringPair('foo', 'bar');

116

Classes, Objects, and Interfaces Parameterized Typing and Interfaces

This means that the following method prototypes must implement in StringPair for the class to successfully compile:

String getFirst () ;

String getSecond() ;

void setFirst (String val);
void setSecond(String wval);
Pair<String, String> swap();

Overloading Methods

In this example, the following interface is used:

public interface Overloaded<T> ({
void foo (T x);
void foo (String x);

The interface Overloaded is legal in Apex: you can overload a method by defining two or more methods with the same name
but different parameters. However, you cannot have any ambiguity when invoking an overloaded method.

The following class successfully implements the Overloaded interface because it simultaneously implements both method

prototypes specified in the interface:

public class MyClass implements Overloaded<String> {
public void foo(String x) {}
}

The following executes successfully because m is typed as MyClass, therefore MyClass. foo is the unique, matching method.

MyClass m = new MyClass();
m.foo ('bar');

The following does not execute successfully because o is typed as Overloaded<String>, and so there are two matching
methods for 0. foo (), neither of which typed to a specific method. The compiler cannot distinguish which of the two matching
methods should be used. :

Overloaded<String> o = m;
o.foo('bar');

Subtyping with Parameterized Lists
In Apex, if type T is a subtype of U, then List<T> would be a subtype of List<U>. For example, the following is legal:

List<String> slst = new List<String> {'foo', 'bar'};
List<Object> olst = slst;

However, you cannot use this in interfaces with parameterized types, such as for List, Map or Set. The following is not legal:

public interface I<T> {}
I<String> x = ...;
I<Object> y = x; // Compile error: Illegal assignment from I<String> to I<Object>

117

Classes, Objects, and Interfaces Custom Iterators

Custom Iterators

An iterator traverses through every item in a collection. For example, in a while loop in Apex, you define a condition for
exiting the loop, and you must provide some means of traversing the collection, that is, an iterator. In the following example,
count is incremented by 1 every time the loop is executed (count++) :

while (count < 11) {
System.debug (count) ;
count++;

}

Using the Iterator interface you can create a custom set of instructions for traversing a List through a loop. This is useful
for data that exists in sources outside of Database.com that you would normally define the scope of using a SELECT statement.
Iterators can also be used if you have multiple SELECT statements.

Using Custom Iterators
To use custom iterators, you must create an Apex class that implements the Iterator interface.

The Iterator interface has the following instance methods:

hasNext Boolean Returns t rue if there is another item in the collection
being traversed, false otherwise.

next Any type Returns the next item in the collection.

All methods in the ITterator interface must be declared as global.

You can only use a custom iterator in a while loop. For example:

IterableString x = new IterableString('This is a really cool test.');

while (x.hasNext ()) {
system.debug (x.next ()) ;
}

Iterators are not currently supported in for loops.

Using Custom Iterators with Iterable

If you do not want to use a custom iterator with a list, but instead want to create your own data structure, you can use the
Iterable interface to generate the data structure.

The Iterable interface has the following method:

iterator ITterator class Returns a reference to the iterator for this interface.

The iterator method must be declared as global. It creates a reference to the iterator that you can then use to traverse
the data structure.

118

Classes, Objects, and Interfaces Custom Iterators

In the following example a custom iterator iterates through a collection:

global class CustomIterable
implements
Iterator<Invoice Statement c>{

List<Invoice Statement c>
invoices {get; set;}
Integer 1 {get; set;}

public CustomIterable () {
invoices =
[SELECT Id, Description c
FROM Invoice Statement c
WHERE Description c¢ = 'false'];

i = 0;

}

global boolean hasNext () {

if (i >= invoices.size()) {
return false;
} else {

return true;
}
}

global Invoice Statement c¢ next () {
// 8 is an arbitrary
// constant in this example.
// It represents the
// maximum size of the list.
if(i == 8){ i++; return null;}
i=i+1;
return invoices[i-1];

The following calls the above code:

global class foo implements iterable<Invoice Statement c>{
global Iterator<Invoice Statement c¢> Iterator () {
return new CustomIterable();

}

The following is a batch job that uses an iterator:

global class batchClass implements
Database.batchable<Invoice Statement c>{
global Iterable<Invoice Statement c> start(
Database.batchableContext info) {
return new foo();

global void execute (Database.batchableContext info,
List<Invoice Statement c> scope) {
List<Invoice Statement c> invsToUpdate =
new List<Invoice Statement c>();
for (Invoice Statement c¢ a : scope) {
a.Description c¢ = 'New description';
invsToUpdate.add (a) ;
}
update invsToUpdate;

119

Classes, Objects, and Interfaces Keywords

global void finish (Database.batchableContext info) {
}

Keywords
Apex has the following keywords available:

e final

e instanceof
e super

e this

e transient

« with sharingand without sharing

Using the £inal Keyword
You can use the final keyword to modify variables.

+ Final variables can only be assigned a value once, either when you declare a variable or in initialization code. You must
assign a value to it in one of these two places.

« Static final variables can be changed in static initialization code or where defined.

« Member final variables can be changed in initialization code blocks, constructors, or with other variable declarations.

« To define a constant, mark a variable as both static and final (see Constants on page 48).

« Non-final static variables are used to communicate state at the class level (such as state between triggers). However, they
are not shared across requests.

« Methods and classes are final by default. You cannot use the £inal keyword in the declaration of a class or method. This
means they cannot be overridden. Use the virtual keyword if you need to override a method or class.

Using the instanceof Keyword

If you need to verify at runtime whether an object is actually an instance of a particular class, use the instanceof keyword.
The instanceof keyword can only be used to verify if the target type in the expression on the right of the keyword is a viable
alternative for the declared type of the expression on the left.

You could add the following check to the Report class in the classes and casting example before you cast the item back into
a CustomReport object.

If (Reports.get(0) instanceof CustomReport) {
// Can safely cast it back to a custom report object
CustomReport ¢ = (CustomReport) Reports.get(0);
} Else {
// Do something with the non-custom-report.

120

Classes, Objects, and Interfaces Using the super Keyword

Using the super Keyword

The super keyword can be used by classes that are extended from virtual or abstract classes. By using super, you can override
constructors and methods from the parent class.

For example, if you have the following virtual class:

public virtual class SuperClass {
public String mySalutation;
public String myFirstName;
public String myLastName;

public SuperClass() {

mySalutation = 'Mr.';
myFirstName = 'Carl';
myLastName = 'Vonderburg';

}

public SuperClass (String salutation, String firstName, String lastName) {
mySalutation = salutation;
myFirstName = firstName;
myLastName = lastName;

}

public virtual void printName () {

System.debug ('My name is ' + mySalutation + myLastName) ;

}

public virtual String getFirstName () {
return myFirstName;

}

You can create the following class that extends Superclass and overrides its printName method:

public class Subclass extends Superclass ({

public override void printName () {
super.printName () ;
System.debug ('But you can call me ' + super.getFirstName());

The expected output when calling Subclass.printNameisMy name is Mr. Vonderburg. But you can call
me Carl.

You can also use super to call constructors. Add the following constructor to SubClass:

public Subclass () {
super ('Madam', 'Brenda', 'Clapentrap'):

}

Now, the expected output of Subclass.printName is My name is Madam Clapentrap. But you can call
me Brenda.

121

Classes, Objects, and Interfaces Using the this Keyword

Best Practices for Using the super Keyword

+ Only classes that are extending from virtual or abstract classes can use super.

+ You can only use super in methods that are designated with the override keyword.

Using the this Keyword
There are two different ways of using the this keyword.

You can use the this keyword in dot notation, without parenthesis, to represent the current instance of the class in which it
appears. Use this form of the this keyword to access instance variables and methods. For example:

public class myTestThis {

string s;
{
this.s = 'TestString';
}

In the above example, the class myTestThis declares an instance variable s. The initialization code populates the variable
using the this keyword.

Or you can use the this keyword to do constructor chaining, that is, in one constructor, call another constructor. In this
format, use the this keyword with parentheses. For example:

public class testThis {

// First constructor for the class. It requires a string parameter.
public testThis(string s2) {
}

// Second constructor for the class. It does not require a parameter.
// This constructor calls the first constructor using the this keyword.
public testThis () {
this ('None') ;
}

When you use the this keyword in a constructor to do constructor chaining, it must be the first statement in the constructor.

Using the transient Keyword
Use the transient keyword to declare instance variables that can't be saved. For example:

Transient Integer currentTotal;

You can also use the transient keyword in Apex classes that are serializable, namely classes that implement the Batchable

or Schedulable interface. In addition, you can use transient in classes that define the types of fields declared in the
serializable classes.

122

Classes, Objects, and Interfaces Using the with sharing or without sharing Keywords

Some Apex objects are automatically considered transient, that is, their value does not get saved as part of the page's view
state. These objects include the following:

. XmlStream classes

« Collections automatically marked as transient only if the type of object that they hold is automatically marked as transient,
such as a collection of Savepoints

« Most of the objects generated by system methods, such as Schema.getGlobalDescribe.

+ JSONParser class instances. For more information, see JSON Support on page 322.

Static variables also don't get transmitted through the view state.

Using thewith sharingorwithout sharing Keywords

Apex generally runs in system context; that is, the current user's permissions, field-level security, and sharing rules aren’t taken
into account during code execution.

. Note: The only exceptions to this rule are Apex code that is executed with the executeAnonymous call.
executeAnonymous always executes using the full permissions of the current user. For more information on
executeAnonymous, see Anonymous Blocks on page 95.

Because these rules aren't enforced, developers who use Apex must take care that they don't inadvertently expose sensitive
data that would normally be hidden from users by user permissions, field-level security, or organization-wide defaults. They
should be particularly careful with Web services, which can be restricted by permissions, but execute in system context once
they are initiated.

Most of the time, system context provides the correct behavior for system-level operations such as triggers and Web services
that need access to all data in an organization. However, you can also specify that particular Apex classes should enforce the
sharing rules that apply to the current user. (For more information on sharing rules, see the Salesforce.com online help.)

wm Note: A user's permissions and field-level security are always ignored to ensure that Apex code can view all fields and
objects in an organization. If particular fields or objects are hidden for a user, the code would fail to compile at runtime.

Use the with sharing keywords when declaring a class to enforce the sharing rules that apply to the current user. For
example:

public with sharing class sharingClass {
// Code here

}

Use the without sharing keywords when declaring a class to ensure that the sharing rules for the current user are not
enforced. For example:

public without sharing class noSharing {
// Code here

}

If a class is not declared as either with or without sharing, the current sharing rules remain in effect. This means that if the
class is called by a class that has sharing enforced, then sharing is enforced for the called class.

123

http://www.salesforce.com/us/developer/docs/apexcode/index_Left.htm#StartTopic=Content%2Fapex_classes_static.htm|SkinName=webhelp

Classes, Objects, and Interfaces Annotations

Both inner classes and outer classes can be declared as with sharing. The sharing setting applies to all code contained in
the class, including initialization code, constructors, and methods. Classes inherit this setting from a parent class when one
class extends or implements another, but inner classes do not inherit the sharing setting from their container class.

For example:

public with sharing class CWith {
// All code in this class operates with enforced sharing rules.
public static void m() { }

}

public without sharing class CWithout {
// All code in this class ignores sharing rules and operates
// as if the context user has the Modify All Data permission.
public static void m() {

// This call into CWith operates with enforced sharing rules

// for the context user. When the call finishes, the code execution
// returns to without sharing mode.

CWith.m() ;

public class CInner {
// All code in this class executes with the same sharing context
// as the code that calls it.
// Inner classes are separate from outer classes.

// RAgain, this call into CWith operates with enforced
// sharing rules for the context user, regardless of the
// class that initially called this inner class.
// When the call finishes, the code execution returns
// to the sharing mode that was used to call this inner class.
CWith.m() ;
}

public class CInnerWithOut exends CWithout ({
// All code in this class ignores sharing rules because
// this class extends a parent class that ignores sharing rules.

}

Caution: There is no guarantee that a class declared as with sharing doesn't call code that operates as without
sharing. Class-level security is always still necessary.

Enforcing the current user's sharing rules can impact:

« SOQL and SOSL queries. A query may return fewer rows than it would operating in system context.

« DML operations. An operation may fail because the current user doesn't have the correct permissions. For example, if the
user specifies a foreign key value that exists in the organization, but which the current user does not have access to.

Annotations

An Apex annotation modifies the way a method or class is used, similar to annotations in Java.

124

Classes, Objects, and Interfaces Future Annotation

Annotations are defined with an initial @ symbol, followed by the appropriate keyword. To add an annotation to a method,
specify it immediately before the method or class definition. For example:

global class MyClass {
@future
Public static void myMethod (String a)
{

//long-running Apex code

}

Apex supports the following annotations:

+ @Future

e+ @IsTest

e (@ReadOnly

« Apex REST annotations:

@RestResource (urlMapping="'/yourUrl')
@HttpDelete

@HttpGet

@HttpPatch

@HttpPost

@HttpPut

LR RS >R > R o

Future Annotation

Use the future annotation to identify methods that are executed asynchronously. When you specify future, the method
executes when Database.com has available resources.

For example, you can use the future annotation when making an asynchronous Web service callout to an external service.
Without the annotation, the Web service callout is made from the same thread that is executing the Apex code, and no
additional processing can occur until the callout is complete (synchronous processing).

Methods with the future annotation must be static methods, and can only return a void type.

To make a method in a class execute asynchronously, define the method with the future annotation. For example:

global class MyFutureClass {

@future
static void myMethod(String a, Integer i) {
System.debug ('Method called with: ' + a + ' and ' + 1);

//do callout, other long running code

}

The following snippet shows how to specify that a method executes a callout:

@Qfuture (callout=true)
public static void doCalloutFromFuture () {
//Add code to perform callout

125

Classes, Objects, and Interfaces IsTest Annotation

You can specify (callout=false) to prevent a method from making callouts.

To test methods defined with the future annotation, call the class containing the methodina startTest, stopTest code
block. All asynchronous calls made after the startTest method are collected by the system. When stopTest is executed,
all asynchronous processes are run synchronously.

Methods with the future annotation have the following limits:
« No more than 10 method calls per Apex invocation

w# Note: Asynchronous calls, such as @future or executeBatch, called in a startTest, stopTest block, do
not count against your limits for the number of queued jobs.

« The parameters specified must be primitive dataypes, arrays of primitive datatypes, or collections of primitive datatypes.

+ Methods with the future annotation cannot take sObjects or objects as arguments.

Remember that any method using the future annotation requires special consideration, because the method does not
necessarily execute in the same order it is called.

You cannot call a method annotated with future from a method that also has the future annotation. Nor can you call a
trigger from an annotated method that calls another annotated method.

The getContent and getContentAsPDF PageReference methods cannot be used in methods with the future annotation.

For more information about callouts, see Invoking Callouts Using Apex on page 221.

See Also:
Understanding Execution Governors and Limits

IsTest Annotation

Use the 1sTest annotation to define classes or individual methods that only contain code used for testing your application.
The isTest annotation is similar to creating methods declared as testMethod.

wm Note: Classes defined with the isTest annotation don't count against your organization limit of 3 MB for all Apex
code. Individual methods defined with the isTest annotation do count against your organization limits. See
=" Understanding Execution Governors and Limits on page 203.

Starting with Apex code saved using Salesforce.com API version 24.0, test methods don’t have access by default to pre-existing
data in the organization. However, test code saved against Salesforce.com API version 23.0 or earlier continues to have access
to all data in the organization and its data access is unchanged. See Isolation of Test Data from Organization Data in Unit
Tests on page 143.

Classes and methods defined as 1sTest can be either private or public. Classes defined as isTest must be top-level
classes.

This is an example of a private test class that contains two test methods.

@isTest
private class MyTestClass {

// Methods for testing

@isTest static void testl () {
// Implement test code

126

Classes, Objects, and Interfaces IsTest Annotation

}

QisTest static void test2 () {
// Implement test code
}

This is an example of a public test class that contains a utility method for test data creation:

@isTest
public class TestUtil {

public static void createTestData () {
// Create some test invoices

}

Classes defined as isTest can't be interfaces or enums.

Methods of a public test class can only be called from a running test, that is, a test method or code invoked by a test method,
and can't be called by a non-test request. In addition, test class methods can be invoked using the Database.com user interface
or the API. For more information, see Running Unit Test Methods.

IsTest (SeeAllData=true) Annotation

For Apex code saved using Salesforce.com API version 24.0 and later, use the isTest (SeeAllData=true) annotation to
grant test classes and individual test methods access to all data in the organization, including pre-existing data that the test
didn’t create. Starting with Apex code saved using Salesforce.com API version 24.0, test methods don’t have access by default
to pre-existing data in the organization. However, test code saved against Salesforce.com API version 23.0 or earlier continues
to have access to all data in the organization and its data access is unchanged. See Isolation of Test Data from Organization

Data in Unit Tests on page 143.

Considerations of the IsTest (SeeAllData=true) Annotation

« Ifatest class is defined with the isTest (SeeAllData=true) annotation, this annotation applies to all its test
methods whether the test methods are defined with the @isTest annotation or the testmethod keyword.

« The isTest (SeeAllData=true) annotation is used to open up data access when applied at the class or method
level. However, using i sTest (SeeAllData=false) ona method doesn't restrict organization data access for that
method if the containing class has already been defined with the isTest (SeeAllData=true) annotation. In this
case, the method will still have access to all the data in the organization.

This example shows how to define a test class with the isTest (SeeAllData=true) annotation. All the test methods in
this class have access to all data in the organization.

// All test methods in this class can access all data.
@isTest (SeeAllData=true)
public class TestDataAccessClass {

// This test accesses an existing merchandise item.
// It also creates and accesses a new test merchandise item.
static testmethod void myTestMethodl () {

// Query an existing merchandise item in the organization.

Merchandise ¢ m = [SELECT Id, Price ¢, Total Inventory c, Description c
FROM Merchandise ¢ WHERE Name='Pencils' LIMIT 1];
System.assert (m != null);

// Create a test merchandise item based on the queried merchandise item.

127

Classes, Objects, and Interfaces ReadOnly Annotation

Merchandise c testMerchandise = m.clone();
testMerchandise.Name = 'Test Pencil';
insert testMerchandise;

// Query the test merchandise that was inserted.

Merchandise c testMerchandise2 = [SELECT Id, Price ¢, Total Inventory c
FROM Merchandise ¢ WHERE Name='Test Pencil' LIMIT 1];

System.assert (testMerchandise2 != null);

// Like the previous method, this test method can also access all data
// because the containing class is annotated with @isTest (SeeAllData=true) .
@isTest static void myTestMethod2 () {

// Can access all data in the organization.

}

This second example shows how to apply the isTest (SeeAllData=true) annotation on a test method. Because the class
that the test method is contained in isn’t defined with this annotation, you have to apply this annotation on the test method
to enable access to all data for that test method. The second test method doesn’t have this annotation, so it can access only
the data it creates in addition to objects that are used to manage your organization, such as users.

// This class contains test methods with different data access levels.
@isTest
private class ClassWithDifferentDataAccess {

// Test method that has access to all data.
@isTest (SeeAllData=true)
static void testWithAllDataAccess () {

// Can query all data in the organization.

}

// Test method that has access to only the data it creates
// and organization setup and metadata objects.
@isTest static void testWithOwnDataAccess () {

// This method can still access the User object.

// This query returns the first user object.

User u = [SELECT UserName,Email FROM User LIMIT 1];
System.debug ('UserName: ' + u.UserName) ;
System.debug ('Email: ' + u.Email);

// Can access the test invoice that is created here.
Invoice Statement ¢ inv = new Invoice Statement c(
Description c='Invoice 1');
insert inv;
// Access the invoice that was just created.
Invoice Statement c insertedInv = [SELECT Id,Description C
FROM Invoice Statement c
WHERE Description c='Invoice 1'];
System.assert (insertedInv != null);

ReadOnly Annotation

The @ReadOnly annotation allows you to perform unrestricted queries against the database. All other limits still apply. It's
important to note that this annotation, while removing the limit of the number of returned rows for a request, blocks you from
performing the following operations within the request: DML operations, calls to System. schedule, and calls to methods
annotated with @future.

128

Classes, Objects, and Interfaces Apex REST Annotations

The @ReadOnly annotation is available for Web services and the Schedulable interface. To use the @ReadOnly annotation,
the top level request must be in the schedule execution or the Web service invocation.

Apex REST Annotations

Six new annotations have been added that enable you to expose an Apex class as a RESTful Web service.

« (@RestResource (urlMapping="'/yourUrl')
« (@HttpDelete

« (@HttpGet

e (@HttpPatch

« (@HttpPost

« (@HttpPut

See Also:
Apex REST Basic Code Sample

RestResource Annotation
The @RestResource annotation is used at the class level and enables you to expose an Apex class as a REST resource.

These are some considerations when using this annotation:

« The URL mapping is relative to https://instance.salesforce.com/services/apexrest/.
+ A wildcard character (*) may be used.

« To use this annotation, your Apex class must be defined as global.

URL Guidelines
URL path mappings are as follows:

« The path must begin with a /'

« Ifan ™ appears, it must be preceded by /' and followed by '/', unless the
be followed by '/'

"' is the last character, in which case it need not

The rules for mapping URLs are:

« An exact match always wins.

« If no exact match is found, find all the patterns with wildcards that match, and then select the longest (by string length)
of those.

« If no wildcard match is found, an HTTP response status code 404 is returned.

The URL for a namespaced classes contains the namespace. For example, if your class is in namespace abc and the class is
mapped to your url, then the API URL is modified as follows:
https://instance.salesforce.com/services/apexrest/abc/your url/.In the case of a URL collision, the
namespaced class is always used.

129

Classes, Objects, and Interfaces Classes and Casting

HttpDelete Annotation

The @HttpDelete annotation is used at the method level and enables you to expose an Apex method as a REST resource.
This method is called when an HI'TP DELETE request is sent, and deletes the specified resource.

To use this annotation, your Apex method must be defined as global static.

HttpGet Annotation

The @HttpGet annotation is used at the method level and enables you to expose an Apex method as a REST resource. This
method is called when an HT'TP GET request is sent, and returns the specified resource.

These are some considerations when using this annotation:

« To use this annotation, your Apex method must be defined as global static.
« Methods annotated with @Ht tpGet are also called if the HT'TP request uses the HEAD request method.

HttpPatch Annotation

The @HttpPatch annotation is used at the method level and enables you to expose an Apex method as a REST resource.
This method is called when an HTTP PATCH request is sent, and updates the specified resource.

To use this annotation, your Apex method must be defined as global static.

HttpPost Annotation

The @Ht tpPost annotation is used at the method level and enables you to expose an Apex method as a REST resource. This
method is called when an HTTP POST request is sent, and creates a new resource.

To use this annotation, your Apex method must be defined as global static.

HttpPut Annotation

The @HttpPut annotation is used at the method level and enables you to expose an Apex method as a REST resource. This
method is called when an HT'TP PUT request is sent, and creates or updates the specified resource.

To use this annotation, your Apex method must be defined as global static.

Classes and Casting

In general, all type information is available at runtime. This means that Apex enables casting, that is, a data type of one class
can be assigned to a data type of another class, but only if one class is a child of the other class. Use casting when you want to
convert an object from one data type to another.

In the following example, CustomReport extends the class Report. Therefore, it is a child of that class. This means that
you can use casting to assign objects with the parent data type (Report) to the objects of the child data type (CustomReport).

130

Classes, Objects, and Interfaces Classes and Casting

In the following code block, first, a custom report object is added to a list of report objects. After that, the custom report object
is returned as a report object, then is cast back into a custom report object.

Public virtual class Report {

Public class CustomReport extends Report ({
// Create a list of report objects
Report[] Reports = new Report[5];

// Create a custom report object
CustomReport a = new CustomReport () ;

// Because the custom report is a sub class of the Report class,
// you can add the custom report object a to the list of report objects
Reports.add(a) ;

// The following is not legal, because the compiler does not know that what you are

// returning is a custom report. You must use cast to tell it that you know what

// type you are returning

// CustomReport c = Reports.get (0);

// Instead, get the first item in the list by casting it back to a custom report object
CustomReport ¢ = (CustomReport) Reports.get(0);

}

Report Class CustomReport Class
This is the parent class This is the child class

e T
Both Report objects an

CustomReport objects can go

< into the list of Report objects

——
| ** |
; MNew
New Report List of Report
5 ; CustornReport
Object Objects Object

—— S———
However, only Report objects)
can be returned from the list

of Report abjects /)

e s

Report Object

—

In order to access the
CustomRepori objects as their
true data type, you must cast the

Report object back into a
CustomReport object

|
CustonReport ¢ = (CustomReport) Reports.get(0);

+

CustomReport
Object

Figure 3: Casting Example

131

Classes, Objects, and Interfaces Classes and Collections

In addition, an interface type can be cast to a sub-interface or a class type that implements that interface.

. »# Tip: To verify if a class is a specific type of class, use the instanceOf keyword. For more information, see Using

'v the instanceof Keyword on page 120.

Classes and Collections

Lists and maps can be used with classes and interfaces, in the same ways that lists and maps can be used with sObjects. This
means, for example, that you can use a user-defined data type only for the value of a map, not for the key. Likewise, you cannot

create a set of user-defined objects.

If you create a map or list of interfaces, any child type of the interface can be put into that collection. For instance, if the List
contains an interface i1, and MyC implements 11, then MyC can be placed in the list.

Collection Casting
Because collections in Apex have a declared type at runtime, Apex allows collection casting.

Collections can be cast in a similar manner that arrays can be cast in Java. For example, a list of CustomerPurchaseOrder
objects can be assigned to a list of PurchaseOrder objects if class CustomerPurchaseOrder is a child of class PurchaseOrder.

public virtual class PurchaseOrder {

Public class CustomerPurchaseOrder extends PurchaseOrder {

}

{
List<PurchaseOrder> POs = new PurchaseOrder[] {};
List<CustomerPurchaseOrder> CPOs = new CustomerPurchaseOrder[]{};
POs = CPOs; }

Once the CustomerPurchaseOrder list is assigned to the PurchaseOrder list variable, it can be cast back to a list of
CustomerPurchaseOrder objects, but only because that instance was originally instantiated as a list of CustomerPurchaseOrder.
A list of PurchaseOrder objects that is instantiated as such cannot be cast to a list of CustomerPurchaseOrder objects, even if
the list of PurchaseOrder objects contains only CustomerPurchaseOrder objects.

If the user of a PurchaseOrder list that only includes CustomerPurchaseOrders objects tries to insert a
non-CustomerPurchaseOrder subclass of PurchaseOrder (such as InternalPurchaseOrder), a runtime exception results.

This is because Apex collections have a declared type at runtime.

wm Note: Maps behave in the same way as lists with regards to the value side of the Map—if the value side of map A can
be cast to the value side of map B, and they have the same key type, then map A can be cast to map B. A runtime error
=" results if the casting is not valid with the particular map at runtime.

Differences Between Apex Classes and Java Classes

The following is a list of the major differences between Apex classes and Java classes:

« Inner classes and interfaces can only be declared one level deep inside an outer class.

132

Classes, Objects, and Interfaces Class Definition Creation

« Static methods and variables can only be declared in a top-level class definition, not in an inner class.

« Inner classes behave like static Java inner classes, but do not require the static keyword. Inner classes can have instance
member variables like outer classes, but there is no implicit pointer to an instance of the outer class (using the this
keyword).

« The private access modifier is the default, and means that the method or variable is accessible only within the Apex
class in which it is defined. If you do not specify an access modifier, the method or variable is private.

+ Specifying no access modifier for a method or variable and the private access modifier are synonymous.

« The public access modifier means the method or variable can be used by any Apex in this application or namespace.

« The global access modifier means the method or variable can be used by any Apex code that has access to the class, not
just the Apex code in the same application. This access modifier should be used for any method that needs to be referenced
outside of the application, either in the SOAP API or by other Apex code. If you declare a method or variable as global,
you must also declare the class that contains it as global.

« Methods and classes are final by default.

¢ The virtual definition modifier allows extension and overrides.

0 The override keyword must be used explicitly on methods that override base class methods.

« Interface methods have no modifiers—they are always global.

+ Exception classes must extend either exception or another user-defined exception.

¢ Their names must end with the word exception.

0 Exception classes have four implicit constructors that are built-in, although you can add others.

For more information, see Exception Class on page 376.

« Classes and interfaces can be defined in triggers and anonymous blocks, but only as local.

Class Definition Creation
To create a class in Database.com:

1. Click Develop > Apex Classes.

2. Click New.

3. Click Version Settings to specify the version of Apex and the API used with this class. Use the default values for all
versions. This associates the class with the most recent version of Apex and the API. You can specify an older version of
Apex and the API to maintain specific behavior.

4. Inthe class editor, enter the Apex code for the class. A single class can be up to 1 million characters in length, not including
comments, test methods, or classes defined using @isTest.

5. Click Save to save your changes and return to the class detail screen, or click Quick Save to save your changes and continue
editing your class. Your Apex class must compile correctly before you can save your class.

Classes can also be automatically generated from a WSDL by clicking Generate from WSDL. See SOAP Services: Defining
a Class from a WSDL Document on page 222.

Once saved, classes can be invoked through class methods or variables by other Apex code, such as a trigger.

w# Note: To aid backwards-compatibility, classes are stored with the version settings for a specified version of Apex and
the API. Additionally, classes are stored with an isValid flag that is set to true as long as dependent metadata has
not changed since the class was last compiled. If any changes are made to object names or fields that are used in the

133

Classes, Objects, and Interfaces Naming Conventions

class, including superficial changes such as edits to an object or field description, or if changes are made to a class that
calls this class, the isvalid flag is set to false. When a trigger or Web service call invokes the class, the code is
recompiled and the user is notified if there are any errors. If there are no errors, the 1svalid flag is reset to true.

The Apex Class Editor
When editing Apex, an editor is available with the following functionality:
Syntax highlighting
The editor automatically applies syntax highlighting for keywords and all functions and operators.

Search (Q,)

Search enables you to search for text within the current page, class, or trigger. To use search, enter a string in the Search
textbox and click Find Next.

« To replace a found search string with another string, enter the new string in the Replace textbox and click replace
to replace just that instance, or Replace All to replace that instance and all other instances of the search string that
occur in the page, class, or trigger.

+ To make the search operation case sensitive, select the Match Case option.

« To use a regular expression as your search string, select the Regular Expressions option. The regular expressions
follow Javascript's regular expression rules. A search using regular expressions can find strings that wrap over more
than one line.

If'you use the replace operation with a string found by a regular expression, the replace operation can also bind regular
expression group variables ($1, $2, and so on) from the found search string. For example, to replace an <H1> tag
with an <H2> tag and keep all the attributes on the original <H1> intact, search for <HI (\s+) (.*) > and replace it
with <H2$1$2>.

Go toline ()
This button allows you to highlight a specified line number. If the line is not currently visible, the editor scrolls to that
line.

Undo (ﬁ) and Redo (»)

Use undo to reverse an editing action and redo to recreate an editing action that was undone.

Font size

Select a font size from the drop-down list to control the size of the characters displayed in the editor.

Line and column position

The line and column position of the cursor is displayed in the status bar at the bottom of the editor. This can be used

with go to line (F)to quickly navigate through the editor.

Line and character count

The total number of lines and characters is displayed in the status bar at the bottom of the editor.

Naming Conventions

We recommend following Java standards for naming, that is, classes start with a capital letter, methods start with a lowercase
verb, and variable names should be meaningful.

134

Classes, Objects, and Interfaces Name Shadowing

It is not legal to define a class and interface with the same name in the same class. It is also not legal for an inner class to have
the same name as its outer class. However, methods and variables have their own namespaces within the class so these three
types of names do not clash with each other. In particular it is legal for a variable, method, and a class within a class to have
the same name.

Name Shadowing

Member variables can be shadowed by local variables—in particular function arguments. This allows methods and constructors
of the standard Java form:

Public Class Shadow {

String s;
Shadow (String s) { this.s = s; } // Same name ok
setS(String s) { this.s = s; } // Same name ok

}

Member variables in one class can shadow member variables with the same name in a parent classes. This can be useful if the
two classes are in different top-level classes and written by different teams. For example, if one has a reference to a class C and
wants to gain access to a member variable M in parent class P (with the same name as a member variable in C) the reference
should be assigned to a reference to P first.

Static variables can be shadowed across the class hierarchy—so if P defines a static S, a subclass C can also declare a static S.
References to S inside C refer to that static—in order to reference the one in P, the syntax P.S must be used.

Static class variables cannot be referenced through a class instance. They must be referenced using the raw variable name by
itself (inside that top-level class file) or prefixed with the class name. For example:

public class pl {
public static final Integer CLASS INT = 1;
public class c { };

}

pl.c ¢ = new pl.c();

// This is illegal

// Integer i = c.CLASS INT;

// This is correct

Integer i = pl.CLASS INT;

Class Security

You can specify which users can execute methods in a particular top-level class based on their user profile or permission sets.
You can only set security on Apex classes, not on triggers.

To set Apex class security from the class list page:

j—

. Click Develop > Apex Classes.
2. Next to the name of the class that you want to restrict, click Security.

3. Select the profiles that you want to enable from the Available Profiles list and click Add, or select the profiles that you
want to disable from the Enabled Profiles list and click Remove.

4. Click Save.

To set Apex class security from the class detail page:

135

Classes, Objects, and Interfaces Enforcing Object and Field Permissions
1. Click Develop > Apex Classes.
2. Click the name of the class that you want to restrict.
3. Click Security.
4. Select the profiles that you want to enable from the Available Profiles list and click Add, or select the profiles that you

want to disable from the Enabled Profiles list and click Remove.
5. Click Save.

To set Apex class security from a permission set:

Click Manage Users > Permission Sets.
Select a permission set.

Click Apex Class Access.

Click Edit.

Select the Apex classes that you want to enable from the Available Apex Classes list and click Add, or select the Apex
classes that you want to disable from the Enabled Apex Classes list and click Remove.

6. Click Save.

Nk W=

To set Apex class security from a profile:

Click Manage Users > Profiles.
Select a profile.
In the Apex Class Access page or related list, click Edit.

W=

Select the Apex classes that you want to enable from the Available Apex Classes list and click Add, or select the Apex
classes that you want to disable from the Enabled Apex Classes list and click Remove.

5. Click Save.

Enforcing Object and Field Permissions

Apex generally runs in system context; that is, the current user's permissions, field-level security, and sharing rules aren’t taken
into account during code execution. The only exceptions to this rule are Apex code that is executed with the
executeAnonymous call. executeAnonymous always executes using the full permissions of the current user. For more
information on executeAnonymous, see Anonymous Blocks on page 95.

Although Apex doesn't enforce object-level and field-level permissions by default, you can enforce these permissions in your
code by explicitly calling the sObject describe result methods (of Schema.DescribeSObjectResult) and the field describe result
methods (of Schema.DescribeFieldResult) that check the current user's access permission levels. In this way, you can verify if
the current user has the necessary permissions, and only if he or she has sufficient permissions, you can then perform a specific
DML operation or a query.

For example, you can call the isAccessible, isCreateable, or isUpdateable methods of
Schema.DescribeSObjectResult to verify whether the current user has read, create, or update access to an sObject,
respectively. Similarly, Schema.DescribeFieldResult exposes these access control methods that you can call to check
the current user's read, create, or update access for a field. In addition, you can call the i sDeletable method provided by
Schema.DescribeSObjectResult to check if the current user has permission to delete a specific sObject.

These are some examples of how to call the access control methods.

136

Classes, Objects, and Interfaces Namespace Prefix

To check the field-level update permission of the merchandise’s price field before updating it:

if (Schema.sObjectType.Merchandise c.fields.Price c.isUpdateable()) {
// Update merchandise price

}
To check the field-level create permission of the merchandise’s price field before creating a new merchandise item:

if (Schema.sObjectType.Merchandise c.fields.Price c.isCreateable()) {
// Create new merchandise

}
To check the field-level read permission of the merchandise’s price field before querying for this field:

if (Schema.sObjectType.Merchandise c.fields.Price c.isAccessible()) {
Merchandise ¢ merch = [SELECT Price_ ¢ FROM Merchandise ¢ WHERE Id= :Id];
1

To check the object-level permission for the merchandise object before deleting a merchandise item.

if (Schema.sObjectType.Merchandise c.isDeletable()) {
// Delete merchandise

}

Sharing rules are distinct from object-level and field-level permissions. They can coexist. If sharing rules are defined in
Database.com, you can enforce them at the class level by declaring the class with the with sharing keyword. For more
information, see Using the with sharingorwithout sharing Keywords. If you call the sObject describe result and field
describe result access control methods, the verification of object and field-level permissions is performed in addition to the
sharing rules that are in effect. Sometimes, the access level granted by a sharing rule could conflict with an object-level or
field-level permission.

Namespace Prefix

The application supports the use of namespace prefixes.

Because these fully-qualified names can be onerous to update in working SOQL statements, SOSL statements, and Apex
once a class is marked as “managed,” Apex supports a default namespace for schema names. When looking at identifiers, the
parser considers the namespace of the current object and then assumes that it is the namespace of all other objects and fields
unless otherwise specified. Consequently, a stored class should refer to custom object and field names directly (using
obj_or field name _c) for those objects that are defined within its same application namespace.

Namespace, Class, and Variable Name Precedence

Because local variables, class names, and namespaces can all hypothetically use the same identifiers, the Apex parser evaluates
expressions in the form of namel.name2. [...].nameN as follows:

1. The parser first assumes that name1 is a local variable with name2 - nameN as field references.

2. If'the first assumption does not hold true, the parser then assumes that name1 is a class name and name? is a static variable
name with name3 - nameN as field references.

137

Classes, Objects, and Interfaces Type Resolution and System Namespace for Types

3. If the second assumption does not hold true, the parser then assumes that namel is a namespace name, name?2 is a class
name, name3 is a static variable name, and name4 - nameN are field references.

4. If the third assumption does not hold true, the parser reports an error.

If the expression ends with a set of parentheses (for example, namel .name2. [...].nameM.nameN ()), the Apex parser
evaluates the expression as follows:

1. The parser first assumes that name1 is a local variable with name2 - nameM as field references, and nameN as a method
invocation.

2. If the first assumption does not hold true:

+ If the expression contains only two identifiers (namel .name2 ()), the parser then assumes that name1 is a class name
and name? is a method invocation.

+ If the expression contains more than two identifiers, the parser then assumes that namel is a class name, name2 is a
static variable name with name3 - nameM as field references, and nameN is a method invocation.

3. If the second assumption does not hold true, the parser then assumes that namel is a namespace name, name?2 is a class
name, name3 is a static variable name, name4 - nameM are field references, and nameN is a method invocation.

4. If the third assumption does not hold true, the parser reports an error.

However, with class variables Apex also uses dot notation to reference member variables. Those member variables might refer
to other class instances, or they might refer to an sObject which has its own dot notation rules to refer to field names (possibly
navigating foreign keys).

Once you enter an sObject field in the expression, the remainder of the expression stays within the sObject domain, that is,
sObject fields cannot refer back to Apex expressions.

For instance, if you have the following class:

public class c {
cl cl = new cl():;
class cl { c2 c2; }
class c2 { Invoice Statement c a; }

}
Then the following expressions are all legal:

c.cl.c2.a.name
c.cl.c2.a.owner.lastName.toLowerCase ()

Type Resolution and System Namespace for Types

Because the type system must resolve user-defined types defined locally or in other classes, the Apex parser evaluates types as
follows:

1. For a type reference TypeN, the parser first looks up that type as a scalar type.
2. If TypeN is not found, the parser looks up locally defined types.

3. If TypeN still is not found, the parser looks up a class of that name.

4. If TypeN still is not found, the parser looks up system types such as sObjects.

For the type T1.T2 this could mean an inner type T2 in a top-level class T1, or it could mean a top-level class T2 in the
namespace T1 (in that order of precedence).

138

Classes, Objects, and Interfaces Version Settings

Version Settings

To aid backwards-compatibility, classes and triggers are stored with the version settings for a specific Salesforce.com API
version.

Typically, you reference the latest Salesforce.com API version. If you save an Apex class or trigger without specifying the
Salesforce.com API version, the class or trigger is associated with the latest installed version by default.

Setting the Database.com API Version for Classes and Triggers
To set the Salesforce.com API and Apex version for a class or trigger:

1. Edit either a class or trigger, and click Version Settings.
2. Select the Version of the Salesforce.com API. This is also the version of Apex associated with the class or trigger.
3. Click Save.

If you pass an object as a parameter in a method call from one Apex class, C1, to another class, C2, and C2 has different fields
exposed due to the Salesforce.com API version setting, the fields in the objects are controlled by the version settings of C2.

139

Chapter 5

Testing Apex

In this chapter ...

* Understanding Testing in Apex
* Unit Testing Apex

* Running Unit Test Methods

* Testing Best Practices

* Testing Example

Apex provides a testing framework that allows you to write unit tests, run your
tests, check test results, and have code coverage results.

This chapter provides an overview of unit tests, data visibility for tests, as well as
the tools that are available on Database.com for testing Apex.

« Understanding Testing in Apex
+ Unit Testing Apex

+ Running Unit Test Methods

« Testing Best Practices

+ Testing Example

140

Testing Apex Understanding Testing in Apex

Understanding Testing in Apex

Testing is the key to successful long term development, and is a critical component of the development process. We strongly
recommend that you use a test-driven development process, that is, test development that occurs at the same time as code
development.

Why Test Apex?
Testing is key to the success of your application, particularly if your application is to be deployed to customers. If you validate

that your application works as expected, that there are no unexpected behaviors, your customers are going to trust you more.

An application is seldom finished. You will have additional releases of it, where you change and extend functionality. If you
have written comprehensive tests, you can ensure that a regression is not introduced with any new functionality.

Before you can deploy your code, the following must be true:

« 75% of your Apex code must be covered by unit tests, and all of those tests must complete successfully.

Note the following:

0 When deploying to a production organization, every unit test in your organization namespace is executed.
0 Calls to System.debug are not counted as part of Apex code coverage.

0 Test methods and test classes are not counted as part of Apex code coverage.

0

While only 75% of your Apex code must be covered by tests, your focus shouldn't be on the percentage of code that is
covered. Instead, you should make sure that every use case of your application is covered, including positive and negative
cases, as well as bulk and single record. This should lead to 75% or more of your code being covered by unit tests.

+ Every trigger has some test coverage.

« All classes and triggers compile successfully.

Database.com runs all tests in all organizations that have Apex code to verify that no behavior has been altered as a result of
any service upgrades.

What to Test in Apex

Salesforce.com recommends that you write tests for the following:

Single action
Test to verify that a single record produces the correct, expected result.

Bulk actions
Any Apex code, whether a trigger, a class or an extension, may be invoked for 1 to 200 records. You must test not only
the single record case, but the bulk cases as well.

Positive behavior

Test to verify that the expected behavior occurs through every expected permutation, that is, that the user filled out
everything correctly and did not go past the limits.

141

Testing Apex Unit Testing Apex

Negative behavior

There are likely limits to your applications, such as not being able to add a future date, not being able to specify a negative
amount, and so on. You must test for the negative case and verify that the error messages are correctly produced as well
as for the positive, within the limits cases.

Restricted user

Test whether a user with restricted access to the sObjects used in your code sees the expected behavior. That is, whether
they can run the code or receive error messages.

w# Note: Conditional and ternary operators are not considered executed unless both the positive and negative branches

are executed.
'_,..»"""-#

For examples of these types of tests, see Testing Example on page 151.

Unit Testing Apex

To facilitate the development of robust, error-free code, Apex supports the creation and execution of unif fests. Unit tests are
class methods that verify whether a particular piece of code is working properly. Unit test methods take no arguments, commit
no data to the database, send no emails, and are flagged with the testMethod keyword in the method definition.

For example:

public class myClass {
static testMethod void myTest () {
code block
}

Use the isTest annotation to define classes or individual methods that only contain code used for testing your application.
The isTest annotation is similar to creating methods declared as testMethod.

w# Note: Classes defined with the isTest annotation don't count against your organization limit of 3 MB for all Apex
code. Individual methods defined with the i sTest annotation do count against your organization limits. See
" Understanding Execution Governors and Limits on page 203.

This is an example of a test class that contains two test methods.

@isTest
private class MyTestClass {

// Methods for testing
@isTest static void testl () {
// Implement test code

}

@isTest static void test2() {

// Implement test code
}

142

Testing Apex Isolation of Test Data from Organization Data in Unit Tests

Unit Test Considerations

Here are some things to note about unit tests.

« Test methods can’t be used to test Web service callouts. Web service callouts are asynchronous, while unit tests are
synchronous.

+ You can’t send email messages from a test method.

« Since test methods don’t commit data created in the test, you don’t have to delete test data upon completion.

« Tracked changes for a record (FeedTrackedChange records) in Chatter feeds aren't available when test methods modify
the associated record. FeedTrackedChange records require the change to the parent record they're associated with to be
committed to the database before they're created. Since test methods don't commit data, they don't result in the creation

of FeedTrackedChange records.

See Also:
IsTest Annotation

Isolation of Test Data from Organization Data in Unit Tests

Starting with Apex code saved using Salesforce.com API version 24.0 and later, test methods don’t have access by default to
pre-existing data in the organization, such as custom objects and custom settings data, and can only access data that they
create. However, objects that are used to manage your organization or metadata objects can still be accessed in your tests such

as:
o User
. Profile

+ Organization
« ApexClass
« ApexTrigger

Whenever possible, you should create test data for each test. You can disable this restriction by annotating your test class or
test method with the IsTest (SeeAllData=true) annotation. For more information, see IsTest (SeeAllData=true)
Annotation.

Test code saved using Salesforce.com API version 23.0 or earlier continues to have access to all data in the organization and
its data access is unchanged.

Data Access Considerations

« Ifanew test method saved using Salesforce.com API version 24.0 or later calls a method in another class saved using
version 23.0 or earlier, the data access restrictions of the caller are enforced in the called method; that is, the called
method won’t have access to organization data because the caller doesn’t, even though it was saved in an earlier
version.

«This access restriction to test data applies to all code running in test context. For example, if a test method causes a
trigger to execute and the test can’t access organization data, the trigger won't be able to either.

« There might be some cases where you can’t create certain types of data from your test method because of specific
limitations. For example, records that are created only after related records are committed to the database, like tracked
changes in Chatter. Tracked changes for a record (FeedTrackedChange records) in Chatter feeds aren't available
when test methods modify the associated record. Feed TrackedChange records require the change to the parent record

143

Testing Apex Using the runAs Method

they're associated with to be committed to the database before they're created. Since test methods don't commit data,
they don't result in the creation of FeedTrackedChange records.

Using the runAs Method

Generally, all Apex code runs in system mode, and the permissions and record sharing of the current user are not taken into
account. The system method runas enables you to write test methods that change either the user contexts to an existing user
or a new user. When running as a user, all of that user's record sharing is then enforced. You can only use runAs in a test
method. The original system context is started again after all runas test methods complete.

w# Note: Every call to runAs counts against the total number of DML statements issued in the process.
T

In the following example, a new test user is created, then code is run as that user, with that user's permissions and record
access:

public class TestRunAs {
public static testMethod void testRunAs () {

// Setup test data
// This code runs as the system user
Profile p = [SELECT Id FROM Profile WHERE Name='Standard User'];
User u = new User(Alias = 'standt', Email='standarduser@testorg.com',
EmailEncodingKey='UTF-8', LastName='Testing', LanguageLocaleKey='en US',
LocaleSidKey='en US', Profileld = p.Id,
TimeZoneSidKey='America/Los Angeles', UserName='standarduser@testorg.com');

System.runAs (u) {

// The following code runs as user 'u'

System.debug ('Current User: ' + UserInfo.getUserName())
System.debug ('Current Profile: ' + UserInfo.getProfilelId()); }

You can nest more than one runas method. For example:

public class TestRunAs2 {
public static testMethod void test2() {

Profile p = [SELECT Id FROM Profile WHERE Name='Standard User'];

User u2 = new User (Alias = 'newUser', Email='newuser@testorg.com',
EmailEncodingKey='UTF-8', LastName='Testing', LanguageLocaleKey='en US',
LocaleSidKey='en US', ProfilelId = p.Id,

TimeZoneSidKey='America/Los Angeles', UserName='newuser@testorg.com');

System.runAs (u2) {
// The following code runs as user u2.

System.debug ('Current User: ' + UserInfo.getUserName())
System.debug ('Current Profile: ' + UserInfo.getProfilelId()):
// The following code runs as user u3.
User u3 = [SELECT Id FROM User WHERE UserName='newuser@testorg.com'];
System.runAs (u3) {
System.debug ('Current User: ' + UserInfo.getUserName())
System.debug ('Current Profile: ' + UserInfo.getProfilelId()):;

144

Testing Apex Using Limits, startTest, and stopTest

// Any additional code here would run as user u2.

Best Practices for Using runAs

The following items use the permissions granted by the user specified with runAs running as a specific user:

+ Dynamic Apex
« Methods using with sharing or without sharing

« Shared records
The original permissions are reset after runAs completes.

The runAs method ignores user license limits. You can create new users with runAs even if your organization has no additional
user licenses.

Using Limits, startTest, and stopTest

The Limits methods return the specific limit for the particular governor, such as the number of calls of a method or the amount
of heap size remaining.

There are two versions of every method: the first returns the amount of the resource that has been used in the current context,
while the second version contains the word “limit” and returns the total amount of the resource that is available for that context.
For example, getCallouts returns the number of callouts to an external service that have already been processed in the
current context, while getLimitCallouts returns the total number of callouts available in the given context.

In addition to the Limits methods, use the startTest and stopTest methods to validate how close the code is to reaching
governor limits.

The startTest method marks the point in your test code when your test actually begins. Each testMethod is allowed to
call this method only once. All of the code before this method should be used to initialize variables, populate data structures,
and so on, allowing you to set up everything you need to run your test. Any code that executes after the call to startTest
and before stopTest is assigned a new set of governor limits.

The startTest method does not refresh the context of the test: it adds a context to your test. For example, if your class
makes 98 SOQL queries before it calls startTest, and the first significant statement after startTest isa DML statement,
the program can now make an additional 100 queries. Once stopTest is called, however, the program goes back into the
original context, and can only make 2 additional SOQL queries before reaching the limit of 100.

The stopTest method marks the point in your test code when your test ends. Use this method in conjunction with the

startTest method. Each testMethod is allowed to call this method only once. Any code that executes after the stopTest
method is assigned the original limits that were in effect before startTest was called. All asynchronous calls made after the
startTest method are collected by the system. When stopTest is executed, all asynchronous processes are run synchronously.

Adding SOSL Queries to Unit Tests

To ensure that test methods always behave in a predictable way, any Database.com Object Search Language (SOSL) query
that is added to an Apex test method returns an empty set of search results when the test method executes. If you do not want
the query to return an empty list of results, you can use the Test.setFixedSearchResults system method to define a
list of record IDs that are returned by the search. All SOSL queries that take place later in the test method return the list of
record IDs that were specified by the Test . setFixedSearchResults method. Additionally, the test method can call
Test.setFixedSearchResults multiple times to define different result sets for different SOSL queries. If you do not

145

Testing Apex Running Unit Test Methods

call the Test.setFixedSearchResults method in a test method, or if you call this method without specifying a list of
record IDs, any SOSL queries that take place later in the test method return an empty list of results.

The list of record IDs specified by the Test . setFixedSearchResults method replaces the results that would normally
be returned by the SOSL query if it were not subject to any WHERE or LIMIT clauses. If these clauses exist in the SOSL query,
they are applied to the list of fixed search results. For example:

public class SoslFixedResultsTestl {

public static testMethod void testSoslFixedResults() {
Id [] fixedSearchResults= new Id[1l];
fixedSearchResults[0] = '001x0000003G89h';
Test.setFixedSearchResults (fixedSearchResults) ;
List<List<SObject>> searchList = [FIND 'test'
IN ALL FIELDS RETURNING
Merchandise c(Id, Name WHERE Name = 'test'
LIMIT 1)];
}
}

Although the merchandise record with an ID of 001x0000003G89h may not match the query string in the FIND clause
("test"), the record is passed into the RETURNING clause of the SOSL statement. If the record with ID 001x0000003G89h
matches the WHERE clause filter, the record is returned. If it does not match the WHERE clause, no record is returned.

Running Unit Test Methods

You can run unit tests for:

« A specific class
« A subset of classes

« All unit tests in your organization
To run a test, use any of the following:

« The Database.com user interface
« The Force.com IDE
« The API

Running Tests Through the Database.com User Interface

You can run unit tests on the Apex Test Execution page. Tests started on this page run asynchronously, that is, you don't have
to wait for a test class execution to finish. The Apex Test Execution page refreshes the status of a test and displays the results
after the test completes.

146

Testing Apex Running Unit Test Methods

Apex Test Execution Helo for this Page @

Click Select Tests to choose one or more Apex unit tests and run them. To see the current code coverage for an individual class or your organization, go to the Apex
Classes page.

Select Tests... Options... | View Test History

Abort

[status Class Resutt

Z Test Run: 2012-03-16 10:16:28, jsmith@acme.org (2 Classes)

® [view] TestClass1 (2/3) Test Methods Passed
s [View] TestClass2 (2/2) Test Methods Passed
Detail Duration Class Method Pass/Fail Error Message Stack Trace
iew] 0:o0 TestClazsl tezed Basz
iew] 001 TestClazsl tezel Basz
iew] 0:o0 TestClazsl teze2 Fail System. AzsertException: Assertion Failed Class.TestClassl.test2: line 20, column

External entry point

To use the Apex Test Execution page:

1. Click Develop > Apex Test Execution.
2. Click Select Tests....
3. Select the tests to run. The list of tests contains classes that contain test methods.

w® Note: Classes whose tests are still running don't appear in the list.
L

4. Click Run.

After you run tests using the Apex Test Execution page, you can display the percentage of code covered by those tests on the
list of Apex classes. Click Develop > Apex Classes, then click Calculate your organization's code coverage.

You can also verify which lines of code are covered by tests for an individual class. Click Develop > Apex Classes, then click
the percentage number in the Code Coverage column for a class.

Click Develop > Apex Test Execution > View Test History to view all test results for your organization, not just tests that
you have run. Test results are retained for 30 days after they finish running, unless cleared.

Alternatively, use the Apex classes page to run tests.

To use the Apex Classes page to generate test results, click Develop > Apex Classes, then either click Run All Tests or click
the name of a specific class that contains tests and click Run Test.

After you use the Apex Classes page to generate test results, the test result page contains the following sections. Each section
can be expanded or collapsed.

« A summary section that details the number of tests run, the number of failures, the percentage of Apex code that is covered
by unit tests, the total execution time in milliseconds, and a link to a downloadable debug log file.

The debug log is automatically set to specific log levels and categories, which can't be changed.

Database INFO
Apex Code FINE
Apex Profiling FINE
Workflow FINEST
Validation INFO

147

Testing Apex Running Unit Test Methods

Important: Before you can deploy Apex, the following must be true:
0 75% of your Apex code must be covered by unit tests, and all of those tests must complete successfully.
Note the following:

- When deploying to a production organization, every unit test in your organization namespace is executed.
- Calls to System. debug are not counted as part of Apex code coverage.
- Test methods and test classes are not counted as part of Apex code coverage.

- While only 75% of your Apex code must be covered by tests, your focus shouldn't be on the percentage of
code that is covered. Instead, you should make sure that every use case of your application is covered,
including positive and negative cases, as well as bulk and single record. This should lead to 75% or more
of your code being covered by unit tests.

0 Every trigger has some test coverage.
0 All classes and triggers compile successfully.

« Test successes, if any.

« Test failures, if any.

« A code coverage section.
This section lists all the classes and triggers in your organization, and the percentage of lines of code in each class and
trigger that are covered by tests. If you click the coverage percent number, a page displays, highlighting all the lines of code

for that class or trigger that are covered by tests in blue, as well as highlighting all the lines of code that are not covered by
tests in red. It also lists how many times a particular line in the class or trigger was executed by the test

« Test coverage warnings, if any.

Running Tests Using the Force.com IDE

In addition, you can execute tests with the Force.com IDE (see
https://wiki.developerforce.com/index.php/Apex_Toolkit_for_Eclipse)

Running Tests Using the API
wm Note: The API for asynchronous test runs is a Beta release.

Using objects and Apex code to insert and query those objects, you can add tests to the Apex job queue for execution and
check the results of completed test runs. This enables you to not only start tests asynchronously but also schedule your tests
to execute at specific times by using the Apex scheduler. See Apex Scheduler on page 90 for more information.

To start an asynchronous execution of unit tests and check their results, use these objects:

« ApexTestQueueltem: Represents a single Apex class in the Apex job queue.
« ApexTestResult: Represents the result of an Apex test method execution.

Insert an ApexTestQueueItem object to place its corresponding Apex class in the Apex job queue for execution. The Apex
job executes the test methods in the class. After the job executes, ApexTestResult contains the result for each single test
method executed as part of the test.

To abort a class that is in the Apex job queue, perform an update operation on the ApexTestQueueItem object and set its
Status field to Aborted.

If you insert multiple Apex test queue items in a single bulk operation, the queue items will share the same parent job. This
means that a test run can consist of the execution of the tests of several classes if all the test queue items are inserted in the
same bulk operation.

148

https://wiki.developerforce.com/index.php/Apex_Toolkit_for_Eclipse

Testing Apex Running Unit Test Methods

The maximum number of test queue items, and hence classes, that you can insert in the Apex job queue is the greater of 500
or 10 multiplied by the number of test classes in the organization.

This example shows how to use DML operations to insert and query the ApexTestQueueItem and ApexTestResult
objects. The enqueueTests method inserts queue items for all classes that end with Test. It then returns the parent job ID
of one queue item, which is the same for all queue items because they were inserted in bulk. The checkClassStatus method
retrieves all the queue items that correspond to the specified job ID. It then queries and outputs the name, job status, and pass
rate for each class. The checkMethodStatus method gets information of each test method that was executed as part of the
job.

public class TestUtil {

// Enqueue all classes ending in "Test".
public static ID enqueueTests () {
ApexClass|[] testClasses =
[SELECT Id FROM ApexClass
WHERE Name LIKE '%Test'];
if (testClasses.size() > 0) {
ApexTestQueueltem|[] queueltems = new List<ApexTestQueueltem> () ;
for (ApexClass cls : testClasses) {
queueltems.add (new ApexTestQueueltem (ApexClassId=cls.Id));
}

insert queueltems;

// Get the job ID of the first queue item returned.
ApexTestQueueltem item =
[SELECT ParentJobId FROM ApexTestQueueltem
WHERE Id=:queueltems[0].Id LIMIT 1];
return item.parentjobid;
}
return null;

}

// Get the status and pass rate for each class
// whose tests were run by the Jjob.
// that correspond to the specified job ID.
public static void checkClassStatus (ID jobId) ({
ApexTestQueueltem[] items =
[SELECT ApexClass.Name, Status, ExtendedStatus
FROM ApexTestQueueltem
WHERE ParentJobId=:jobId];
for (ApexTestQueueltem item : items) {
String extStatus = item.extendedstatus == null ? '' : item.extendedStatus;
System.debug (item.ApexClass.Name + ': ' + item.Status + extStatus);

}

// Get the result for each test method that was executed.
public static void checkMethodStatus (ID jobId) {
ApexTestResult[] results =
[SELECT Outcome, ApexClass.Name, MethodName, Message, StackTrace
FROM ApexTestResult
WHERE AsyncApexJobId=:jobId];

for (ApexTestResult atr : results) {
System.debug (atr.ApexClass.Name + '.' + atr.MethodName + ': ' + atr.Outcome);
if (atr.message != null) {

System.debug (atr.Message + '\n at ' + atr.StackTrace);
}

149

Testing Apex Testing Best Practices

You can also use the runTests () call from the SOAP API to run tests synchronously:
RunTestsResult[] runTests (RunTestsRequest ri)

This call allows you to run all tests in all classes, all tests in a specific namespace, or all tests in a subset of classes in a specific
namespace, as specified in the RunTestsRequest object. It returns the following:

« Total number of tests that ran

« Code coverage statistics (described below)

+ Error information for each failed test

+ Information for each test that succeeds

. Time it took to run the test

For more information on runTests (), see the WSDL located at
https://your_database.com _server/services/wsdl/apex, where your database.com server is equivalent
to the server on which your organization is located, such as <string unique to your org>.database.com.

Though administrators in a Database.com production organization cannot make changes to Apex code using the Database.com
user interface, it is still important to use runTests () to verify that the existing unit tests run to completion after a change is
made, such as adding a unique constraint to an existing field. Database.com production organizations must use the

compileAndTest SOAP API call to make changes to Apex code. For more information, see Deploying Apex on page 421.

For more information on runTests (), see SOAP API and SOAP Headers for Apex on page 443.

Testing Best Practices
Good tests should do the following:
« Cover as many lines of code as possible. Before you can deploy Apex, the following must be true:
Important:
0 75% of your Apex code must be covered by unit tests, and all of those tests must complete successfully.
Note the following:

- When deploying to a production organization, every unit test in your organization namespace is executed.
- Calls to System.debug are not counted as part of Apex code coverage.
- Test methods and test classes are not counted as part of Apex code coverage.

- While only 75% of your Apex code must be covered by tests, your focus shouldn't be on the percentage of
code that is covered. Instead, you should make sure that every use case of your application is covered,
including positive and negative cases, as well as bulk and single record. This should lead to 75% or more
of your code being covered by unit tests.

0 Every trigger has some test coverage.

0 All classes and triggers compile successfully.

+ In the case of conditional logic (including ternary operators), execute each branch of code logic.
« Make calls to methods using both valid and invalid inputs.

« Complete successfully without throwing any exceptions, unless those errors are expected and caught in a try..catch

block.

150

Testing Apex Testing Example

« Always handle all exceptions that are caught, instead of merely catching the exceptions.
+ Use system.assert methods to prove that code behaves properly.
« Use the runAs method to test your application in different user contexts.

« Use the isTest annotation. Classes defined with the i sTest annotation do not count against your organization limit of
3 MB for all Apex code. See IsTest Annotation on page 126.

+ Exercise bulk trigger functionality—use at least 20 records in your tests.
« Use the ORDER BY keywords to ensure that the records are returned in the expected order.

« Not assume that record IDs are in sequential order.

Record IDs are not created in ascending order unless you insert multiple records with the same request. For example, if
you create a Merchandise citem A, and receive the ID a0290000000UuSn, then create another merchandise item

B, the ID of item B may or may not be sequentially higher.

+ On the list of Apex classes, there is a Code Coverage column. If you click the coverage percent number, a page displays,
highlighting all the lines of code for that class or trigger that are covered by tests in blue, as well as highlighting all the
lines of code that are not covered by tests in red. It also lists how many times a particular line in the class or trigger was
executed by the test

+ Set up test data:

0 Create the necessary data in test classes, so the tests do not have to rely on data in a particular organization.
0 Create all test data before calling the starttest method.

0 Since tests don't commit, you won't need to delete any data.

« Write comments stating not only what is supposed to be tested, but the assumptions the tester made about the data, the
expected outcome, and so on.

« Test the classes in your application individually. Never test your entire application in a single test.
If you are running many tests, consider the following:

« In the Force.com IDE, you may need to increase the Read timeout value for your Apex project. See
https://wiki.developerforce.com/index.php/Apex Toolkit for Eclipse for details.

+ In the Database.com user interface, you may need to test the classes in your organization individually, instead of trying to
run all of the tests at the same time using the Run All Tests button.

Testing Example

The following example includes cases for the following types of tests:

« Positive case with single and multiple records
« Negative case with single and multiple records

« Testing with other users

The test is used with a simple mileage tracking application. The existing code for the application verifies that not more than
500 miles are entered in a single day. The primary object is a custom object named Mileage__c. Here is the entire test class.
The following sections step through specific portions of the code.

@isTest
private class MileageTrackerTestSuite {

static testMethod void runPositiveTestCases () {

151

https://wiki.developerforce.com/index.php/Apex_Toolkit_for_Eclipse

Testing Apex Testing Example

Double totalMiles = 0;

final Double maxtotalMiles = 500;
final Double singletotalMiles = 300;
final Double u2Miles = 100;

//Set up user
User ul = [SELECT Id FROM User WHERE Alias='auser'];

//Run As Ul
System.RunAs (ul) {

System.debug ('Inserting 300 miles... (single record validation)');

Mileage c testMilesl = new Mileage c(Miles c¢ = 300, Date c¢ = System.today()):
insert testMilesl;

//Validate single insert
for (Mileage ¢ m:[SELECT miles ¢ FROM Mileage c
WHERE CreatedDate = TODAY
and CreatedById = :ul.id
and miles c¢ != null]) {
totalMiles += m.miles c;

}

System.assertEquals (singletotalMiles, totalMiles);

//Bulk validation
totalMiles = 0;
System.debug ('Inserting 200 mileage records... (bulk validation)');

List<Mileage c> testMiles2 = new List<Mileage c>();
for (integer i=0; i<200; i++) {

testMiles2.add(new Mileage c(Miles c¢ = 1, Date c = System.today()))
}

insert testMiles2;

for (Mileage ¢ m:[SELECT miles c¢ FROM Mileage c
WHERE CreatedDate = TODAY
and CreatedById = :ul.Id
and miles c¢ != null]) {
totalMiles += m.miles c;

}

System.assertEquals (maxtotalMiles, totalMiles);

}//end RunAs (ul)

//Validate additional user:

totalMiles = 0;

//Setup RunAs

User u2 = [SELECT Id FROM User WHERE Alias='tuser'];
System.RunAs (u2) {

Mileage c testMiles3 = new Mileage c(Miles c¢ = 100, Date c¢ = System.today());
insert testMiles3;

for(Mileage c¢ m:[SELECT miles c FROM Mileage c
WHERE CreatedDate = TODAY
and CreatedById = :u2.Id
and miles c¢ != null]) {

totalMiles += m.miles c;

}

152

Testing Apex Testing Example

//Validate
System.assertEquals (u2Miles, totalMiles);

} //System.RunAs (u2)

} // runPositiveTestCases ()
static testMethod void runNegativeTestCases () {

User u3 = [SELECT Id FROM User WHERE Alias='tuser'];
System.RunAs (u3) {

System.debug ('Inserting a record with 501 miles... (negative test case)');
Mileage c testMiles3 = new Mileage c(Miles c¢ = 501, Date c¢ = System.today())
try {
insert testMiles3;

} catch (DmlException e) {
//Assert Error Message

System.assert (e.getMessage () .contains('Insert failed. First exception on ' +
'row 0; first error: FIELD_CUSTOM_VALIDATION_EXCEPTION, '+
'Mileage request exceeds daily limit (500): [Miles c]'),
e.getMessage ());

//Assert field
System.assertEquals (Mileage c.Miles ¢, e.getDmlFields(0) [0]);

//Assert Status Code
System.assertEquals ('FIELD CUSTOM VALIDATION EXCEPTION' ,
e.getDmlStatusCode (0));
} //catch

} //RunAs (u3)
} // runNegativeTestCases ()

} // class MileageTrackerTestSuite

Positive Test Case

The following steps through the above code, in particular, the positive test case for single and multiple records.

1. Add text to the debug log, indicating the next step of the code:

System.debug ('Inserting 300 more miles...single record validation');

2. Create a Mileage__c object and insert it into the database.

Mileage c testMilesl = new Mileage c(Miles c¢ = 300, Date c = System.today());
insert testMilesl;

3. Validate the code by returning the inserted records:

for (Mileage ¢ m:[SELECT miles ¢ FROM Mileage c¢
WHERE CreatedDate = TODAY
and CreatedById = :createdbyId
and miles c¢ != nulll]l) {
totalMiles += m.miles c;

}

153

Testing Apex Testing Example

4. Use the system.assertEquals method to verify that the expected result is returned:

System.assertEquals (singletotalMiles, totalMiles);

5. Before moving to the next test, set the number of total miles back to 0:

totalMiles = 0;

6. Validate the code by creating a bulk insert of 200 records.

First, add text to the debug log, indicating the next step of the code:

System.debug ('Inserting 200 Mileage records...bulk validation');

7. Then insert 200 Mileage__c records:

List<Mileage c> testMiles2 = new List<Mileage c>();

for (Integer i1=0; i<200; 1i++) {

testMiles2.add(new Mileage c(Miles c¢ = 1, Date c = System.today()))
}

insert testMiles2;

8. Use system.assertEquals to verify that the expected result is returned:

for (Mileage ¢ m:[SELECT miles ¢ FROM Mileage c¢
WHERE CreatedDate = TODAY
and CreatedById = :CreatedbyId
and miles c¢ != nulll]) {
totalMiles += m.miles c;

}

System.assertEquals (maxtotalMiles, totalMiles);

Negative Test Case

The following steps through the above code, in particular, the negative test case.

1. Create a static test method called runNegativeTestCases:
static testMethod void runNegativeTestCases () {
2. Add text to the debug log, indicating the next step of the code:
System.debug ('Inserting 501 miles... negative test case');
3. Create a Mileage_c record with 501 miles.
Mileage c testMiles3 = new Mileage c(Miles c¢ = 501, Date c = System.today()):

4. Place the insert statement within a try/catch block. This allows you to catch the validation exception and assert the
generated error message.

try {
insert testMiles3;
} catch (DmlException e) {

154

Testing Apex Testing Example

5. Now use the System.assert and System.assertEquals to do the testing. Add the following code to the catch
block you previously created:

//Assert Error Message
System.assert (e.getMessage () .contains ('Insert failed. First exception '+
'on row 0; first error: FIELD CUSTOM VALIDATION EXCEPTION, '+
'Mileage request exceeds daily limit (500): [Miles c]l'),
e.getMessage ()) ;

//Assert Field
System.assertEquals (Mileage c.Miles ¢, e.getDmlFields(0) [0]);

//Assert Status Code
System.assertEquals ('FIELD CUSTOM VALIDATION EXCEPTION' ,

e.getDmlStatusCode (0)) ;
}

Testing as a Second User

The following steps through the above code, in particular, running as a second user.

1. Before moving to the next test, set the number of total miles back to 0:

totalMiles = 0;

2. Set up the next user.

User u2 = [SELECT Id FROM User WHERE Alias='tuser'];
System.RunAs (u2) {

3. Add text to the debug log, indicating the next step of the code:

System.debug ('Setting up testing - deleting any mileage records for ' +
UserInfo.getUserName () +
' from today'):;

4. Then insert one Mileage__c record:

Mileage c testMiles3 = new Mileage c(Miles c¢ = 100, Date c¢ = System.today());
insert testMiles3;

5. Validate the code by returning the inserted records:

for(Mileage c¢ m:[SELECT miles c FROM Mileage c
WHERE CreatedDate = TODAY
and CreatedById = :u2.Id
and miles c¢ != null]) {
totalMiles += m.miles c;

}
6. Use the system.assertEquals method to verify that the expected result is returned:

System.assertEquals (u2Miles, totalMiles);

155

Chapter 6

Dynamic Apex

In this chapter ...

Understanding Apex Describe

Information
Dynamic SOQL
Dynamic SOSL
Dynamic DML

Dynamic Apex enables developers to create more flexible applications by providing
them with the ability to:

Access sObject and field describe information

Describe information provides information about sObject and field properties.
For example, the describe information for an sObject includes whether that
type of sObject supports operations like create or undelete, the sObject's name
and label, the sObject's fields and child objects, and so on. The describe
information for a field includes whether the field has a default value, whether
it is a calculated field, the type of the field, and so on.

Note that describe information provides information about o&jects in an
organization, not individual records.

Write dynamic SOQL queries, dynamic SOSL queries and dynamic DML

Dynamic SOQL and SOSL queries provide the ability to execute SOQL or
SOSL as a string at runtime, while dynamic DML provides the ability to
create a record dynamically and then insert it into the database using DML.
Using dynamic SOQL, SOSL, and DML, an application can be tailored

precisely to the organization as well as the user's permissions.

156

Dynamic Apex Understanding Apex Describe Information

Understanding Apex Describe Information

Apex provides two data structures for sObject and field describe information:

« Token—a lightweight, serializable reference to an sObject or a field that is validated at compile time.

« Describe result—an object that contains all the describe properties for the sObject or field. Describe result objects are not
serializable, and are validated at runtime.

It is easy to move from a token to its describe result, and vice versa. Both sObject and field tokens have the method
getDescribe which returns the describe result for that token. On the describe result, the get SObjectType and
getSObjectField methods return the tokens for sObject and field, respectively.

Because tokens are lightweight, using them can make your code faster and more efficient. For example, use the token version
of an sObject or field when you are determining the type of an sObject or field that your code needs to use. The token can be
compared using the equality operator (==) to determine whether an sObject is the Invoice_Statement__c object, for example,
or whether a field is the Name field or a custom calculated field.

The following code provides a general example of how to use tokens and describe results to access information about sObject
and field properties:

// Create a new invoice statement as the generic type sObject
sObject s = new Invoice Statement c();

// Verify that the generic sObject is an Invoice Statement c sObject
System.assert (s.getsObjectType () == Invoice Statement c.sObjectType)

// Get the sObject describe result for the
// invoice statement object
Schema.DescribeSObjectResult r =

Invoice Statement c.sObjectType.getDescribe();

// Get the field describe result for the Status c
// field on the Invoice Statement c object
Schema.DescribeFieldResult f =

Schema.sObjectType.Invoice Statement c.fields.Status c;

// Verify that the field token is the token for the
// Status__c field on an Invoice Statement c object
System.assert (f.getSObjectField () == Invoice Statement c.Status c);

// Get the field describe result from the token
f = f.getSObjectField () .getDescribe () ;

The following algorithm shows how you can work with describe information in Apex:

Generate a list or map of tokens for the sObjects in your organization (see Accessing All sObjects on page 160.)

Determine the sObject you need to access.
Generate the describe result for the sObject.
. If necessary, generate a map of field tokens for the sObject (see Accessing All Field Describe Results for an sObject on

AW DN =

page 161.)
5. Generate the describe result for the field the code needs to access.

157

Dynamic Apex Understanding Apex Describe Information

Understanding Describe Information Permissions

Apex generally runs in system mode. All classes and triggers that are native to your organization have no restrictions on the
sObjects that they can look up dynamically. This means that with native code, you can generate a map of all the sObjects for
your organization, regardless of the current user's permission.

Using sObject Tokens

SObjects, such as MyCustomObject__c, act as static classes with special static methods and member variables for accessing
token and describe result information. You must explicitly reference an sObject and field name at compile time to gain access
to the describe result.

To access the token for an sObject, use one of the following methods:

« Access the sObjectType member variable on an sObject type, such as Invoice_Statement__c.

« Call the getSObjectType method on an sObject describe result, an sObject variable, a list, or a map.
Schema.SObjectType is the data type for an sObject token.

In the following example, the token for the Invoice_Statement__c sObject is returned:
Schema.sObjectType t = Invoice Statement c.sObjectType;
The following also returns a token for the Invoice_Statement__c sObject:

Invoice Statement

c new Invoice Statement c();
Schema.sObjectType T

A =
= A.getSObjectType () ;

This example can be used to determine whether an sObject or a list of sObjects is of a particular type:

public class sObjectTest {

{

// Create a generic sObject variable s

SObject s = Database.query('SELECT Id FROM Invoice Statement c¢ LIMIT 1');

// Verify if that sObject variable is an Invoice Statement c token
System.assertEquals (s.getSObjectType (), Invoice Statement c.sObjectType) ;

// Create a list of generic sObjects
List<sObject> 1 = new Invoice Statement c[]{};

// Verify if the list of sObjects contains Invoice Statement c¢ tokens
System.assertEquals (l.getSObjectType (), Invoice Statement c.sObjectType);

}
}

Using sObject Describe Results
To access the describe result for an sObject, call the getDescribe method on an sObject token
Schema.DescribeSObjectResult is the data type for an sObject describe result.

The following example uses the getDescribe method on an sObject token:
Schema.DescribeSObjectResult D = Invoice Statement c.sObjectType.getDescribe();

For more information about the methods available with the sObject describe result, see sObject Describe Result Methods on
page 296.

158

Dynamic Apex Understanding Apex Describe Information

Using Field Tokens

To access the token for a field, use one of the following methods:

« Access the static member variable name of an sObject static type, for example, Invoice Statement c.Name.
. Call the getSObjectField method on a field describe result.

The field token uses the data type Schema . SObjectField.

In the following example, the field token is returned for the Invoice_Statement__c object's Status__ c field:
Schema.SObjectField F = Invoice Statement c.Status c;
In the following example, the field token is returned from the field describe result:

// Get the describe result for the status field on the
// Invoice Statement c object
Schema.DescribeFieldResult f =
Schema.sObjectType.Invoice Statement c.fields.Status c;

// Verify that the field token is the token for
// the status field on an Invoice Statement c object

System.assert (f.getSObjectField () == Invoicastatement_c.Status_c);
// Get the describe result from the token
f = f.getSObjectField () .getDescribe () ;

Using Field Describe Results

To access the describe result for a field, use one of the following methods:

« Call the getDescribe method on a field token.
« Access the fields member variable of an sObject token with a field member variable (such as Name, BillingCity, and
so on.)

The field describe result uses the data type Schema.DescribeFieldResult.

The following example uses the getDescribe method:
Schema.DescribeFieldResult F = Invoice Statement c.Status c.getDescribe();
This example uses the fields member variable method:

Schema.DescribeFieldResult F =
Schema.SObjectType.Invoice Statement c.fields.Status_ c;

In the example above, the system uses special parsing to validate that the final member variable (Status__c) is valid for the
specified sObject at compile time. When the parser finds the £ields member variable, it looks backwards to find the name
of the sObject (Invoice Statement c) and validates that the field name following the fields member variable is
legitimate. The fields member variable only works when used in this manner.

You can only have 100 fields member variable statements in an Apex class or trigger.

#® Note: You should not use the fields member variable without also using either a field member variable name or
the getMap method. For more information on getMap, see Accessing All Field Describe Results for an sObject on
=" page 161.

For more information about the methods available with a field describe result, see Describe Field Result Methods on page
298.

159

Dynamic Apex Understanding Apex Describe Information

Accessing All sObjects

Use the Schema getGlobalDescribe method to return a map that represents the relationship between all sObject names
(keys) to sObject tokens (values). For example:

Map<String, Schema.SObjectType> gd = Schema.getGlobalDescribe () ;

The map has the following characteristics:

« Itis dynamic, thatis, it is generated at runtime on the sObjects currently available for the organization, based on permissions.
« The sObject names are case insensitive.
« The keys use namespaces as required.

« The keys reflect whether the sObject is a custom object.

For example, if the code block that generates the map is in namespace N1, and an sObject is also in N1, the key in the map
is represented as MyObject _c. However, if the code block is in namespace N1, and the sObject is in namespace N2, the
keyis N2 MyObject c.

In addition, standard sObjects have no namespace prefix.

Creating sObjects Dynamically

You can create sObjects whose types are determined at run time by calling the newSObject method of the

Schema . sObjectType sObject token class. The following example shows how to get an sObject token that corresponds to
an sObject type name using the Schema . getGlobalDescribe method. Then, an instance of the sObject is created through
the newsObject method of Schema . sObjectType. This example also contains a test method that verifies the dynamic
creation of an invoice statement.

public class DynamicSObjectCreation {
public static sObject createObject (String typeName) {
Schema.SObjectType targetType = Schema.getGlobalDescribe () .get (typeName) ;
if (targetType == null) {
// throw an exception

}

// Instantiate an sObject with the type passed in as an argument
// at run time.
return targetType.newSObject () ;

}

static testmethod void testObjectCreation () {
String typeName = 'Invoice Statement c';

// Create a new sObject by passing the sObject type as an argument.
Invoice Statement c¢ inv = (Invoice Statement c)createObject (typeName) ;
// Verify that the sObject type name of the object created ends

// with the requested type since it can contain a namespace prefix.
System.assert (String.valueOf (inv.getSobjectType ()) .endsWith (typeName)) ;

// Set fields for the sObject.
inv.Description ¢ = 'Invoice 1';

insert inv;

// Verify the new sObject got inserted.

Invoice Statement c[] invList = [SELECT Description c¢ from Invoice Statement c
WHERE Id = :inv.Id];
system.assert (invList.size () == 1);

160

Dynamic Apex Dynamic SOQL

Accessing All Field Describe Results for an sObject

Use the field describe result's getMap method to return a map that represents the relationship between all the field names
(keys) and the field tokens (values) for an sObject.

The following example generates a map that can be used to access a field by name:

Map<String, Schema.SObjectField> M =
Schema.SObjectType.Invoice Statement c.fields.getMap();

g Note: The value type of this map is not a field describe result. Using the describe results would take too many system
resources. Instead, it is a map of tokens that you can use to find the appropriate field. After you determine the field,
generate the describe result for it.

The map has the following characteristics:

« Itis dynamic, that is, it is generated at runtime on the fields for that sObject.
« All field names are case insensitive.

« The keys use namespaces as required.

+ The keys reflect whether the field is a custom object.

For example, if the code block that generates the map is in namespace N1, and a field is also in N1, the key in the map is
represented as MyField c. However, if the code block is in namespace N1, and the field is in namespace N2, the key is
N2 MyField c.

In addition, standard fields have no namespace prefix.

Dynamic SOQL

Dynamic SOQL refers to the creation of a SOQL string at runtime with Apex code. Dynamic SOQL enables you to create
more flexible applications. For example, you can create a search based on input from an end user, or update records with varying
field names.

To create a dynamic SOQL query at runtime, use the database query method, in one of the following ways:

« Return a single sObject when the query returns a single record:
sObject S = Database.query(string limit 1);
+ Return a list of sObjects when the query returns more than a single record:

List<sObject> L = Database.query(string);

The database query method can be used wherever an inline SOQL query can be used, such as in regular assignment statements
and for loops. The results are processed in much the same way as static SOQL queries are processed.

Dynamic SOQL results can be specified as concrete sObjects, such as MyCustomObject__c, or as the generic sObject data
type. At runtime, the system validates that the type of the query matches the declared type of the variable. If the query does
not return the correct sObject type, a runtime error is thrown. This means you do not need to cast from a generic sObject to
a concrete sObject.

161

Dynamic Apex Dynamic SOSL

Dynamic SOQL queries have the same governor limits as static queries. For more information on governor limits, see
Understanding Execution Governors and Limits on page 203.

For a full description of SOQL query syntax, see Salesforce Object Query Language (SOQL) in the Database.com SOQL and
SOSL Reference.

SOQL Injection

SOQL injection is a technique by which a user causes your application to execute database methods you did not intend by
passing SOQL statements into your code. This can occur in Apex code whenever your application relies on end user input to
construct a dynamic SOQL statement and you do not handle the input properly.

To prevent SOQL injection, use the escapeSingleQuotes method. This method adds the escape character (\) to all single
quotation marks in a string that is passed in from a user. The method ensures that all single quotation marks are treated as
enclosing strings, instead of database commands.

Dynamic SOSL

Dynamic SOSL refers to the creation of a SOSL string at runtime with Apex code. Dynamic SOSL enables you to create more
flexible applications. For example, you can create a search based on input from an end user, or update records with varying
field names.

To create a dynamic SOSL query at runtime, use the search query method. For example:
List<List <sObject>> myQuery = search.query(SOSL search string);
The following example exercises a simple SOSL query string.

String searchquery='FIND\'Edge*\'IN ALL FIELDS RETURNING
Merchandise c(id,name),Invoice Statement c';
List<List<SObject>>searchlList=search.query (searchquery);

Dynamic SOSL statements evaluate to a list of lists of sObjects, where each list contains the search results for a particular
sObject type. The result lists are always returned in the same order as they were specified in the dynamic SOSL query. From
the example above, the results from Merchandise__c are first, then Invoice_Statement__c.

The search query method can be used wherever an inline SOSL query can be used, such as in regular assignment statements
and for loops. The results are processed in much the same way as static SOSL queries are processed.

SOSL queries are only supported in Apex classes and anonymous blocks. You cannot use a SOSL query in a trigger.

Dynamic SOSL queries have the same governor limits as static queries. For more information on governor limits, see
Understanding Execution Governors and Limits on page 203.

For a full description of SOSL query syntax, see Salesforce Object Search Language (SOSL) in the Database.com SOQL and
SOSL Reference.

SOSL Injection

SOSL injection is a technique by which a user causes your application to execute database methods you did not intend by passing
SOSL statements into your code. This can occur in Apex code whenever your application relies on end user input to construct
a dynamic SOSL statement and you do not handle the input properly.

162

http://www.salesforce.com/us/developer/docs/dbcom_soql_sosl/index_CSH.htm#sforce_api_calls_soql.htm
http://www.salesforce.com/us/developer/docs/dbcom_soql_sosl/index_CSH.htm#sforce_api_calls_sosl.htm

Dynamic Apex Dynamic DML

To prevent SOSL injection, use the escapeSingleQuotes method. This method adds the escape character (V) to all single
quotation marks in a string that is passed in from a user. The method ensures that all single quotation marks are treated as
enclosing strings, instead of database commands.

Dynamic DML

In addition to querying describe information and building SOQL queries at runtime, you can also create sObjects dynamically,
and insert them into the database using DML.

To create a new sObject of a given type, use the newSObject method on an sObject token. Note that the token must be cast
into a concrete sObject type (such as Invoice_Statement__c). For example:

// Get a new invoice statement

Invoice Statement ¢ A = new Invoice Statement c();

// Get the token for the invoice statement

Schema.sObjectType tokenA = A.getSObjectType () ;

// The following produces an error because the token

// is a generic sObject, not an Invoice Statement c

// Invoice Statement c B = tokenA.newSObject();

// The following works because the token is cast back

// into an Invoice Statement c

Invoice Statement c B = (Invoice Statement c)tokenA.newSObject ()

Though the sObject token tokenA is a token of Invoice_Statement__c, it is considered an sObject because it is accessed
separately. It must be cast back into the concrete sObject type Invoice_Statement__c to use the newSObject method. For
more information on casting, see Classes and Casting on page 130.

This is another example that shows how to obtain the sObject token through the Schema .getGlobalDescribe method
and then creates a new sObject using the newSObject method on the token. This example also contains a test method that
verifies the dynamic creation of an invoice statement.

public class DynamicSObjectCreation {
public static sObject createObject (String typeName) {
Schema.SObjectType targetType = Schema.getGlobalDescribe () .get (typeName) ;
if (targetType == null) {
// throw an exception

}

// Instantiate an sObject with the type passed in as an argument
// at run time.
return targetType.newSObject () ;

}

static testmethod void testObjectCreation () {
String typeName = 'Invoice Statement c';

// Create a new sObject by passing the sObject type as an argument.
Invoice Statement c¢ inv = (Invoice Statement c)createObject (typeName) ;
// Verify that the sObject type name of the object created ends

// with the requested type since it can contain a namespace prefix.
System.assert (String.valueOf (inv.getSobjectType ()) .endsWith (typeName)) ;

// Set fields for the sObject.
inv.Description ¢ = 'Invoice 1';

insert inv;

// Verify the new sObject got inserted.
Invoice Statement c[] invList = [SELECT Description c¢ from Invoice Statement c

163

Dynamic Apex Dynamic DML

WHERE Id = :inv.Id];
system.assert (invList.size() == 1);

You can also specify an ID with newSObject to create an sObject that references an existing record that you can update later.
For example:

SObject s = Database.query (
'SELECT Id FROM Invoice Statement c¢ LIMIT 1')[O].
getSObjectType () .newSObject ([SELECT Id
FROM Invoice Statement ¢ LIMIT 1][0].Id);

See Schema.sObjectType on page 304.

Setting and Retrieving Field Values

Use the get and put methods on an object to set or retrieve values for fields using either the API name of the field expressed
as a String, or the field's token. In the following example, the API name of the field Status__ c is used:

SObject s = [SELECT Status c
Object o = s.get('Status «c');
s.put ('Status c', 'abc');

FROM Invoice Statement c¢ LIMIT 1];

The following example uses the Status__ c field's token instead:

Schema.DescribeFieldResult f = Schema.sObjectType.Invoice Statement c.fields.Status c;
Sobject s = Database.query('SELECT Status c FROM Invoice Statement c¢ LIMIT 1');
s.put (f.getsObjectField (), '12345"');

The Object scalar data type can be used as a generic data type to set or retrieve field values on an sObject. This is equivalent
to the anyT'ype field type. Note that the Object data type is different from the sObject data type, which can be used as a generic
type for any sObject.

wm Note: Apex classes and triggers saved (compiled) using API version 15.0 and higher produce a runtime error if you
assign a String value that is too long for the field.

Setting and Retrieving Foreign Keys

Apex supports populating foreign keys by name (or external ID) in the same way as the API. To set or retrieve the scalar ID
value of a foreign key, use the get or put methods.

To set or retrieve the record associated with a foreign key, use the getSObject and putSObject methods. Note that these
methods must be used with the sObject data type, not Object. For example:

SObject ¢ =
Database.query ('SELECT Id, Value c, Merchandise r.Name FROM Line Item c¢ LIMIT 1');
SObject a = c.getSObject ('Merchandise r');

There is no need to specify the external ID for a parent sObject value while working with child sObjects. If you provide an

ID in the parent sObject, it is ignored by the DML operation. Apex assumes the foreign key is populated through a relationship
SOQL query, which always returns a parent object with a populated ID. If you have an ID, use it with the child object.

164

http://www.salesforce.com/us/developer/docs/dbcom_objects/index_CSH.htm#field_types.htm

Dynamic Apex Dynamic DML

For example, suppose that custom object C1 has a foreign key c2 ¢ that links to a child custom object C2. You want to
create a C1 object and have it associated with a C2 record named 'xxx' (assigned to the value c2__ r). You do not need the
ID of the 'xxx' record, as it is populated through the relationship of parent to child. For example:

insert new Cl c(name = 'x', c2 r = new C2_ c(name = 'xxx'));

If you had assigned a value to the ID for c2__r, it would be ignored. If you do have the ID, assign it to the object (c2__ ¢),
not the record.

You can also access foreign keys using dynamic Apex. The following example shows how to get the values from a subquery in
a parent-to-child relationship using dynamic Apex:

String queryString = 'SELECT Id, Description ¢, ' +
' (SELECT Value c FROM Line Items r LIMIT 1) ' +
'FROM Invoice Statement c';

SObject[] queryParentObject = Database.query(queryString) ;

for (SObject parentRecord : queryParentObject) {

Object ParentFieldValue = parentRecord.get ('Description c');

// Prevent a null relationship from being accessed

SObject[] childRecordsFromParent =

parentRecord.getSObjects ('Line Items r');
if (childRecordsFromParent != null) {
for (SObject childRecord : childRecordsFromParent) {

Object ChildFieldValuel = childRecord.get ('Value c');
System.debug ('Invoice Description: ' + ParentFieldValue +
'. Line Item Value: '+ ChildFieldvValuel);

165

Chapter 7

Batch Apex

In this chapter ...

Using Batch Apex

Understanding Apex Managed
Sharing

A developer can now employ batch Apex to build complex, long-running processes
on Database.com. For example, a developer could build an archiving solution
that runs on a nightly basis, looking for records past a certain date and adding
them to an archive. Or a developer could build a data cleansing operation that
goes through all the dataon a nightly basis and updates them if necessary, based
on custom criteria.

Batch Apex is exposed as an interface that must be implemented by the developer.
Batch jobs can be programmatically invoked at runtime using Apex.

You can only have five queued or active batch jobs at one time. You can evaluate
your current count by viewing the Scheduled Jobs page in Database.com or
programmatically using SOAP API to query the AsyncapexJob object.

Caution: Use extreme care if you are planning to invoke a batch job
from a trigger. You must be able to guarantee that the trigger will not
add more batch jobs than the five that are allowed. In particular, consider
API bulk updates, import wizards, mass record changes through the user
interface, and all cases where more than one record can be updated at a
time.

Batch jobs can also be programmatically scheduled to run at specific times using
the Apex scheduler, or scheduled using the Schedule Apex page in the
Database.com user interface. For more information on the Schedule Apex page,
see “Scheduling Apex” in the Database.com online help.

The batch Apex interface is also used for Apex managed sharing recalculations.
For more information on batch jobs, continue to Using Batch Apex on page 167.

For more information on Apex managed sharing, see Understanding Apex

Managed Sharing on page 175.

166

Batch Apex Using Batch Apex

Using Batch Apex

To use batch Apex, you must write an Apex class that implements the Database.com-provided interface Database.Batchable,
and then invoke the class programmatically.

To monitor or stop the execution of the batch Apex job, click Monitoring > ApexJobs. For more information, see Monitoring
the Apex Job Queue in the Database.com online help.

Implementing the Database .Batchable Interface
The Database.Batchable interface contains three methods that must be implemented:

. start method

global (Database.QueryLocator | Iterable<sObject>) start (Database.BatchableContext bc)
{}

The start method is called at the beginning of a batch Apex job. Use the start method to collect the records or objects
to be passed to the interface method execute. This method returns either a Database.QueryLocator object or an
iterable that contains the records or objects being passed into the job.

Use the Database.QueryLocator object when you are using a simple query (SELECT) to generate the scope of objects
used in the batch job. If you use a querylocator object, the governor limit for the total number of records retrieved by SOQL
queries is bypassed. For example, a batch Apex job for the Merchandise__c object can return a QueryLocator for all
merchandise records (up to 50 million records) in an organization. Another example is a sharing recalculation for the
Invoice_Statement__c object that returns a QueryLocator for all invoice statement records in an organization.

Use the iterable when you need to create a complex scope for the batch job. You can also use the iterable to create your
own custom process for iterating through the list.

Important: If you use an iterable, the governor limit for the total number of records retrieved by SOQL queries
is still enforced.

. execute method:
global void execute (Database.BatchableContext BC, 1list<P>) {}

The execute method is called for each batch of records passed to the method. Use this method to do all required processing
for each chunk of data.
This method takes the following:

0 A reference to the Database.BatchableContext object.

0 Alist of sObjects, such as List<sObject>, or a list of parameterized types. If you are using a
Database.QueryLocator, the returned list should be used.

Batches of records are not guaranteed to execute in the order they are received from the start method.

« finish method
global void finish (Database.BatchableContext BC) {}

The £inish method is called after all batches are processed. Use this method to send confirmation emails or execute
post-processing operations.

167

Batch Apex Using Batch Apex

Each execution of a batch Apex job is considered a discrete transaction. For example, a batch Apex job that contains 1,000
records and is executed without the optional scope parameter from Database . executeBatch is considered five transactions
of 200 records each. The Apex governor limits are reset for each transaction. If the first transaction succeeds but the second
fails, the database updates made in the first transaction are not rolled back.

Using Database.BatchableContext

All of the methods in the Database.Batchable interface require a reference to a Database . BatchableContext object.
Use this object to track the progress of the batch job.

The following is the instance method with the Database.BatchableContext object:

getJobID ID Returns the ID of the AsyncApexJob object associated
with this batch job as a string. Use this method to track
the progress of records in the batch job. You can also
use this ID with the System.abortJob method.

The following example uses the Database.BatchableContext to query the AsyncApexJob associated with the batch
job.

global void finish (Database.BatchableContext BC) {

// Get the ID of the AsyncApexJob representing this batch job

// from Database.BatchableContext.

// Query the AsyncApexJob object to retrieve the current job's information.

AsyncApexJob a = [SELECT Id, Status, NumberOfErrors, JobItemsProcessed,
TotalJobItems
FROM AsyncApexJob WHERE Id =
:BC.getJobId()];

Integer i = a.TotalJobItems;

Integer j = a.NumberOfErrors;

Using Database.QueryLocator to Define Scope

The start method can return either a Database.QueryLocator object that contains the records to be used in the batch
job or an iterable.

The following example uses a Database.QueryLocator:

global class SearchAndReplace implements Database.Batchable<sObject>({

global final String Query;
global final String Entity;
global final String Field;
global final String Value;

global SearchAndReplace (String g, String e, String f, String v) {

Query=q; Entity=e; Field=f;Value=v;
}

global Database.QueryLocator start (Database.BatchableContext BC) {
return Database.getQueryLocator (query) ;

}
global void execute (Database.BatchableContext BC, List<sObject> scope) {

for (sobject s : scope) {
s.put (Field,Value) ;

168

http://www.salesforce.com/us/developer/docs/dbcom_objects/index_CSH.htm#sforce_api_objects_asyncapexjob.htm

Batch Apex Using Batch Apex

}

update scope;

}

global void finish (Database.BatchableContext BC) {
}

Using an Iterable in Batch Apex to Define Scope

The start method can return either a Database.QueryLocator object that contains the records to be used in the batch
job, or an iterable. Use an iterable to step through the returned items more easily.

global class batchClass implements Database.batchable({
global Iterable start (Database.BatchableContext info) {
return new CustomInvoiceIterable ()
}
global void execute (Database.BatchableContext info,
List<Invoice Statement c> scope) {
List<Invoice Statement c> invsToUpdate =
new List<Invoice Statement c>();
for (Invoice Statement c¢ i : scope) {
i.Name = 'true';
i.NumberOfEmployees = 70;
invsToUpdate.add (1) ;

}
update invsToUpdate;

}
global void finish (Database.BatchableContext info) {

}

Using the Database.executeBatch Method
You can use the Database . executeBatch method to programmatically begin a batch job.

Important: When you call Database. executeBatch, Database.com only adds the process to the queue at the
scheduled time. Actual execution may be delayed based on service availability.

The Database.executeBatch method takes two parameters:

« The class that implements Database .Batchable.

« The Database.executeBatch method takes an optional parameter scope. This parameter specifies the number of
records that should be passed into the execute method. Use this parameter when you have many operations for each
record being passed in and are running into governor limits. By limiting the number of records, you are thereby limiting
the operations per transaction. This value must be greater than zero. If the start method returns a QueryLocator, the
optional scope parameter of Database.executeBatch can have a maximum value of 2,000. If set to a higher value,
Database.com chunks the records returned by the QueryLocator into smaller batches of up to 2,000 records. If the start
method returns an iterable, the scope parameter value has no upper limit; however, if you use a very high number, you may
run into other limits.

The Database.executeBatch method returns the ID of the AsyncApexJob object, which can then be used to track the
progress of the job. For example:

ID batchprocessid = Database.executeBatch (reassign);
AsyncApexJob aaj = [SELECT Id, Status, JobItemsProcessed, TotalJobItems, NumberOfErrors

FROM AsyncApexJob WHERE ID =: batchprocessid];

169

Batch Apex Using Batch Apex

For more information about the AsyncApexJob object, see AsyncApexJob in the Object Reference for Database.com.

You can also use this ID with the System.abortJob method.

Batch Apex Examples

The following example uses a Database.QueryLocator:

global class UpdatelInvoiceFields implements Database.Batchable<sObject>{
global final String Query;
global final String Entity;
global final String Field;
global final String Value;

global UpdateInvoiceFields (String g, String e, String f, String v) {
Query=q; Entity=e; Field=f;Value=v;
}

global Database.QueryLocator start (Database.BatchableContext BC) {
return Database.getQuerylLocator (query) ;

}

global void execute (Database.BatchableContext BC,
List<sObject> scope) {
for (Sobject s : scope) {s.put(Field,Value);
} update scope;

}
global void finish (Database.BatchableContext BC) {

}

The following code can be used to call the above class:
Id batchInstancelId = Database.executeBatch (new UpdatelInvoiceFields(qgq,e,f,v), 5);
The following class uses batch Apex to reassign all invoices owned by a specific user to a different user.

global class OwnerReassignment implements Database.Batchable<sObject>{
String query;

String email;

Id toUserId;

Id fromUserId;

global Database.querylocator start (Database.BatchableContext BC) {
return Database.getQueryLocator (query);}

global void execute (Database.BatchableContext BC, List<sObject> scope) {
List<Invoice Statement c> invs = new List<Invoice Statement c>();

for (sObject s : scope) {
Invoice Statement c¢ a = (Invoice Statement c)s;
if (a.OwnerId==fromUserId) {

a.0OwnerId=toUserId;
invs.add(a) ;

}

update invs;

}

170

http://www.salesforce.com/us/developer/docs/dbcom_objects/index_CSH.htm#sforce_api_objects_asyncapexjob.htm

Batch Apex Using Batch Apex

global void finish (Database.BatchableContext BC) {

}
}

Use the following to execute the OwnerReassignment class in the previous example:

OwnerReassignment reassign = new OwnerReassignment () ;
reassign.query = 'SELECT Id, Name, Ownerid ' +
'FROM Invoice Statement c ' +
'"WHERE ownerid=\'"' + u.id + '"\'"';
reassign.email="'admin@acme.com';
reassign.fromUserId = u;
reassign.toUserId = u2;
ID batchprocessid = Database.executeBatch (reassign) ;

The following is an example of a batch Apex class for deleting records.

global class BatchDelete implements Database.Batchable<sObject> {
public String query;

global Database.QueryLocator start (Database.BatchableContext BC) {
return Database.getQuerylLocator (query) ;

}

global void execute (Database.BatchableContext BC, List<sObject> scope) {
delete scope;
DataBase.emptyRecycleBin (scope) ;

}

global void finish (Database.BatchableContext BC) {
}

This code calls the BatchDelete batch Apex class to delete old invoice statement records. The specified query selects invoice
statements that are older than a specified date. Next, the sample invokes the batch job.

BatchDelete BDel = new BatchDelete():;

Datetime d = Datetime.now () ;

d = d.addDays (-1) ;

// Query for selecting the invoices to delete

BDel.query = 'SELECT Id FROM Invoice Statement c ' +
'WHERE CreatedDate < '+d.format ('yyyy-MM-dd')+'T'+
d.format ("HH:mm')+':00.000Z2"';

// Invoke the batch job.

ID batchprocessid = Database.executeBatch (BDel) ;

System.debug ('Returned batch process ID: ' + batchProcessId);

Using Callouts in Batch Apex

To use a callout in batch Apex, you must specify Database.AllowsCallouts in the class definition. For example:

global class SearchAndReplace implements Database.Batchable<sObject>,
Database.AllowsCallouts{
}

Callouts include HTTP requests as well as methods defined with the webService keyword.

171

Batch Apex Using Batch Apex

Using State in Batch Apex

Each execution of a batch Apex job is considered a discrete transaction. For example, a batch Apex job that contains 1,000
records and is executed without the optional scope parameter is considered five transactions of 200 records each.

If you specify Database.Stateful in the class definition, you can maintain state across these transactions. When using
Database.Stateful, only instance member variables retain their values between transactions. Static member variables don’t
and are reset between transactions. Maintaining state is useful for counting or summarizing records as they're processed. For
example, suppose your job processed invoice statement records. You could define a method in execute to aggregate totals
of the invoice amounts as they were processed.

If you don't specify Database.Stateful, all static and instance member variables are set back to their original values.

The following example summarizes the Invoice Value c invoice statement field as the records are processed:

global class SummarizeInvoiceTotal implements
Database.Batchable<sObject>, Database.Stateful{

global final String Query;
global integer Summary;

global SummarizeInvoiceTotal (String q) {
Query=q;
Summary = 0;

}

global Database.QuerylLocator start (Database.BatchableContext BC) {
return Database.getQuerylLocator (query) ;

}

global void execute (
Database.BatchableContext BC,
List<sObject> scope) {
for (sObject s : scope) {
Summary = Integer.valueOf (s.get('Invoice Value c'))+Summary;
}
}

global void finish (Database.BatchableContext BC) {
}
}

In addition, you can specify a variable to access the initial state of the class. You can use this variable to share the initial state
with all instances of the Database.Batchable methods. For example:

// Implement the interface using a list
// of Invoice statement sObjects.
// Note that the initialState variable is declared as final

global class MyBatchable implements Database.Batchable<sObject> {
private final String initialState;
String query;
global MyBatchable (String intialState) {
this.initialState = initialState;

}

global Database.QuerylLocator start (Database.BatchableContext BC) {
// Access initialState here

return Database.getQuerylocator (query) ;

}

global void execute (Database.BatchableContext BC,

172

Batch Apex Using Batch Apex

List<sObject> batch) {
// Access initialState here

}

global void finish (Database.BatchableContext BC) {
// Access initialState here

Note that initialState is the initial state of the class. You cannot use it to pass information between instances of the class
during execution of the batch job. For example, if you changed the value of initialState in execute, the second chunk
of processed records would not be able to access the new value: only the initial value would be accessible.

Testing Batch Apex

When testing your batch Apex, you can test only one execution of the execute method. You can use the scope parameter
of the executeBatch method to limit the number of records passed into the execute method to ensure that you aren't
running into governor limits.

The executeBatch method starts an asynchronous process. This means that when you test batch Apex, you must make
certain that the batch job is finished before testing against the results. Use the Test methods startTest and stopTest
around the executeBatch method to ensure it finishes before continuing your test. All asynchronous calls made after the
startTest method are collected by the system. When stopTest is executed, all asynchronous processes are run synchronously.
If you don’t include the executeBatch method within the startTest and stopTest methods, the batch job executes at
the end of your test method for Apex saved using Salesforce.com API version 25.0 and later, but not in earlier versions.

Starting with Apex saved using Salesforce.com API version 22.0, exceptions that occur during the execution of a batch Apex
job that is invoked by a test method are now passed to the calling test method, and as a result, causes the test method to fail.
If you want to handle exceptions in the test method, enclose the code in try and catch statements. You must place the
catch block after the stopTest method. Note however that with Apex saved using Salesforce.com API version 21.0 and
earlier, such exceptions don't get passed to the test method and don't cause test methods to fail.

w# Note: Asynchronous calls, such as @future or executeBatch, called in a startTest, stopTest block, do not
count against your limits for the number of queued jobs.

[

The example below tests the OwnerReassignment class.

public static testMethod void testBatch () {
user u = [SELECT ID, UserName FROM User
WHERE username='testuserl@acme.com'];

user u2 = [SELECT ID, UserName FROM User
WHERE username='testuser2@acme.com'];
// Create 200 test accounts - this simulates one execute.

// Important - the Apex test framework only allows you to
// test one execute.

List <Invoice Statement c> invs =
new List<Invoice Statement c¢>();
for (Integer i = 0; i<200; i++) {
Invoice Statement c a =
new Invoice Statement c(
Description c¢ ='Invoice '+'i',
Ownerid = u.ID);
invs.add (a) ;

}

insert invs;

173

Batch Apex Using Batch Apex

Test.StartTest () ;
OwnerReassignment reassign = new OwnerReassignment () ;
reassign.query='SELECT Id, Name, Ownerid ' +

'FROM Invoice Statement c ' +

'WHERE OwnerId=\'"' + u.Id + '\'' +

' LIMIT 200°';
reassign.email="admin@acme.com';
reassign.fromUserId = u.Id;
reassign.toUserId = u2.Id;
ID batchprocessid = Database.executeBatch (reassign);
Test.StopTest () ;

System.AssertEquals (
database.countquery ('SELECT COUNT () '
+' FROM Invoice Statement ¢ WHERE OwnerId=\'' + u2.Id + '\''"),
200) ;

Batch Apex Governor Limits

Keep in mind the following governor limits for batch Apex:

+ Up to five queued or active batch jobs are allowed for Apex.

« A user can have up to 50 query cursors open at a time. For example, if 50 cursors are open and a client application still
logged in as the same user attempts to open a new one, the oldest of the 50 cursors is released. Note that this limit is
different for the batch Apex start method, which can have up to five query cursors open at a time per user. The other
batch Apex methods have the higher limit of 50 cursors.

Cursor limits for different Database.com features are tracked separately. For example, you can have 50 Apex query cursors
and 50 batch cursors open at the same time.

« A maximum of 50 million records can be returned in the Database.QueryLocator object. If more than 50 million
records are returned, the batch job is immediately terminated and marked as Failed.

« Ifthe start method returns a QueryLocator, the optional scope parameter of Database.executeBatch can have a
maximum value of 2,000. If set to a higher value, Database.com chunks the records returned by the QueryLocator into
smaller batches of up to 2,000 records. If the start method returns an iterable, the scope parameter value has no upper
limit; however, if you use a very high number, you may run into other limits.

« Ifno size is specified with the optional scope parameter of Database . executeBatch, Database.com chunks the records
returned by the start method into batches of 200, and then passes each batch to the execute method. Apex governor
limits are reset for each execution of execute.

« The start, execute, and £inish methods can implement up to 10 callouts each.

+ Batch executions are limited to 10 callouts per method execution.

+ The maximum number of batch executions is 250,000 per 24 hours.

« Only one batch Apex job's start method can run at a time in an organization. Batch jobs that haven’t started yet remain
in the queue until they're started. Note that this limit doesn’t cause any batch job to fail and execute methods of batch
Apex jobs still run in parallel if more than one job is running.

Batch Apex Best Practices

« Use extreme care if you are planning to invoke a batch job from a trigger. You must be able to guarantee that the trigger
will not add more batch jobs than the five that are allowed. In particular, consider API bulk updates, import wizards, mass
record changes through the user interface, and all cases where more than one record can be updated at a time.

« When you call Database.executeBatch, Database.com only places the job in the queue at the scheduled time. Actual
execution may be delayed based on service availability.

174

Batch Apex Understanding Apex Managed Sharing

« When testing your batch Apex, you can test only one execution of the execute method. You can use the scope parameter
of the executeBatch method to limit the number of records passed into the execute method to ensure that you aren't
running into governor limits.

+ The executeBatch method starts an asynchronous process. This means that when you test batch Apex, you must make
certain that the batch job is finished before testing against the results. Use the Test methods startTest and stopTest
around the executeBatch method to ensure it finishes before continuing your test.

+ Use Database.Stateful with the class definition if you want to share instance member variables or data across job
transactions. Otherwise, all member variables are reset to their initial state at the start of each transaction.

+ Methods declared as future aren't allowed in classes that implement the Database.Batchable interface.

« Methods declared as future can't be called from a batch Apex class.

+ You cannot call the Database.executeBatch method from within any batch Apex method.

+ In the event of a catastrophic failure such as a service outage, any operations in progress are marked as Failed. You should
run the batch job again to correct any errors.

« When abatch Apex job is run, email notifications are sent either to the user who submitted the batch job, the email is sent
to the recipient listed in the Apex Exception Notification Recipient field.

« Each method execution uses the standard governor limits anonymous block or WSDL method.

« Each batch Apex invocation creates an AsyncaApexJob record. Use the ID of this record to construct a SOQL query to
retrieve the job’s status, number of errors, progress, and submitter. For more information about the AsyncaApexJob object,
see AsyncApexJob in the Object Reference for Database.com.

« Foreach 10,000 AsyncApexJob records, Apex creates one additional AsyncApexJob record of type BatchApexWorker
for internal use. When querying for all AsyncApexJob records, we recommend that you filter out records of type
BatchApexWorker using the JobType field. Otherwise, the query will return one more record for every 10,000
AsyncApexJob records. For more information about the AsyncApexJob object, see AsyncApexJob in the Object Reference

for Database.com.

« All methods in the class must be defined as global.

« For a sharing recalculation, we recommend that the execute method delete and then re-create all Apex managed sharing
for the records in the batch. This ensures the sharing is accurate and complete.

See Also:
Exception Statements
Understanding Execution Governors and Limits
Understanding Sharing

Understanding Apex Managed Sharing

Sharing is the act of granting a user or group of users permission to perform a set of actions on a record or set of records.
Sharing access can be granted using the Database.com user interface and Force.com, or programmatically using Apex.

This section provides an overview of sharing using Apex:

« Understanding Sharing
+ Sharing a Record Using Apex
« Recalculating Apex Managed Sharing

For more information on sharing, see “Setting Your Organization-Wide Sharing Defaults” in the Database.com online help.

175

http://www.salesforce.com/us/developer/docs/dbcom_objects/index_CSH.htm#sforce_api_objects_asyncapexjob.htm
http://www.salesforce.com/us/developer/docs/dbcom_objects/index_CSH.htm#sforce_api_objects_asyncapexjob.htm

Batch Apex Understanding Sharing

Understanding Sharing

Sharing enables record-level access control for all custom objects. Administrators first set an object’s organization-wide default
sharing access level, and then grant additional access based on record ownership, the role hierarchy, sharing rules, and manual
sharing. Developers can then use Apex managed sharing to grant additional access programmatically with Apex. Most sharing
for a record is maintained in a related sharing object, similar to an access control list (ACL) found in other platforms.

Types of Sharing
Database.com has the following types of sharing:

Force.com Managed Sharing

Force.com managed sharing involves sharing access granted by Force.com based on record ownership, the role hierarchy,
and sharing rules:

Record Ownership

Each record is owned by a user or optionally a queue. The record owner is automatically granted Full Access, allowing
them to view, edit, transfer, share, and delete the record.

Role Hierarchy

The role hierarchy enables users above another user in the hierarchy to have the same level of access to records
owned by or shared with users below. Consequently, users above a record owner in the role hierarchy are also
implicitly granted Full Access to the record, though this behavior can be disabled for specific custom objects. The
role hierarchy is not maintained with sharing records. Instead, role hierarchy access is derived at runtime. For more
information, see “Controlling Access Using Hierarchies” in the Database.com online help.

Sharing Rules

Sharing rules are used by administrators to automatically grant users within a given group or role access to records
owned by a specific group of users.

Sharing rules can be based on record ownership or other criteria. You can't use Apex to create criteria-based sharing
rules. Also, criteria-based sharing cannot be tested using Apex.

All implicit sharing added by Force.com managed sharing cannot be altered directly using the Database.com user interface,

SOAP API, or Apex.

User Managed Sharing, also known as Manual Sharing

User managed sharing allows the record owner or any user with Full Access to a record to share the record with a user
or group of users. This is generally done by an end-user, for a single record. Only the record owner and users above the
owner in the role hierarchy are granted Full Access to the record. It is not possible to grant other users Full Access. Users
with the “Modify All” object-level permission for the given object or the “Modify All Data” permission can also manually
share a record. User managed sharing is removed when the record owner changes or when the access granted in the
sharing does not grant additional access beyond the object's organization-wide sharing default access level.

Apex Managed Sharing

Apex managed sharing provides developers with the ability to support an application’s particular sharing requirements
programmatically through Apex or the SOAP API. This type of sharing is similar to Force.com managed sharing. Only
users with “Modify All Data” permission can add or change Apex managed sharing on a record. Apex managed sharing
is maintained across record owner changes.

176

Batch Apex Understanding Sharing

w# Note: Apex sharing reasons and Apex managed sharing recalculation are only available for custom objects.

The Sharing Reason Field

In the Database.com user interface, the Reason field on a custom object specifies the type of sharing used for a record. This
field is called rowCause in Apex or the Force.com API.

Each of the following list items is a type of sharing used for records. The tables show Reason field value, and the related
rowCause value.

« Force.com Managed Sharing

Associated record owner or sharing ImplicitParent
Owner Owner
Sharing Rule Rule

+ User Managed Sharing

Manual Sharing Manual

« Apex Managed Sharing

Defined by developer Defined by developer

The displayed reason for Apex managed sharing is defined by the developer.

Access Levels

When determining a user’s access to a record, the most permissive level of access is used. Most share objects support the
following access levels:

Private None Only the record owner and users above the record owner in the role
hierarchy can view and edit the record.

Read Only Read The specified user or group can view the record only.

Read/Write Edit The specified user or group can view and edit the record.

177

Batch Apex Sharing a Record Using Apex

Full Access All The specified user or group can view, edit, transfer, share, and delete the
record.

w» Note: This access level can only be granted with Force.com

managed sharing.
|

Sharing a Record Using Apex

To access sharing programmatically, you must use the share object associated with the custom object for which you want to
share. In addition, all custom object sharing objects are named as follows, where MyCustomObject is the name of the custom
object:

MyCustomObject Share

Objects on the detail side of a master-detail relationship do not have an associated sharing object. The detail record’s access
is determined by the master’s sharing object and the relationship’s sharing setting. For more information, see “Custom Object
Security” in the Database.com online help.

A share object includes records supporting all three types of sharing: Force.com managed sharing, user managed sharing, and
Apex managed sharing. Sharing granted to users implicitly through organization-wide defaults, the role hierarchy, and
permissions such as the “View All” and “Modify All” permissions for the given object, “View All Data,” and “Modify All Data”
are not tracked with this object.

Every share object has the following properties:

objectNameAccessLevel The level of access that the specified user or group has been granted for a share sObject. The
name of the property is AccessLevel appended to the object name. For example, the property
name for LeadShare object is . Valid values are:

« Edit
« Read
« All

w® Note: The A11 access level can only be used by Force.com managed sharing.
A

This field must be set to an access level that is higher than the organization’s default access
level for the parent object. For more information, see Access Levels on page 177.

ParentID The ID of the object. This field cannot be updated.

RowCause The reason why the user or group is being granted access. The reason determines the type of
sharing, which controls who can alter the sharing record. This field cannot be updated.

UserOrGroupId The user or group IDs to which you are granting access. A group can be a public group, role,
or territory. This field cannot be updated.

178

Batch Apex Sharing a Record Using Apex

You can share a standard or custom object with users or groups. For more information about the types of users and groups
you can share an object with, see User and Group in the Object Reference for Database.com.

Creating User Managed Sharing Using Apex

It is possible to manually share a record to a user or a group using Apex or the SOAP API. If the owner of the record changes,
the sharing is automatically deleted. The following example class contains a method that shares the job specified by the job
ID with the specified user or group ID with read access. It also includes a test method that validates this method. Before you
save this example class, create a custom object called Job.

public class JobSharing {

static boolean manualShareRead (Id recordId, Id userOrGroupId) {
// Create new sharing object for the custom object Job.
Job_Share jobShr = new Job_ Share();

// Set the ID of record being shared.
jobShr.ParentId = recordId;

// Set the ID of user or group being granted access.
jobShr.UserOrGroupId = userOrGroupld;

// Set the access level.
jobShr.AccessLevel = 'Read';

// Set rowCause to 'manual' for manual sharing.
// This line can be omitted as 'manual' is the default value for sharing objects.
jobsShr.RowCause = Schema.Job Share.RowCause.Manual;

// Insert the sharing record and capture the save result.

// The false parameter allows for partial processing if multiple records passed
// into the operation.

Database.SaveResult sr = Database.insert (jobShr, false);

// Process the save results.
if (sr.isSuccess ()) {
// Indicates success
return true;
}
else {
// Get first save result error.
Database.Error err = sr.getErrors() [0];

// Check if the error is related to trival access level.
// Access levels equal or more permissive than the object's default
// access level are not allowed.
// These sharing records are not required and thus an insert exception is acceptable.

if (err.getStatusCode () == StatusCode.FIELD FILTER VALIDATION EXCEPTION &&
err.getMessage () .contains ('AccessLevel')) {
// Indicates success.
return true;
}
else{
// Indicates failure.
return false;

}

// Test for the manualShareRead method
static testMethod void testManualShareRead () {
// Select users for the test.
List<User> users = [SELECT Id FROM User WHERE IsActive = true LIMIT 2];

179

http://www.salesforce.com/us/developer/docs/dbcom_objects/index_Left.htm#StartTopic=Content/sforce_api_objects_user.htm
http://www.salesforce.com/us/developer/docs/dbcom_objects/index_Left.htm#StartTopic=Content/sforce_api_objects_group.htm
http://www.salesforce.com/us/developer/docs/object_reference/index.htm

Batch Apex Sharing a Record Using Apex

Id UserlId users[0].Id;
Id User2Id = users[l].Id;

// Create new job.
Job ¢ j = new Job_ c();
j.Name = 'Test Job';
j.OwnerId = userlId;
insert j;

// Insert manual share for user who is not record owner.
System.assertEquals (manualShareRead (j.Id, user2Id), true);

// Query Jjob sharing records.
List<Job Share> jShrs = [SELECT Id, UserOrGroupId, AccessLevel,
RowCause FROM job share WHERE ParentId = :j.Id AND UserOrGrouplId= :user2Id];

// Test for only one manual share on job.
System.assertEquals (jShrs.size(), 1, 'Set the object\'s sharing model to Private.');

// Test attributes of manual share.
System.assertEquals (jShrs[0] .AccessLevel, 'Read');
System.assertEquals (jShrs[0] .RowCause, 'Manual');
System.assertEquals (jShrs[0] .UserOrGroupld, user2Id);

// Test invalid job Id.
delete j;

// Insert manual share for deleted job id.
System.assertEquals (manualShareRead (j.Id, user2Id), false);

Important: The object’s organization-wide default access level must not be set to the most permissive access level.
For custom objects, this is Public Read/Write. For more information, see Access Levels on page 177.

Creating Apex Managed Sharing

Apex managed sharing enables developers to programmatically manipulate sharing to support their application’s behavior
through Apex or the SOAP API. This type of sharing is similar to Force.com managed sharing. Only users with “Modify All
Data” permission can add or change Apex managed sharing on a record. Apex managed sharing is maintained across record
owner changes.

Apex managed sharing must use an Apex sharing reason. Apex sharing reasons are a way for developers to track why they shared
a record with a user or group of users. Using multiple Apex sharing reasons simplifies the coding required to make updates
and deletions of sharing records. They also enable developers to share with the same user or group multiple times using different
reasons.

Apex sharing reasons are defined on an object's detail page. Each Apex sharing reason has a label and a name:

« The label displays in the Reason column when viewing the sharing for a record in the user interface. This allows users
and administrators to understand the source of the sharing. The label is also enabled for translation through the Translation
Workbench.

« The name is used when referencing the reason in the API and Apex.

All Apex sharing reason names have the following format:

MyReasonName c

180

Batch Apex Sharing a Record Using Apex

Apex sharing reasons can be referenced programmatically as follows:
Schema.CustomObject Share.rowCause.SharingReason ¢

For example, an Apex sharing reason called Recruiter for an object called Job can be referenced as follows:
Schema.Job Share.rowCause.Recruiter c

For more information, see Schema Methods on page 291.

To create an Apex sharing reason:

1. Click Create > Objects.

2. Select the custom object.

3. Click New in the Apex Sharing Reasons related list.

4. Enter alabel for the Apex sharing reason. The label displays in the Reason column when viewing the sharing for a record
in the user interface.

5. Enter a name for the Apex sharing reason. The name is used when referencing the reason in the API and Apex. This name
can contain only underscores and alphanumeric characters, and must be unique in your organization. It must begin with
a letter, not include spaces, not end with an underscore, and not contain two consecutive underscores.

6. Click Save.

w# Note: Apex sharing reasons and Apex managed sharing recalculation are only available for custom objects.

Apex Managed Sharing Example

For this example, suppose that you are building a recruiting application and have an object called Job. You want to validate
that the recruiter and hiring manager listed on the job have access to the record. The following trigger grants the recruiter and
hiring manager access when the job record is created. This example requires a custom object called Job with two lookup fields
that are associated with User records and are called Hiring Manager and Recruiter. Also, the Job custom object should have
two sharing reasons added called Hiring Manager and Recruiter.

trigger JobApexSharing on Job c¢ (after insert) ({

if (trigger.isInsert) {
// Create a new list of sharing objects for Job
List<Job__Share> jobShrs = new List<Job Share>();

// Declare variables for recruiting and hiring manager sharing
Job Share recruiterShr;
Job_ Share hmShr;

for(Job_ ¢ job : trigger.new) {
// Instantiate the sharing objects
recruiterShr = new Job_ Share();
hmShr = new Job Share();

// Set the ID of record being shared
recruiterShr.ParentId = job.Id;
hmShr.ParentId = job.Id;

// Set the ID of user or group being granted access
recruiterShr.UserOrGroupId = job.Recruiter c;
hmShr.UserOrGroupId = job.Hiring Manager c;

// Set the access level
recruiterShr.AccessLevel = 'edit';

181

Batch Apex Sharing a Record Using Apex

hmShr.AccessLevel = 'read';

// Set the Apex sharing reason for hiring manager and recruiter
recruiterShr.RowCause = Schema.Job Share.RowCause.Recruiter c;
hmShr.RowCause = Schema.Job Share.RowCause.Hiring Manager c;

// Add objects to list for insert
jobShrs.add (recruiterShr) ;
jobShrs.add (hmShr) ;

}

// Insert sharing records and capture save result
// The false parameter allows for partial processing if multiple records are passed

// into the operation
Database.SaveResult[] lsr = Database.insert (jobShrs, false);

// Create counter
Integer i=0;

// Process the save results
for (Database.SaveResult sr : 1lsr) {
if (!sr.isSuccess()) {
// Get the first save result error
Database.Error err = sr.getErrors() [0];

// Check if the error is related to a trivial access level
// Access levels equal or more permissive than the object's default
// access level are not allowed.

// These sharing records are not required and thus an insert exception is
// acceptable.

if (! (err.getStatusCode () == StatusCode.FIELD FILTER VALIDATION EXCEPTION
&& err.getMessage () .contains ('AccessLevel'))) {

// Throw an error when the error is not related to trivial access level.

trigger.newMap.get (jobShrs[i] .ParentId) .
addError (

'Unable to grant sharing access due to following exception: '
+ err.getMessage ()) ;

kg

Under certain circumstances, inserting a share row results in an update of an existing share row. Consider these examples:
« If'a manual share access level is set to Read and you insert a new one that’s set to Write, the original share rows are updated
to Write, indicating the higher level of access.

« Ifusers can access an account because they can access its child records (contact, case, opportunity, and so on), and an

account sharing rule is created, the row cause of the parent implicit share is replaced by the sharing rule row cause, indicating
the higher level of access.

Important: The object’s organization-wide default access level must not be set to the most permissive access level.
For custom objects, this is Public Read/Write. For more information, see Access Levels on page 177.

182

Batch Apex Recalculating Apex Managed Sharing

Recalculating Apex Managed Sharing

Database.com automatically recalculates sharing for all records on an object when its organization-wide sharing default access
level is changed. The recalculation adds Force.com managed sharing when appropriate. In addition, all types of sharing are
removed if the access they grant is considered redundant. For example, manual sharing which grants Read Only access to a
user is deleted when the object’s sharing model is changed from Private to Public Read Only.

To recalculate Apex managed sharing, you must write an Apex class that implements a Database.com-provided interface to
do the recalculation. You must then associate the class with the custom object, on the custom object's detail page, in the Apex
Sharing Recalculation related list.

w# Note: Apex sharing reasons and Apex managed sharing recalculation are only available for custom objects.

You can execute this class from the custom object detail page where the Apex sharing reason is specified. An administrator
might need to recalculate the Apex managed sharing for an object if a locking issue prevented Apex code from granting access
to a user as defined by the application’s logic. You can also use the Database.executeBatch method to programmatically
invoke an Apex managed sharing recalculation.

@ Note: Every time a custom object's organization-wide sharing default access level is updated, any Apex recalculation
classes defined for associated custom object are also executed.

To monitor or stop the execution of the Apex recalculation, click Monitoring > Apex Jobs. For more information, see
“Monitoring the Apex Job Queue” in the Database.com online help.

Creating an Apex Class for Recalculating Sharing

To recalculate Apex managed sharing, you must write an Apex class to do the recalculation. This class must implement the
Database.com-provided interface Database .Batchable.

The Database.Batchable interface is used for all batch Apex processes, including recalculating Apex managed sharing.
You can implement this interface more than once in your organization. For more information on the methods that must be

implemented, see Using Batch Apex on page 167.
Before creating an Apex managed sharing recalculation class, also consider the best practices.

Important: The object’s organization-wide default access level must not be set to the most permissive access level.
For custom objects, this is Public Read/Write. For more information, see Access Levels on page 177.

Apex Managed Sharing Recalculation Example

For this example, suppose that you are building a recruiting application and have an object called Job. You want to validate
that the recruiter and hiring manager listed on the job have access to the record. The following Apex class performs this
validation. This example requires a custom object called Job with two lookup fields that are associated with User records and
are called Hiring_ Manager and Recruiter. Also, the Job custom object should have two sharing reasons added called
HiringManager and Recruiter. Before you run this sample, replace the email address with a valid email address that is used
to send error notifications and job completion notifications to.

global class JobSharingRecalc implements Database.Batchable<sObject> {
// String to hold email address that emails will be sent to.

// Replace its value with a valid email address.
static String emailAddress = 'admin@yourcompany.com';

183

Batch Apex Recalculating Apex Managed Sharing

// The start method is called at the beginning of a sharing recalculation.
// This method returns a SOQL query locator containing the records to be recalculated.

// This method must be global.
global Database.QuerylLocator start (Database.BatchableContext BC) {
return Database.getQuerylLocator ([SELECT Id, Hiring Manager c, Recruiter c
FROM Job c]);
}

// The executeBatch method is called for each chunk of records returned from start.
// This method must be global.
global void execute (Database.BatchableContext BC, List<sObject> scope) {

// Create a map for the chunk of records passed into method.

Map<ID, Job c¢> jobMap = new Map<ID, Job c>((List<Job c>)scope);

// Create a list of Job_ Share objects to be inserted.
List<Job__Share> newJobShrs = new List<Job__Share>();

// Locate all existing sharing records for the Job records in the batch.
// Only records using an Apex sharing reason for this app should be returned.

List<Job Share> oldJobShrs = [SELECT Id FROM Job Share WHERE Id IN
:jobMap.keySet () AND
(RowCause = :Schema.Job Share.rowCause.Recruiter c OR
RowCause = :Schema.Job Share.rowCause.Hiring Manager c)];

// Construct new sharing records for the hiring manager and recruiter
// on each Job record.
for (Job_ ¢ job : jobMap.values()) {

Job Share jobHMShr = new Job Share();

Job Share jobRecShr = new Job Share();

// Set the ID of user (hiring manager) on the Job record being granted access.
jobHMShr.UserOrGroupId = job.Hiring Manager c;

// The hiring manager on the job should always have 'Read Only' access.
JjobHMShr.AccessLevel = 'Read';

// The ID of the record being shared
jobHMShr.ParentId = job.Id;

// Set the rowCause to the Apex sharing reason for hiring manager.
// This establishes the sharing record as Apex managed sharing.
jobHMShr.RowCause = Schema.Job Share.RowCause.Hiring Manager c;

// Add sharing record to list for insertion.
newJobShrs.add (jobHMShr) ;

// Set the ID of user (recruiter) on the Job record being granted access.
jobRecShr.UserOrGroupId = job.Recruiter c;

// The recruiter on the job should always have 'Read/Write' access.
jobRecShr.AccessLevel = 'Edit';

// The ID of the record being shared
jobRecShr.ParentId = job.Id;

// Set the rowCause to the Apex sharing reason for recruiter.
// This establishes the sharing record as Apex managed sharing.
jobRecShr.RowCause = Schema.Job Share.RowCause.Recruiter c;

// Add the sharing record to the list for insertion.
newJobShrs.add (jobRecShr) ;
}

try {
// Delete the existing sharing records.

184

Batch Apex Recalculating Apex Managed Sharing

// This allows new sharing records to be written from scratch.
Delete oldJobShrs;

// Insert the new sharing records and capture the save result.
// The false parameter allows for partial processing if multiple records are

// passed into operation.
Database.SaveResult[] lsr = Database.insert (newJobShrs, false);

// Process the save results for insert.
for (Database.SaveResult sr : 1lsr) {
if (!sr.isSuccess()) {
// Get the first save result error.
Database.Error err = sr.getErrors() [0];

// Check if the error is related to trivial access level.

// Access levels equal or more permissive than the object's default

// access level are not allowed.

// These sharing records are not required and thus an insert exception

// 1s acceptable.
if (! (err.getStatusCode () == StatusCode.FIELD FILTER VALIDATION EXCEPTION

&& err.getMessage () .contains ('AccesslLevel'))) {
// Error is not related to trivial access level.
// Send an email to the Apex job's submitter.
Messaging.SingleEmailMessage mail = new Messaging.SingleEmailMessage () ;

String[] toAddresses = new String[] {emailAddress};
mail.setToAddresses (toAddresses) ;
mail.setSubject ('Apex Sharing Recalculation Exception');
mail.setPlainTextBody (
'The Apex sharing recalculation threw the following exception: ' +
err.getMessage ()) ;
Messaging.sendEmail (new Messaging.SingleEmailMessage[] { mail });

}

}

} catch(DmlException e) {

// Send an email to the Apex job's submitter on failure.
Messaging.SingleEmailMessage mail = new Messaging.SingleEmailMessage () ;
String[] toAddresses = new String[] {emailAddress};
mail.setToAddresses (toAddresses) ;
mail.setSubject ('Apex Sharing Recalculation Exception');
mail.setPlainTextBody (

'The Apex sharing recalculation threw the following exception: ' +
e.getMessage());
Messaging.sendEmail (new Messaging.Single