
salesforce: Summer ’12

Database.com Apex Code Developer's Guide

Last updated: September 11 2012

© Copyright 2000–2012 salesforce.com, inc. All rights reserved. Salesforce.com is a registered trademark of salesforce.com, inc., as are other
names and marks. Other marks appearing herein may be trademarks of their respective owners.

Table of Contents

Chapter 1: Introducing Apex..9
What is Apex?...10

How Does Apex Work?..11
What is the Apex Development Process?..11

Developing in a Test Database Organization..12
Writing Apex...14
Writing Tests...14
Deploying Apex to a Database.com Production Organization..15

When Should I Use Apex?..15
What are the Limitations of Apex?...15
Warehouse Objects for Code Samples..16

What's New?...16
Apex Quick Start...16

Documentation Typographical Conventions...17
Understanding Apex Core Concepts...17
Writing Your First Apex Class and Trigger..21

Creating a Custom Object...22
Adding an Apex Class...22
Adding an Apex Trigger..24
Adding a Test Class...25
Deploying Components to Production..27

Chapter 2: Language Constructs...29
Data Types..30

Primitive Data Types...30
sObject Types..32

Accessing sObject Fields..33
Accessing sObject Fields Through Relationships..35
Validating sObjects and Fields ...36

Collections...37
Lists...37
Sets..41
Maps..42
Maps from SObject Arrays..44
Iterating Collections..44

Enums...44
Understanding Rules of Conversion..46

Variables..47
Case Sensitivity..48
Constants...48

Expressions..49

i

Table of Contents

Understanding Expressions...49
Understanding Expression Operators..50
Understanding Operator Precedence...56
Extending sObject and List Expressions...57
Using Comments...57

Assignment Statements...57
Conditional (If-Else) Statements..59
Loops...60

Do-While Loops...60
While Loops..60
For Loops..61

Traditional For Loops...62
List or Set Iteration For Loops..62
SOQL For Loops..62

SOQL and SOSL Queries..64
Working with SOQL and SOSL Query Results...66
Working with SOQL Aggregate Functions..67
Working with Very Large SOQL Queries..67
Using SOQL Queries That Return One Record..70
Improving Performance by Not Searching on Null Values...70
Understanding Foreign Key and Parent-Child Relationship SOQL Queries...71
Using Apex Variables in SOQL and SOSL Queries...71
Querying All Records with a SOQL Statement..73

Locking Statements...73
Locking in a SOQL For Loop..73
Avoiding Deadlocks..74

Transaction Control..74
Exception Statements..75

Throw Statements...75
Try-Catch-Finally Statements...75

Chapter 3: Invoking Apex...77
Triggers...78

Bulk Triggers...78
Trigger Syntax...79
Trigger Context Variables...80
Context Variable Considerations...82
Common Bulk Trigger Idioms..83

Using Maps and Sets in Bulk Triggers..83
Correlating Records with Query Results in Bulk Triggers..83
Using Triggers to Insert or Update Records with Unique Fields...84

Defining Triggers..84
Triggers and Recovered Records...85
Triggers and Order of Execution...86
Operations That Don't Invoke Triggers..87

ii

Table of Contents

Fields that Aren’t Available or Can’t Be Updated in Triggers...88
Trigger Exceptions..88
Trigger and Bulk Request Best Practices...89

Apex Scheduler..90
Anonymous Blocks..95
Apex in AJAX...96

Chapter 4: Classes, Objects, and Interfaces..98
Understanding Classes..99

Defining Apex Classes...99
Extended Class Example...100
Declaring Class Variables..103
Defining Class Methods..104
Using Constructors..106
Access Modifiers..108
Static and Instance...109

Using Static Methods and Variables..109
Using Instance Methods and Variables..110
Using Initialization Code...111

Apex Properties...112
Interfaces and Extending Classes..114

Parameterized Typing and Interfaces..115
Custom Iterators..118

Keywords...120
Using the final Keyword..120
Using the instanceof Keyword...120
Using the super Keyword...121
Using the this Keyword...122
Using the transient Keyword...122
Using the with sharing or without sharing Keywords..123

Annotations...124
Future Annotation...125
IsTest Annotation...126
ReadOnly Annotation...128
Apex REST Annotations..129

RestResource Annotation..129
HttpDelete Annotation...130
HttpGet Annotation..130
HttpPatch Annotation...130
HttpPost Annotation...130
HttpPut Annotation..130

Classes and Casting...130
Classes and Collections...132
Collection Casting...132

Differences Between Apex Classes and Java Classes...132

iii

Table of Contents

Class Definition Creation..133
Naming Conventions...134
Name Shadowing..135

Class Security..135
Enforcing Object and Field Permissions...136
Namespace Prefix..137

Namespace, Class, and Variable Name Precedence...137
Type Resolution and System Namespace for Types..138

Version Settings..139
Setting the Database.com API Version for Classes and Triggers..139

Chapter 5: Testing Apex...140
Understanding Testing in Apex..141

Why Test Apex?..141
What to Test in Apex..141

Unit Testing Apex...142
Isolation of Test Data from Organization Data in Unit Tests..143
Using the runAs Method...144
Using Limits, startTest, and stopTest...145
Adding SOSL Queries to Unit Tests..145

Running Unit Test Methods...146
Testing Best Practices...150
Testing Example...151

Chapter 6: Dynamic Apex...156
Understanding Apex Describe Information..157
Dynamic SOQL..161
Dynamic SOSL...162
Dynamic DML...163

Chapter 7: Batch Apex..166
Using Batch Apex..167
Understanding Apex Managed Sharing..175

Understanding Sharing..176
Sharing a Record Using Apex..178
Recalculating Apex Managed Sharing...183

Chapter 8: Debugging Apex..188
Understanding the Debug Log..189

Using the Developer Console..193
Debugging Apex API Calls...201

Handling Uncaught Exceptions..203
Understanding Execution Governors and Limits..203
Using Governor Limit Email Warnings...206

Chapter 9: Exposing Apex Methods as SOAP Web Services...207
WebService Methods..208

iv

Table of Contents

Exposing Data with WebService Methods..208
Considerations for Using the WebService Keyword..208
Overloading Web Service Methods...209

Chapter 10: Exposing Apex Classes as REST Web Services..210
Introduction to Apex REST..211
Apex REST Annotations..211
Apex REST Methods..211
Exposing Data with Apex REST Web Service Methods..216
Apex REST Code Samples...217

Apex REST Basic Code Sample...217
Apex REST Code Sample Using RestRequest...219

Chapter 11: Invoking Callouts Using Apex..221
Adding Remote Site Settings..222
SOAP Services: Defining a Class from a WSDL Document...222

Invoking an External Service...223
HTTP Header Support...223
Supported WSDL Features...224
Understanding the Generated Code..226
Test Coverage for the Generated Code...229
Considerations Using WSDLs..230

Mapping Headers..230
Understanding Runtime Events...230
Understanding Unsupported Characters in Variable Names...231
Debugging Classes Generated from WSDL Files...231

Invoking HTTP Callouts..231
Using Certificates..232

Generating Certificates..232
Using Certificates with SOAP Services...233
Using Certificates with HTTP Requests...234

Callout Limits...234

Chapter 12: Reference...236
Apex Data Manipulation Language (DML) Operations..237

Delete Operation...237
Insert Operation..239
Undelete Operation...242
Update Operation..244
Upsert Operation...247
sObjects That Do Not Support DML Operations..250
sObjects That Cannot Be Used Together in DML Operations..251
Bulk DML Exception Handling...252

Apex Standard Classes and Methods..253
Apex Primitive Methods...253

Blob Methods..254

v

Table of Contents

Boolean Methods...254
Date Methods..254
Datetime Methods...257
Decimal Methods..262
Double Methods..267
Integer Methods..269
Long Methods...269
String Methods..270
Time Methods...275

Apex Collection Methods..276
List Methods...276
Map Methods..283
Set Methods...287

Enum Methods...291
Apex sObject Methods..291

Schema Methods...291
sObject Methods..292
sObject Describe Result Methods...296
Describe Field Result Methods...298
Custom Settings Methods...305

Apex System Methods...310
Database Methods...311
JSON Support...322
Limits Methods...339
Math Methods...342
Apex REST...346
Search Methods...351
System Methods..352
Test Methods...362
Type Methods...364
URL Methods...367
UserInfo Methods..370
Version Methods...371

Using Exception Methods...373
Apex Classes..375

Exception Class...376
Constructing an Exception..376
Using Exception Variables...377

Pattern and Matcher Classes...378
Using Patterns and Matchers...378
Using Regions..379
Using Match Operations...379
Using Bounds..380
Understanding Capturing Groups...380
Pattern and Matcher Example...380

vi

Table of Contents

Pattern Methods..381
Matcher Methods..382

HTTP (RESTful) Services Classes...388
HTTP Classes...388
Crypto Class..395
EncodingUtil Class..401

XML Classes...402
XmlStream Classes..402
DOM Classes..409

Apex Interfaces..415
Auth.RegistrationHandler Interface..416
Comparable Interface..419

Chapter 13: Deploying Apex...421
Using Change Sets To Deploy Apex...422
Using the Force.com IDE to Deploy Apex...422
Using the Force.com Migration Tool..422

Understanding deploy..424
Understanding retrieveCode..426
Understanding runTests()..427

Using SOAP API to Deploy Apex..427

Appendices..429

Appendix A: Shipping Invoice Example..429
Shipping Invoice Example Walk-Through...429
Shipping Invoice Example Code...432

Appendix B: Reserved Keywords..441

Appendix C: SOAP API and SOAP Headers for Apex...443
ApexTestQueueItem...444
ApexTestResult...445
compileAndTest()..448

CompileAndTestRequest..449
CompileAndTestResult...450

compileClasses()..452
compileTriggers()..453
executeanonymous()..453

ExecuteAnonymousResult...454
runTests()..454

RunTestsRequest...456
RunTestsResult..456

DebuggingHeader...460

vii

Table of Contents

Glossary...463

Index...476

viii

Table of Contents

Chapter 1

Introducing Apex

Salesforce.com has changed the way organizations do business by moving
enterprise applications that were traditionally client-server-based into an

In this chapter ...

• What is Apex? on-demand, multitenant Web environment, the Force.com platform. This
• What's New? environment allows organizations to run and customize applications, such as

Database.com Automation and Service & Support, and build new custom
applications based on particular business needs.

• Apex Quick Start

With the addition of Database.com to the Force.com platform, a multitenant
cloud database service is provided to store data for custom mobile, social, and
desktop applications. Database.com is the database for applications that are
written in any language, and run on any platform or mobile device. Apex is an
object-oriented programming language that enables you to add business logic
and write triggers for your database on Database.com.

To learn more about Apex, see What is Apex?.

9

What is Apex?
Apex is a strongly typed, object-oriented programming language that allows developers to execute flow and transaction control
statements on Database.com in conjunction with calls to the Force.com API. Using syntax that looks like Java and acts like
database stored procedures, Apex enables developers to add business logic to most system events. Apex code can be initiated
by Web service requests and from triggers on objects.

As a language, Apex is:

Integrated

Apex provides built-in support for common Database.com idioms, including:

• Data manipulation language (DML) calls, such as INSERT, UPDATE, and DELETE, that include built-in
DmlException handling

• Inline Database.com Object Query Language (SOQL) and Database.com Object Search Language (SOSL) queries
that return lists of sObject records

• Looping that allows for bulk processing of multiple records at a time

• Locking syntax that prevents record update conflicts

• Custom public Force.com API calls that can be built from stored Apex methods

• Warnings and errors issued when a user tries to edit or delete a custom object or field that is referenced by Apex

Easy to use

Apex is based on familiar Java idioms, such as variable and expression syntax, block and conditional statement syntax,
loop syntax, object and array notation, and so on. Where Apex introduces new elements, it uses syntax and semantics
that are easy to understand and encourage efficient use of Database.com. Consequently, Apex produces code that is both
succinct and easy to write.

Data focused

Apex is designed to thread together multiple query and DML statements into a single unit of work on Database.com,
much as developers use database stored procedures to thread together multiple transaction statements on a database
server. Note that like other database stored procedures, Apex does not attempt to provide general support for rendering
elements in the user interface.

Rigorous

Apex is a strongly-typed language that uses direct references to schema objects such as object and field names. It fails
quickly at compile time if any references are invalid, and stores all custom field, object, and class dependencies in metadata
to ensure they are not deleted while required by active Apex code.

Hosted

Apex is interpreted, executed, and controlled entirely by Database.com.

Multitenant aware

Like the rest of Database.com, Apex runs in a multitenant environment. Consequently, the Apex runtime engine is
designed to guard closely against runaway code, preventing them from monopolizing shared resources. Any code that
violate these limits fail with easy-to-understand error messages.

10

Introducing Apex What is Apex?

Automatically upgradeable

Apex never needs to be rewritten when other parts of Database.com are upgraded. Because the compiled code is stored
as metadata in the platform, it always gets automatically upgraded with the rest of the system.

Easy to test

Apex provides built-in support for unit test creation and execution, including test results that indicate how much code
is covered, and which parts of your code could be more efficient. Database.com ensures that Apex code always work as
expected by executing all unit tests stored in metadata prior to any platform upgrades.

Versioned

You can save your Apex code against different versions of the Force.com API. This enables you to maintain behavior.

How Does Apex Work?

All Apex runs entirely on-demand on Database.com, as shown in the following architecture diagram:

Figure 1: Apex is compiled, stored, and run entirely on Database.com.

When a developer writes and saves Apex code to Database.com, the Database.com application server first compiles the code
into an abstract set of instructions that can be understood by the Apex runtime interpreter, and then saves those instructions
as metadata.

When Apex is executed, the Database.com application server retrieves the compiled instructions from the metadata and sends
them through the runtime interpreter before returning the result.

What is the Apex Development Process?

We recommend the following process for developing Apex:

1. Sign up for a Database.com Edition account and create a test database organization. For more information about test
database organizations, see Developing in a Test Database Organization.

2. Write your Apex.
3. While writing Apex, you should also be writing tests.
4. Deploy your Apex to your Database.com production organization.

11

Introducing Apex How Does Apex Work?

Developing in a Test Database Organization

There are two types of organizations where you can run your Apex:

• A production organization: an organization that has live users accessing your data.

• A test database organization: an organization created on your production organization that is a copy of your production
organization.

You can't develop Apex in your Database.com production organization. Live users accessing the system while you're developing
can destabilize your data or corrupt your application. Instead, we recommend that you do all your development work in a test
database organization.

Note: You cannot make changes to Apex using the Database.com user interface in a Database.com production
organization.

Creating a Test Database Organization

To create or refresh a test database organization:

1. Click Data Management > Test Database.
2. Do one of the following:

• Click New Test Database.

Database.com deactivates the New Test Database button when an organization reaches its test database limit. If
necessary, contact salesforce.com to order more test databases for your organization.
Note that Database.com deactivates all refresh links if you have exceeded your test database limit.

• Click Refresh to replace an existing test database with a new copy. Database.com only displays the Refresh link for
test databases that are eligible for refreshing. For staging databases, this is any time after 30 days from the previous
creation or refresh of that test database. For QA databases, you can refresh once per day. Your existing copy of this test
database remains available while you wait for the refresh to complete. The refreshed copy is inactive until you activate
it.

3. Enter a name and description for the test database. You can only change the name when you create or refresh a test database.

Tip: We recommend that you choose a name that:

• Reflects the purpose of this test database, such as “QA.”
• Has few characters because Database.com automatically appends the test database name to usernames and

email addresses on user records in the test database environment. Names with fewer characters make test
database logins easier to type.

4. Select the type of test database:

• QA Database: QA databases are intended for coding and testing by a single developer. They provide an environment
in which changes under active development can be isolated until they are ready to be shared. QA databases copy all
application and configuration information to the test database. QA databases are limited to 10 MB of test or sample
data, which is enough for many development and testing tasks. You can refresh a QA database once per day.

• Staging Database: Staging databases copy your entire production organization and all its data, including custom object
records. You can refresh a staging database every 29 days.

Note: Database.com enables you to create a QA database. To create a staging database, contact salesforce.com.

12

Introducing Apex What is the Apex Development Process?

If you have reduced the number of test databases you purchased, but you still have more test databases of a specific type
than allowed, you will be required to match your test databases to the number of test databases that you purchased. For
example, if you have two staging databases but purchased only one, you cannot refresh your staging database as a staging
database. Instead, you must choose one staging database to convert to a smaller test database, such as a QA database.

If you are refreshing an existing test database, the radio button usually preselects the test database type corresponding to
the test database you are refreshing.

Whether refreshing an existing test database or creating a new one, some radio buttons may be disabled if you have already
created the number of test databases of that test database type allowed for your organization.

5. For a staging test database, choose how much object history to copy. Object history is the field history tracking of custom
objects. You can copy from 0 to 180 days of object history, in 30 day increments. The default value is 30 days. Decreasing
the amount of data you copy can significantly speed up test database copy time.

6. Click Start Copy.

The process may take several minutes, hours, or even days, depending on the size of your organization.

Tip: You should try to limit changes in your production organization while the test database copy proceeds.

7. You will receive a notification email when your newly created or refreshed test database has completed copying. If you are
creating a new test database, the newly created test database is now ready for use.

If you are refreshing an existing test database, an additional step is required to complete the test database copy process.
The new test database must be activated. To delete your existing test database and activate the new one:

a. Return to the test database list by logging into your production organization and navigating to Data Management >
Test Database.

b. Click the Activate link next to the test database you wish to activate.

This will take you to a page warning of removal of your existing test database.

c. Read the warning carefully and if you agree to the removal, enter the acknowledgment text at the prompt and click the
Activate button.

When the activation process is complete, you will receive a notification email.

Caution: Activating a replacement test database that was created using the Refresh link completely deletes the
test database it is refreshing. All configuration and data in the prior test database copy will be lost, including any
data changes you have made. Please read the warning carefully, and press the Activate link only if you have no
further need for the contents of the test database copy currently in use. Your production organization and its data
will not be affected.

8. Once your new test database is complete, or your refreshed test database is activated, you can click the link in the notification
email to access your test database.

You can log into the test database at test.database.com/login.jsp by appending .test_database_name to your
Database.com username. For example, if your username for your production organization is user1@acme.com, then your
username for a test database named “test” is user1@acme.com.test.

Note: Database.com automatically changes test database usernames but does not change passwords.

13

Introducing Apex What is the Apex Development Process?

Writing Apex

You can write Apex code and tests in any of the following editing environments:

• The Force.com IDE is a plug-in for the Eclipse IDE. The Force.com IDE provides a unified interface for building and
deploying Force.com applications. Designed for developers and development teams, the IDE provides tools to accelerate
Force.com application development, including source code editors, test execution tools, wizards and integrated help. This
tool includes basic color-coding, outline view, integrated unit testing, and auto-compilation on save with error message
display. See the website for information about installation and usage.

Note: The Force.com IDE is a free resource provided by salesforce.com to support its users and partners but isn't
considered part of our services for purposes of the salesforce.com Master Subscription Agreement.

• The Database.com user interface. All classes and triggers are compiled when they are saved, and any syntax errors are
flagged. You cannot save your code until it compiles without errors. The Database.com user interface also numbers the
lines in the code, and uses color coding to distinguish different elements, such as comments, keywords, literal strings, and
so on.

◊ For a trigger on a custom object, click Develop > Objects, and click the name of the object. In the Triggers related
list, click New, and then enter your code in the Body text box.

◊ For a class, click Develop > Apex Classes. Click New, and then enter your code in the Body text box.

Note: You cannot make changes to Apex using the Database.com user interface in a Database.com production
organization.

• Any text editor, such as Notepad. You can write your Apex code, then either copy and paste it into your application, or
use one of the API calls to deploy it.

Tip: If you want to extend the Eclipse plug-in or develop an Apex IDE of your own, the SOAP API includes methods
for compiling triggers and classes, and executing test methods, while the Metadata API includes methods for deploying
code to production environments. For more information, see Deploying Apex on page 421 and SOAP API and SOAP
Headers for Apex on page 443.

Writing Tests

Testing is the key to successful long term development, and is a critical component of the development process. We strongly
recommend that you use a test-driven development process, that is, test development that occurs at the same time as code
development.

To facilitate the development of robust, error-free code, Apex supports the creation and execution of unit tests. Unit tests are
class methods that verify whether a particular piece of code is working properly. Unit test methods take no arguments, commit
no data to the database, send no emails, and are flagged with the testMethod keyword in the method definition.

In addition, before you deploy Apex, the following must be true:

• 75% of your Apex code must be covered by unit tests, and all of those tests must complete successfully.

Note the following:

◊ When deploying to a production organization, every unit test in your organization namespace is executed.

◊ Calls to System.debug are not counted as part of Apex code coverage.

◊ Test methods and test classes are not counted as part of Apex code coverage.

14

Introducing Apex What is the Apex Development Process?

http://wiki.developerforce.com/index.php/Force.com_IDE

◊ While only 75% of your Apex code must be covered by tests, your focus shouldn't be on the percentage of code that is
covered. Instead, you should make sure that every use case of your application is covered, including positive and negative
cases, as well as bulk and single record. This should lead to 75% or more of your code being covered by unit tests.

• Every trigger has some test coverage.

• All classes and triggers compile successfully.

For more information on writing tests, see Testing Apex on page 140.

Deploying Apex to a Database.com Production Organization

After you have finished all of your unit tests and verified that your Apex code is executing properly, the final step is deploying
Apex to your Database.com production organization.

To deploy Apex from a local project in the Force.com IDE to a Database.com organization, use the Force.com Component
Deployment Wizard. For more information about the Force.com IDE, see
http://wiki.developerforce.com/index.php/Force.com_IDE.

Also, you can deploy Apex through change sets in the Database.com user interface.

For more information and for additional deployment options, see Deploying Apex on page 421.

When Should I Use Apex?

Apex enables you to implement complex business processes and add custom functionality to your Database.com organization.

Apex
Use Apex if you want to:

• Create Web services.
• Perform complex validation over multiple objects.
• Create complex business processes that are not supported by workflow.
• Create custom transactional logic (logic that occurs over the entire transaction, not just with a single record or object.)
• Attach custom logic to another operation, such as inserting a record, so that it occurs whenever the operation is executed.

SOAP API
Use standard SOAP API calls if you want to add functionality to a composite application that processes only one type of
record at a time and does not require any transactional control (such as setting a Savepoint or rolling back changes).

For more information, see the SOAP API Developer's Guide.

What are the Limitations of Apex?

Apex radically changes the way that developers create on-demand business applications, but it is not currently meant to be a
general purpose programming language. As of this release, Apex cannot be used to:

• Change standard functionality—Apex can only prevent the functionality from happening, or add additional functionality

• Create temporary files

• Spawn threads

15

Introducing Apex When Should I Use Apex?

http://wiki.developerforce.com/index.php/Force.com_IDE
http://www.salesforce.com/apidoc

Tip:

All Apex runs on Database.com, which is a shared resource used by all other organizations. To guarantee consistent
performance and scalability, the execution of Apex is bound by governor limits that ensure no single Apex execution
impacts the overall service of Database.com. This means all Apex code is limited by the number of operations (such
as DML or SOQL) that it can perform within one process.

All Apex requests return a collection that contains from 1 to 50,000 records. You cannot assume that your code only
works on a single record at a time. Therefore, you must implement programming patterns that take bulk processing
into account. If you do not, you may run into the governor limits.

See Also:
Understanding Execution Governors and Limits
Trigger and Bulk Request Best Practices

Warehouse Objects for Code Samples

The code samples included in this guide are based on these custom objects:

• Merchandise__c

• Invoice_Statement__c

• Line_Item__c

A master-detail relationship relates Invoice_Statement__c with Line_Item__c. Similarly, Merchandise__c is related
to Line_Item__c through another master-detail relationship.

You must create these objects in your development or test database organization before you can run the code samples. These
objects are based on the Warehouse application in the Force.com Workbook. See the workbook for more information about how
to create these objects and relationships.

What's New?
Review the Summer '12 Release Notes for a summary of new and changed Apex features in Summer '12.

Apex Quick Start
Once you have a test database organization, you may want to learn some of the core concepts of Apex. Because Apex is very
similar to Java, you may recognize much of the functionality.

After reviewing the basics, you are ready to write your first Apex program—a very simple class, trigger, and unit test.

In addition, there is a more complex shipping invoice example that you can also walk through. This example illustrates many
more features of the language.

16

Introducing Apex Warehouse Objects for Code Samples

http://www.salesforce.com/us/developer/docs/workbook/workbook.pdf
https://na1.salesforce.com/help/doc/en/dbcom_summer12_release_notes.pdf

Documentation Typographical Conventions

Apex documentation uses the following typographical conventions.

DescriptionConvention

In descriptions of syntax, monospace font indicates items that you should type as shown,
except for brackets. For example:

Public class HelloWorld

Courier font

In description of syntax, italics represent variables. You supply the actual value. In the
following example, three values need to be supplied: datatype variable_name [=
value];

If the syntax is bold and italic, the text represents a code element that needs a value
supplied by you, such as a class name or variable value:

public static class YourClassHere { ... }

Italics

In descriptions of syntax, anything included in brackets is optional. In the following
example, specifying value is optional:

data_type variable_name [= value];

[]

In descriptions of syntax, the pipe sign means “or”. You can do one of the following
(not all). In the following example, you can create a new unpopulated set in one of two
ways, or you can populate the set:

Set<data_type> set_name
[= new Set<data_type>();] |

|

[= new Set<data_type{value [, value2. . .] };] |
;

Understanding Apex Core Concepts

Apex code typically contains many things that you might be familiar with from other programming languages:

17

Introducing Apex Documentation Typographical Conventions

Figure 2: Programming elements in Apex

The section describes the basic functionality of Apex, as well as some of the core concepts.

Using Version Settings
In the Database.com user interface you can specify a version of the Salesforce.com API against which to save your Apex class
or trigger. This setting indicates not only the version of SOAP API to use, but which version of Apex as well. You can change
the version after saving. Every class or trigger name must be unique. You cannot save the same class or trigger against different
versions.

Naming Variables, Methods and Classes
You cannot use any of the Apex reserved keywords when naming variables, methods or classes. These include words that are
part of Apex and Database.com, such as list, test, or account, as well as reserved keywords.

Using Variables and Expressions
Apex is a strongly-typed language, that is, you must declare the data type of a variable when you first refer to it. Apex data types
include basic types such as Integer, Date, and Boolean, as well as more advanced types such as lists, maps, objects and sObjects.

Variables are declared with a name and a data type. You can assign a value to a variable when you declare it. You can also
assign values later. Use the following syntax when declaring variables:

datatype variable_name [= value];

Tip: Note that the semi-colon at the end of the above is not optional. You must end all statements with a semi-colon.

The following are examples of variable declarations:

// The following variable has the data type of Integer with the name Count,
// and has the value of 0.
Integer Count = 0;
// The following variable has the data type of Decimal with the name Total. Note
// that no value has been assigned to it.
Decimal Total;

18

Introducing Apex Understanding Apex Core Concepts

// The following variable is an invoice statement, which is also referred to as an sObject.
Invoice_Statement__c MyAcct = new Invoice_Statement__c(Description__c='Invoice 1');

In Apex, all primitive data type arguments, such as Integer or String, are passed into methods by value. This means that any
changes to the arguments exist only within the scope of the method. When the method returns, the changes to the arguments
are lost.

Non-primitive data type arguments, such as sObjects, are also passed into methods by value. This means that when the method
returns, the passed-in argument still references the same object as before the method call and can't be changed to point to
another object. However, the values of the object's fields can be changed in the method.

Using Statements
A statement is any coded instruction that performs an action.

In Apex, statements must end with a semicolon and can be one of the following types:

• Assignment, such as assigning a value to a variable
• Conditional (if-else)
• Loops:

◊ Do-while
◊ While
◊ For

• Locking
• Data Manipulation Language (DML)
• Transaction Control
• Method Invoking
• Exception Handling

A block is a series of statements that are grouped together with curly braces and can be used in any place where a single statement
would be allowed. For example:

if (true) {
System.debug(1);
System.debug(2);

} else {
System.debug(3);
System.debug(4);

}

In cases where a block consists of only one statement, the curly braces can be left off. For example:

if (true)
System.debug(1);

else
System.debug(2);

Using Collections
Apex has the following types of collections:

• Lists (arrays)
• Maps
• Sets

19

Introducing Apex Understanding Apex Core Concepts

A list is a collection of elements, such as Integers, Strings, objects, or other collections. Use a list when the sequence of elements
is important. You can have duplicate elements in a list.

The first index position in a list is always 0.

To create a list:

• Use the new keyword

• Use the List keyword followed by the element type contained within <> characters.

Use the following syntax for creating a list:

List <datatype> list_name
[= new List<datatype>();] |
[=new List<datatype>{value [, value2. . .]};] |
;

The following example creates a list of Integer, and assigns it to the variable My_List. Remember, because Apex is strongly
typed, you must declare the data type of My_List as a list of Integer.

List<Integer> My_List = new List<Integer>();

For more information, see Lists on page 37.

A set is a collection of unique, unordered elements. It can contain primitive data types, such as String, Integer, Date, and so
on. It can also contain more complex data types, such as sObjects.

To create a set:

• Use the new keyword

• Use the Set keyword followed by the primitive data type contained within <> characters

Use the following syntax for creating a set:

Set<datatype> set_name
[= new Set<datatype>();] |
[= new Set<datatype>{value [, value2. . .] };] |
;

The following example creates a set of String. The values for the set are passed in using the curly braces {}.

Set<String> My_String = new Set<String>{'a', 'b', 'c'};

For more information, see Sets on page 41.

A map is a collection of key-value pairs. Keys can be any primitive data type. Values can include primitive data types, as well
as objects and other collections. Use a map when finding something by key matters. You can have duplicate values in a map,
but each key must be unique.

To create a map:

• Use the new keyword

• Use the Map keyword followed by a key-value pair, delimited by a comma and enclosed in <> characters.

20

Introducing Apex Understanding Apex Core Concepts

Use the following syntax for creating a map:

Map<key_datatype, value_datatype> map_name
[=new map<key_datatype, value_datatype>();] |
[=new map<key_datatype, value_datatype>
{key1_value => value1_value
[, key2_value => value2_value. . .]};] |
;

The following example creates a map that has a data type of Integer for the key and String for the value. In this example, the
values for the map are being passed in between the curly braces {} as the map is being created.

Map<Integer, String> My_Map = new Map<Integer, String>{1 => 'a', 2 => 'b', 3 => 'c'};

For more information, see Maps on page 42.

Using Branching
An if statement is a true-false test that enables your application to do different things based on a condition. The basic syntax
is as follows:

if (Condition){
// Do this if the condition is true
} else {
// Do this if the condition is not true
}

For more information, see Conditional (If-Else) Statements on page 59.

Using Loops
While the if statement enables your application to do things based on a condition, loops tell your application to do the same
thing again and again based on a condition. Apex supports the following types of loops:

• Do-while
• While
• For

A Do-while loop checks the condition after the code has executed.

A While loop checks the condition at the start, before the code executes.

A For loop enables you to more finely control the condition used with the loop. In addition Apex supports traditional For
loops where you set the conditions, as well as For loops that use lists and SOQL queries as part of the condition.

For more information, see Loops on page 60.

Writing Your First Apex Class and Trigger

This step-by-step tutorial shows how to create a simple Apex class and trigger. It also shows how to deploy these components
to a production organization.

21

Introducing Apex Writing Your First Apex Class and Trigger

This tutorial is based on a custom object called Book that is created in the first step. This custom object is updated through
a trigger.

See Also:
Creating a Custom Object
Adding an Apex Class
Adding an Apex Trigger
Adding a Test Class
Deploying Components to Production

Creating a Custom Object
Prerequisites:

A Database.com account in a test database Database.com organization.

For more information about creating a test database organization, see “Test Database Overview” in the Database.com online
help.

In this step, you create a custom object called Book with one custom field called Price.

1. Log into your test database organization.
2. Click Create > Objects and click New Custom Object.
3. Enter Book for the label.
4. Enter Books for the plural label.
5. Click Save.

Ta dah! You've now created your first custom object. Now let's create a custom field.
6. In the Custom Fields & Relationships section of the Book detail page, click New.
7. Select Number for the data type and click Next.
8. Enter Price for the field label.
9. Enter 16 in the length text box.
10. Enter 2 in the decimal places text box, and click Next.
11. Click Save.

You’ve just created a custom object called Book, and added a custom field to that custom object. Custom objects already have
some standard fields, like Name and CreatedBy, and allow you to add other fields that are more specific to your implementation.
For this tutorial, the Price field is part of our Book object and it is accessed by the Apex class you will write in the next step.

See Also:
Writing Your First Apex Class and Trigger
Adding an Apex Class

Adding an Apex Class
Prerequisites:

• A Database.com account in a test database Database.com organization.
• The Book custom object

22

Introducing Apex Writing Your First Apex Class and Trigger

In this step, you add an Apex class that contains a method for updating the book price. This method is called by the trigger
that you will be adding in the next step.

1. Click Develop > Apex Classes and click New.
2. In the class editor, enter this class definition:

public class MyHelloWorld {

}

The previous code is the class definition to which you will be adding one method in the next step. Apex code is generally
contained in classes. This class is defined as public, which means the class is available to other Apex classes and triggers.
For more information, see Classes, Objects, and Interfaces on page 98.

3. Add this method definition between the class opening and closing brackets.

public static void applyDiscount(Book__c[] books) {
for (Book__c b :books){

b.Price__c *= 0.9;
}

}

This method is called applyDiscount, and is both public and static. Because it is a static method, you don't need to
create an instance of the class to access the method—you can just use the name of the class followed by a dot (.) and the
name of the method. For more information, see Static and Instance on page 109.

This method takes one parameter, a list of Book records, which is assigned to the variable books. Notice the __c in the
object name Book__c. This indicates that it is a custom object that you created.

The next section of code contains the rest of the method definition:

for (Book__c b :books){
b.Price__c *= 0.9;

}

Notice the __c after the field name Price__c. This indicates it is a custom field that you created. The statement
b.Price__c *= 0.9; takes the old value of b.Price__c, multiplies it by 0.9, which means its value will be discounted
by 10%, and then stores the new value into the b.Price__c field. The *= operator is a shortcut. Another way to write
this statement is b.Price__c = b.Price__c * 0.9;. See Understanding Expression Operators on page 50.

4. Click Save to save the new class. You should now have this full class definition.

public class MyHelloWorld {
public static void applyDiscount(Book__c[] books) {

for (Book__c b :books){
b.Price__c *= 0.9;

}
}

}

23

Introducing Apex Writing Your First Apex Class and Trigger

You now have a class that contains some code which iterates over a list of books and updates the Price field for each book.
This code is part of the applyDiscount static method that is called by the trigger that you will create in the next step.

See Also:
Writing Your First Apex Class and Trigger
Creating a Custom Object
Adding an Apex Trigger

Adding an Apex Trigger
Prerequisites:

• A Database.com account in a test database Database.com organization.
• The MyHelloWorld Apex class.

In this step, you create a trigger for the Book__c custom object that calls the applyDiscount method of the MyHelloWorld
class that you created in the previous step.

A trigger is a piece of code that executes before or after records of a particular type are inserted, updated, or deleted from the
platform databaseDatabase.com. Every trigger runs with a set of context variables that provide access to the records that caused
the trigger to fire. All triggers run in bulk, that is, they process several records at once.

1. Click Create > Objects and click the name of the object you just created, Book.
2. In the triggers section, click New.
3. In the trigger editor, delete the default template code and enter this trigger definition:

trigger HelloWorldTrigger on Book__c (before insert) {

Book__c[] books = Trigger.new;

MyHelloWorld.applyDiscount(books);
}

The first line of code defines the trigger:

trigger HelloWorldTrigger on Book__c (before insert) {

It gives the trigger a name, specifies the object on which it operates, and defines the events that cause it to fire. For example,
this trigger is called HelloWorldTrigger, it operates on the Book__c object, and runs before new books are inserted into
the database.

The next line in the trigger creates a list of book records named books and assigns it the contents of a trigger context
variable called Trigger.new. Trigger context variables such as Trigger.new are implicitly defined in all triggers and
provide access to the records that caused the trigger to fire. In this case, Trigger.new contains all the new books that
are about to be inserted.

Book__c[] books = Trigger.new;

The next line in the code calls the method applyDiscount in the MyHelloWorld class. It passes in the array of new
books.

MyHelloWorld.applyDiscount(books);

24

Introducing Apex Writing Your First Apex Class and Trigger

You now have all the code that is needed to update the price of all books that get inserted. However, there is still one piece
of the puzzle missing. Unit tests are an important part of writing code and are required. In the next step, you will see why this
is so and you will be able to add a test class.

See Also:
Writing Your First Apex Class and Trigger
Adding an Apex Class
Adding a Test Class

Adding a Test Class
Prerequisites:

• A Database.com account in a test database Database.com organization.
• The HelloWorldTrigger Apex trigger.

In this step, you add a test class with one test method. You also run the test and verify code coverage. The test method exercises
and validates the code in the trigger and class. Also, it enables you to reach 100% code coverage for the trigger and class.

Note: Testing is an important part of the development process. Before you can deploy Apex, the following must be
true:

• 75% of your Apex code must be covered by unit tests, and all of those tests must complete successfully.

Note the following:

◊ When deploying to a production organization, every unit test in your organization namespace is executed.
◊ Calls to System.debug are not counted as part of Apex code coverage.
◊ Test methods and test classes are not counted as part of Apex code coverage.
◊ While only 75% of your Apex code must be covered by tests, your focus shouldn't be on the percentage of code

that is covered. Instead, you should make sure that every use case of your application is covered, including
positive and negative cases, as well as bulk and single record. This should lead to 75% or more of your code
being covered by unit tests.

• Every trigger has some test coverage.
• All classes and triggers compile successfully.

1. Click Develop > Apex Classes and click New.
2. In the class editor, add this test class definition, and then click Save.

@isTest
private class HelloWorldTestClass {

static testMethod void validateHelloWorld() {
Book__c b = new Book__c(Name='Behind the Cloud', Price__c=100);
System.debug('Price before inserting new book: ' + b.Price__c);

// Insert book
insert b;

// Retrieve the new book
b = [SELECT Price__c FROM Book__c WHERE Id =:b.Id];
System.debug('Price after trigger fired: ' + b.Price__c);

// Test that the trigger correctly updated the price
System.assertEquals(90, b.Price__c);

25

Introducing Apex Writing Your First Apex Class and Trigger

}
}

This class is defined using the @isTest annotation. Classes defined as such can only contain test methods. One advantage
to creating a separate class for testing as opposed to adding test methods to an existing class is that classes defined with
isTest don't count against your organization limit of 3 MB for all Apex code. You can also add the @isTest annotation
to individual methods. For more information, see IsTest Annotation on page 126 and Understanding Execution Governors
and Limits on page 203.

The method validateHelloWorld is defined as a testMethod. This means that if any changes are made to the
database, they are automatically rolled back when execution completes and you don't have to delete any test data created
in the test method.

First the test method creates a new book and inserts it into the database temporarily. The System.debug statement writes
the value of the price in the debug log.

Book__c b = new Book__c(Name='Behind the Cloud', Price__c=100);
System.debug('Price before inserting new book: ' + b.Price__c);

// Insert book
insert b;

Once the book is inserted, the code retrieves the newly inserted book, using the ID that was initially assigned to the book
when it was inserted, and then logs the new price, that the trigger modified:

// Retrieve the new book
b = [SELECT Price__c FROM Book__c WHERE Id =:b.Id];
System.debug('Price after trigger fired: ' + b.Price__c);

When the MyHelloWorld class runs, it updates the Price__c field and reduces its value by 10%. The following line is
the actual test, verifying that the method applyDiscount actually ran and produced the expected result:

// Test that the trigger correctly updated the price
System.assertEquals(90, b.Price__c);

3. Click Run Test in the class page to run all the test methods in this class. In this case, we have only one test method.
The Apex Test Result page appears after the test finishes execution. It contains the test result details such as the number
of test failures, code coverage information, and a link to a downloadable log file.

4. Click Download and select to open the log file. You can find logging information about the trigger event, the call to the
applyDiscount class method, and the debug output of the price before and after the trigger.

Alternatively, you can use the Developer Console for debugging Apex code. See “Developer Console” in the Database.com
online help.

5. You can also run the test through the Apex Test Execution page, which runs the test asynchronously, which means that
you don't have to wait for the test run to finish to get the test result, but you can perform other tasks in the user interface
while the test is still running and then visit this page later to check the test status.

a. Click Develop > Apex Test Execution.
b. Click Run Tests.
c. Select the class HelloWorldTestClass, and then click Run.

After a test finishes running, you can:

• Click the test to see result details; if a test fails, the first error message and the stack trace display.

26

Introducing Apex Writing Your First Apex Class and Trigger

• Click View to see the source Apex code.

6. After the test execution completes, verify the amount of code coverage.

a. Click Develop > Apex Classes.
b. Click Calculate your organization's code coverage to see the amount of code in your organization that is covered by

unit tests.
c. In the Code Coverage column, click 100% to see the lines of code covered by unit tests.

Take a look at the list of triggers by clicking Develop > Apex Triggers. You'll see that the trigger you wrote also has 100%
of its code covered.

By now, you completed all the steps necessary for having some Apex code that has been tested and that runs in your development
environment. In the real world, after you’ve sufficiently tested your code and you’re satisfied with it, you want to deploy the
code along with any other prerequisite components to a production organization. The next step will show you how to do this
for the code and custom object you’ve just created.

See Also:
Writing Your First Apex Class and Trigger
Adding an Apex Trigger
Deploying Components to Production

Deploying Components to Production
Prerequisites:

• A Database.com account in a test database Database.com organization.
• The HelloWorldTestClass Apex test class.
• A deployment connection between the test database and production organizations that allows inbound change sets to be

received by the production organization. See “Change Sets Overview” in the Database.com online help.
• Create and Upload Change Sets user permissions to create, edit, or upload outbound change sets.

In this step, you deploy the Apex code and the custom object you created previously to your production organization using
change sets.

1. Click Deploy > Outbound Changesets.
2. If a splash page appears, click Continue.
3. In the Change Sets list, click New.
4. Enter a name for your change set, for example, HelloWorldChangeSet, and optionally a description. Click Save.
5. In the change set components section, click Add.
6. Select Apex Class from the component type drop-down list, then select the MyHelloWorld and the HelloWorldTestClass

classes from the list and click Add to Change Set.
7. Click View/Add Dependencies to add the dependent components.
8. Select the top checkbox to select all components. Click Add To Change Set.
9. In the change set detail section of the change set page, click Upload.
10. Select the target organization, in this case production, and click Upload.
11. After the change set upload completes, deploy it in your production organization.

a. Log into your production organization.
b. Click Deploy > Inbound Change Sets.
c. If a splash page appears, click Continue.

27

Introducing Apex Writing Your First Apex Class and Trigger

d. In the change sets awaiting deployment list, click your change set's name.
e. Click Deploy.

In this tutorial, you learned how to create a custom object, how to add an Apex trigger, class, and test class, and how to test
your code. Finally, you also learned how to upload the code and the custom object using Change Sets.

See Also:
Writing Your First Apex Class and Trigger
Adding a Test Class

28

Introducing Apex Writing Your First Apex Class and Trigger

Chapter 2

Language Constructs

Apex is a strongly typed, object-oriented, and case-insensitive programming
language. The Apex language constructs are building blocks that enable you to

In this chapter ...

• Data Types write programs in Apex. Using those language constructs, you can declare variables
• Variables and constants of built-in data types—primitives and sObjects—enumerations,

and custom data types based on system and user-provided Apex types. Apex• Expressions
provides expressions, assignment, and conditional statements. Like other• Assignment Statements
programming languages, Apex provides exception handling and has different

• Conditional (If-Else) Statements types of loops. Unlike other languages, Apex has a special type of loop called
• Loops SOQL for loop, which allows for batching query results. Apex is integrated with
• SOQL and SOSL Queries the database—it allows you to write inline queries, perform record locking, and

control transactions.• Locking Statements
• Transaction Control The following language constructs form the base parts of Apex:
• Exception Statements

• Data Types
• Variables
• Expressions
• Assignment Statements
• Conditional (If-Else) Statements
• Loops
• SOQL and SOSL Queries
• Locking Statements
• Transaction Control
• Exception Statements

Apex is contained in either a trigger or a class. For more information, see Triggers
on page 78 and Classes, Objects, and Interfaces on page 98.

29

Data Types
In Apex, all variables and expressions have a data type that is one of the following:

• A primitive, such as an Integer, Double, Long, Date, Datetime, String, ID, or Boolean (see Primitive Data Types on page
30)

• An sObject, either as a generic sObject or as a specific sObject, such as Invoice_Statement__c (see sObject Types on page
32)

• A collection, including:

◊ A list (or array) of primitives, sObjects, user defined objects, objects created from Apex classes, or collections (see Lists
on page 37)

◊ A set of primitives (see Sets on page 41)

◊ A map from a primitive to a primitive, sObject, or collection (see Maps on page 42)

• A typed list of values, also known as an enum (see Enums on page 44)

• Objects created from user-defined Apex classes (see Classes, Objects, and Interfaces on page 98)

• Objects created from system supplied Apex classes (see Apex Classes on page 375)

• Null (for the null constant, which can be assigned to any variable)

Methods can return values of any of the listed types, or return no value and be of type Void.

Type checking is strictly enforced at compile time. For example, the parser generates an error if an object field of type Integer
is assigned a value of type String. However, all compile-time exceptions are returned as specific fault codes, with the line
number and column of the error. For more information, see Debugging Apex on page 188.

Primitive Data Types

Apex uses the same primitive data types as the SOAP API. All primitive data types are passed by value.

All Apex variables, whether they’re class member variables or method variables, are initialized to null. Make sure that you
initialize your variables to appropriate values before using them. For example, initialize a Boolean variable to false.

Apex primitive data types include:

DescriptionData Type

A collection of binary data stored as a single object. You can convert this datatype to String
or from String using the toString and valueOf methods, respectively. Blobs can be accepted

Blob

as Web service arguments, stored in a document (the body of a document is a Blob), or sent
as attachments. For more information, see Crypto Class on page 395.

A value that can only be assigned true, false, or null. For example:

Boolean isWinner = true;

Boolean

A value that indicates a particular day. Unlike Datetime values, Date values contain no
information about time. Date values must always be created with a system static method.

You cannot manipulate a Date value, such as add days, merely by adding a number to a Date
variable. You must use the Date methods instead.

Date

30

Language Constructs Data Types

DescriptionData Type

A value that indicates a particular day and time, such as a timestamp. Datetime values must
always be created with a system static method.

You cannot manipulate a Datetime value, such as add minutes, merely by adding a number
to a Datetime variable. You must use the Datetime methods instead.

Datetime

A number that includes a decimal point. Decimal is an arbitrary precision number. Currency
fields are automatically assigned the type Decimal.

If you do not explicitly set the scale, that is, the number of decimal places, for a Decimal using
the setScale method, the scale is determined by the item from which the Decimal is created.

Decimal

• If the Decimal is created as part of a query, the scale is based on the scale of the field
returned from the query.

• If the Decimal is created from a String, the scale is the number of characters after the
decimal point of the String.

• If the Decimal is created from a non-decimal number, the scale is determined by converting
the number to a String and then using the number of characters after the decimal point.

A 64-bit number that includes a decimal point. Doubles have a minimum value of -263 and
a maximum value of 263-1. For example:

Double d=3.14159;

Double

Note that scientific notation (e) for Doubles is not supported.

Any valid 18-character Force.com record identifier. For example:

ID id='00300000003T2PGAA0';

ID

Note that if you set ID to a 15-character value, Apex automatically converts the value to its
18-character representation. All invalid ID values are rejected with a runtime exception.

A 32-bit number that does not include a decimal point. Integers have a minimum value of
-2,147,483,648 and a maximum value of 2,147,483,647. For example:

Integer i = 1;

Integer

A 64-bit number that does not include a decimal point. Longs have a minimum value of -263

and a maximum value of 263-1. Use this datatype when you need a range of values wider than
those provided by Integer. For example:

Long l = 2147483648L;

Long

Any set of characters surrounded by single quotes. For example,

String s = 'The quick brown fox jumped over the lazy dog.';

String

31

Language Constructs Primitive Data Types

DescriptionData Type

String size: Strings have no limit on the number of characters they can include. Instead, the
heap size limit is used to ensure that your Apex programs don't grow too large.

Empty Strings and Trailing Whitespace: sObject String field values follow the same rules
as in the SOAP API: they can never be empty (only null), and they can never include leading
and trailing whitespace. These conventions are necessary for database storage.

Conversely, Strings in Apex can be null or empty, and can include leading and trailing
whitespace (such as might be used to construct a message).

Escape Sequences: All Strings in Apex use the same escape sequences as SOQL strings: \b
(backspace), \t (tab), \n (line feed), \f (form feed), \r (carriage return), \" (double quote),
\' (single quote), and \\ (backslash).

Comparison Operators: Unlike Java, Apex Strings support use of the comparison operators
==, !=, <, <=, >, and >=. Since Apex uses SOQL comparison semantics, results for Strings
are collated according to the context user's locale, and `are not case sensitive. For more
information, see Operators on page 50.

String Methods: As in Java, Strings can be manipulated with a number of standard methods.
See String Methods for information.

Apex classes and triggers saved (compiled) using API version 15.0 and higher produce a
runtime error if you assign a String value that is too long for the field.

A value that indicates a particular time. Time values must always be created with a system
static method. See Time Methods on page 275.

Time

In addition, two non-standard primitive data types cannot be used as variable or method types, but do appear in system static
methods:

• AnyType. The valueOf static method converts an sObject field of type AnyType to a standard primitive. AnyType is
used within Database.com exclusively for sObject fields in field history tracking tables.

• Currency. The Currency.newInstance static method creates a literal of type Currency. This method is for use solely
within SOQL and SOSL WHERE clauses to filter against sObject currency fields. You cannot instantiate Currency in any
other type of Apex.

For more information on the AnyType data type, see Field Types in the Object Reference for Database.com.

sObject Types

In this developer's guide, the term sObject refers to any object that can be stored in Database.com. An sObject variable
represents a row of data and can only be declared in Apex using the SOAP API name of the object. For example:

Invoice_Statement__c co = new Invoice_Statement__c();

Similar to the SOAP API, Apex allows the use of the generic sObject abstract type to represent any object. The sObject data
type can be used in code that processes different types of sObjects.

32

Language Constructs sObject Types

http://www.salesforce.com/us/developer/docs/dbcom_objects/index_CSH.htm#field_types.htm

The new operator still requires a concrete sObject type, so all instances are specific sObjects. For example:

sObject s = new Invoice_Statement__c();

You can also use casting between the generic sObject type and the specific sObject type. For example:

// Cast the generic variable s from the example above
// into an invoice statement
Invoice_Statement__c a = (Invoice_Statement__c)s;
// The following generates a runtime error
Merchandise__c c = (Merchandise__c)s;

Because sObjects work like objects, you can also have the following:

Object obj = s;
// and
a = (Invoice_Statement__c)obj;

DML operations work on variables declared as the generic sObject data type as well as with regular sObjects.

sObject variables are initialized to null, but can be assigned a valid object reference with the new operator. For example:

Invoice_Statement__c a = new Invoice_Statement__c();

Developers can also specify initial field values with comma-separated name = value pairs when instantiating a new sObject.
For example:

Invoice_Statement__c a = new Invoice_Statement__c(
Description__c = 'New invoice');

For information on accessing existing sObjects from Database.com, see SOQL and SOSL Queries on page 64.

Note: The ID of an sObject is a read-only value and can never be modified explicitly in Apex unless it is cleared
during a clone operation, or is assigned with a constructor. Database.com assigns ID values automatically when an
object record is initially inserted to the database for the first time. For more information see Lists on page 37.

Custom Labels
Custom labels are not standard sObjects. You cannot create a new instance of a custom label. You can only access the value
of a custom label using system.label.label_name. For example:

String errorMsg = System.Label.generic_error;

For more information on custom labels, see “Custom Labels Overview” in the online help.

Accessing sObject Fields

As in Java, sObject fields can be accessed or changed with simple dot notation. For example:

Invoice_Statement__c a = new Invoice_Statement__c();
a.Description__c = 'Invoice 1'; // Access the description field and assign it a value

33

Language Constructs sObject Types

System generated fields, such as Created By or Last Modified Date, cannot be modified. If you try, the Apex runtime
engine generates an error. Additionally, formula field values and values for other fields that are read-only for the context user
cannot be changed.

If you use the generic sObject type, instead of a specific object such as Invoice_Statement__c, you can only retrieve the ID
field. For example:

Invoice_Statement__c a = new Invoice_Statement__c(
Description__c = 'Invoice 1');

insert a;
sObject s = [SELECT Id, Description__c

FROM Invoice_Statement__c
WHERE Description__c = 'Invoice 1'
LIMIT 1];

// This is allowed
ID id = s.Id;
// The following lines result in errors when you try to save
String x = s.Description__c;
s.Id = [SELECT Id

FROM Invoice_Statement__c
WHERE Description__c = 'Invoice 1'
LIMIT 1];

If you want to perform operations on an sObject, it is recommended that you first convert it into a specific object. For example:

Invoice_Statement__c a = new Invoice_Statement__c(
Description__c = 'Invoice 1');

insert a;
sObject s = [SELECT Id, Description__c FROM Invoice_Statement__c

WHERE Description__c = 'Invoice 1' LIMIT 1];
ID id = s.ID;
Invoice_Statement__c myInvoice = (Invoice_Statement__c)s;
myInvoice.Description__c = 'Updated description';
update myInvoice;

The following example shows how you can use SOSL over a set of records to determine their object types. Once you have
converted the generic sObject into a Merchandise__c or Invoice_Statement__c object, you can modify its fields
accordingly:

static testmethod void testFields() {

List<Merchandise__c> merchandise;
List<Invoice_Statement__c> invoices;

List<List<sObject>> results = [FIND 'pencil'
IN ALL FIELDS
RETURNING Merchandise__c(Id, Description__c, Price__c),
Invoice_Statement__c(Id, Description__c, Status__c)];

sObject[] records = ((List<sObject>)results[0]);
system.debug('Records returned: ' + records.size());

if (!records.isEmpty()) {
for (Integer i = 0; i < records.size(); i++) {
sObject record = records[i];
if (record.getSObjectType() == Merchandise__c.sObjectType) {
merchandise.add((Merchandise__c) record);

} else if (record.getSObjectType() == Invoice_Statement__c.sObjectType){
invoices.add((Invoice_Statement__c) record);

}
}

}
}

34

Language Constructs sObject Types

Accessing sObject Fields Through Relationships

sObject records represent relationships to other records with two fields: an ID and an address that points to a representation
of the associated sObject. For example, the Line_Item__c sObject has both an Invoice_Statement__c field of type ID,
and an Invoice_Statement__r field that points to the associated sObject record itself.

The ID field can be used to change the invoice statement with which the line item is associated, while the sObject reference
field can be used to access data from the invoice statement. The reference field is only populated as the result of a SOQL or
SOSL query (see note below).

For example, the following Apex code shows how an invoice statement and a line item can be associated with one another,
and then how the line item can be used to modify a field on the invoice statement:

Note: In order to provide the most complete example, this code uses some elements that are described later in this
guide:

• For information on insert and update, see Insert Operation on page 239 and Update Operation on page 239.

• For information on SOQL and SOSL, see SOQL and SOSL Queries on page 64.

// Create a merchandise item to be set for the line item
Merchandise__c m = new Merchandise__c(

Name='Pencils',
Description__c='Durable pencils',
Price__c=1.25,
Total_Inventory__c=100);

// Inserting the record automatically assigns a
// value to its ID field.
insert m;

// Create an invoice statement
Invoice_Statement__c inv = new Invoice_Statement__c(

Description__c = 'Invoice 1');
insert inv;

// Create a new line item and associate it with
// the invoice statement and merchandise item
// through their respective IDs.
Line_Item__c li = new Line_Item__c(

Name='Two pencils',
Units_Sold__c=2,
Unit_Price__c=5,
Merchandise__c = m.Id,
Invoice_Statement__c=inv.Id);

insert li;

// A SOQL query accesses data for the inserted line item,
// including a populated Invoice_Statement__r field
li = [SELECT Invoice_Statement__r.Description__c

FROM Line_Item__c WHERE Id = :li.Id];

// Now fields in both records can be changed through the
// returned line item object
li.Invoice_Statement__r.Description__c = 'Updated description';
li.Units_Sold__c = 3;

// To update the database, the two types of records must be
// updated separately
update li; // This only changes the line item's units sold
update li.Invoice_Statement__r; // This updates the invoice's description

35

Language Constructs sObject Types

Note: The expression li.Invoice_Statement__r.Description__c, as well as any other expression that
traverses a relationship, displays slightly different characteristics when it is read as a value than when it is modified:

• When being read as a value, if li.Invoice_Statement__r is null, then
li.Invoice_Statement__r.Description__c evaluates to null, but does not yield a
NullPointerException. This design allows developers to navigate multiple relationships without the tedium
of having to check for null values.

• When being modified, if li.Invoice_Statement__r is null, then
li.Invoice_Statement__r.Description__c does yield a NullPointerException.

In addition, the sObject field key can be used with insert, update, or upsert to resolve foreign keys by external ID. For
example:

Invoice_Statement__c refInvoice = new Invoice_Statement__c(externalId__c = '12345')
Merchandise__c refMerch = new Merchandise__c(externalId__c = '12345', ...)

Line_Item__c li = new Line_Item__c(
Name='Two pencils',
Units_Sold__c=2,
Unit_Price__c=5,
Merchandise__c = refMerch,
Invoice_Statement__c=refInvoice);

This inserts a new line item with the invoice statement ID equal to the invoice statement with the external_id equal to
‘12345’. If there is no such invoice statement, the insert fails. The same is true also for the merchandise ID.

Tip:

The following code is equivalent to the code above. However, because it uses a SOQL query, it is not as efficient. If
this code was called multiple times, it could reach the execution limit for the maximum number of SOQL queries.
For more information on execution limits, see Understanding Execution Governors and Limits on page 203.

Invoice_Statement__c refInvoice = [SELECT Id FROM Invoice_Statement__c WHERE
externalId__c='12345'];
Merchandise__c refMerch = [SELECT Id FROM Merchandise__c WHERE externalId__c='12345'];

Line_Item__c li = new Line_Item__c(
Name='Two pencils',
Units_Sold__c=2,
Unit_Price__c=5,
Merchandise__c = refMerch.Id,
Invoice_Statement__c=refInvoice.Id);

insert li;

Validating sObjects and Fields

When Apex code is parsed and validated, all sObject and field references are validated against actual object and field names,
and a parse-time exception is thrown when an invalid name is used.

In addition, the Apex parser tracks the custom objects and fields that are used, both in the code's syntax as well as in embedded
SOQL and SOSL statements. The platform prevents users from making the following types of modifications when those
changes cause Apex code to become invalid:

• Changing a field or object name

• Converting from one data type to another

36

Language Constructs sObject Types

• Deleting a field or object

• Making certain organization-wide changes, such as record sharing, field history tracking, or record types

Collections

Apex has the following types of collections:

• Lists

• Maps

• Sets

Note: There is no limit on the number of items a collection can hold. However, there is a general limit on heap size.

Lists

A list is an ordered collection of typed primitives, sObjects, user-defined objects, Apex objects or collections that are distinguished
by their indices. For example, the following table is a visual representation of a list of Strings:

Index 5Index 4Index 3Index 2Index 1Index 0

'Purple''Blue''Green''Yellow''Orange''Red'

The index position of the first element in a list is always 0.

Because lists can contain any collection, they can be nested within one another and become multidimensional. For example,
you can have a list of lists of sets of Integers. A list can only contain up to five levels of nested collections inside it.

To declare a list, use the List keyword followed by the primitive data, sObject, nested list, map, or set type within <> characters.
For example:

// Create an empty list of String
List<String> my_list = new List<String>();
// Create a nested list
List<List<Set<Integer>>> my_list_2 = new List<List<Set<Integer>>>();
// Create a list of invoice statement records from a SOQL query
List<Invoice_Statement__c> accs =

[SELECT Id, Description__c FROM Invoice_Statement__c LIMIT 1000];

To access elements in a list, use the system methods provided by Apex. For example:

List<Integer> MyList = new List<Integer>(); // Define a new list
MyList.add(47); // Adds a second element of value 47 to the end

// of the list
MyList.get(0); // Retrieves the element at index 0
MyList.set(0, 1); // Adds the integer 1 to the list at index 0
MyList.clear(); // Removes all elements from the list

For more information, including a complete list of all supported methods, see List Methods on page 276.

37

Language Constructs Collections

Using Array Notation for One-Dimensional Lists of Primitives or sObjects

When using one-dimensional lists of primitives or sObjects, you can also use more traditional array notation to declare and
reference list elements. For example, you can declare a one-dimensional list of primitives or sObjects by following the data or
sObject type name with the [] characters:

String[] colors = new List<String>();

To reference an element of a one-dimensional list of primitives or sObjects, you can also follow the name of the list with the
element's index position in square brackets. For example:

colors[3] = 'Green';

All lists are initialized to null. Lists can be assigned values and allocated memory using literal notation. For example:

DescriptionExample

Defines an Integer list with no elements
List<Integer> ints = new Integer[0];

Defines an empty list that can hold Invoice_Statement__c
objectsList<Invoice_Statement__c> accts =

new Invoice_Statement__c[]{};

Defines an Integer list with memory allocated for six Integers
List<Integer> ints = new Integer[6];

Defines a list that can hold Invoice_Statement__c objects and
allocates memory for three invoice statements, including aList<Invoice_Statement__c> invs =

new Invoice_Statement__c[] new Invoice_Statement__c object in the first position, null{new Invoice_Statement__c(),
in the second position, and another new Invoice_Statement__c
object in the third position

null,
new Invoice_Statement__c()};

Defines a list of Invoice_Statement__c objects with a new list
List<Invoice_Statement__c> invs =

new
List<Invoice_Statement__c>(otherList);

Lists of sObjects

Apex automatically generates IDs for each object in a list of sObjects when the list is successfully inserted or upserted into the
database with a data manipulation language (DML) statement. Consequently, a list of sObjects cannot be inserted or upserted
if it contains the same sObject more than once, even if it has a null ID. This situation would imply that two IDs would need
to be written to the same structure in memory, which is illegal.

38

Language Constructs Collections

For example, the insert statement in the following block of code generates a ListException because it tries to insert a
list with two references to the same sObject (a):

try {
// Create a list with two references to the same sObject element
Invoice_Statement__c a = new Invoice_Statement__c();
Invoice_Statement__c[] invs = new Invoice_Statement__c[]{a, a};

// Attempt to insert it
insert invs;

// Will not get here
System.assert(false);

} catch (ListException e) {
// But will get here

}

For more information on DML statements, see Apex Data Manipulation Language (DML) Operations on page 237.

You can use the generic sObject data type with lists. You can also create a generic instance of a list.

List Sorting

Using the List.sort method, you can sort lists of primitive data types, custom types (your Apex classes) that implement
the Comparable Interface, and sObjects.

Sorting is in ascending order for primitive data types.

For custom types, the sort criteria and sort order depends on the implementation that you provide for the compareTo method
of the Comparable interface. For more information on implementing the Comparable Interface for your own classes, see
Comparable Interface.

For sObjects, sorting is in ascending order and uses a sequence of comparison steps outlined in the next section. However,
you can also implement a custom sort order for sObjects by wrapping your sObject in an Apex class and implementing the
Comparable Interface, as shown in Custom Sort Order of sObjects.

Default Sort Order of sObjects

The List.sort method sorts sObjects in ascending order and compares sObjects using an ordered sequence of steps that
specify the labels or fields used. The comparison starts with the first step in the sequence and ends when two sObjects are
sorted using specified labels or fields. The following is the comparison sequence used:

1. The label of the sObject type.
2. The Name field, if applicable.
3. Standard fields, starting with the fields that come first in alphabetical order, except for the Id and Name fields.
4. Custom fields, starting with the fields that come first in alphabetical order.

Not all steps in this sequence are necessarily carried out. For example, if a list contains two sObjects of the same type and with
unique Name values, they’re sorted based on the Name field and sorting stops at step 2. Otherwise, if the names are identical
or the sObject doesn’t have a Name field, sorting proceeds to step 3 to sort by standard fields.

For text fields, the sort algorithm uses the Unicode sort order. Also, empty fields precede non-empty fields in the sort order.

This is an example of sorting a list of Merchandise__c custom objects. This example shows how the Name field is used to
place the Notebooks merchandise ahead of Pens in the list. Since there are two merchandise sObjects with the Name field

39

Language Constructs Collections

value of Pens, the Description field is used to sort these remaining merchandise items because the Description field comes
before the Price and Total_Inventory fields in alphabetical order.

Merchandise__c[] merchList = new List<Merchandise__c>();
merchList.add(new Merchandise__c(

Name='Pens',
Description__c='Red pens',
Price__c=2,
Total_Inventory__c=1000));

merchList.add(new Merchandise__c(
Name='Notebooks',
Description__c='Cool notebooks',
Price__c=3.50,
Total_Inventory__c=2000));

merchList.add(new Merchandise__c(
Name='Pens',
Description__c='Blue pens',
Price__c=1.75,
Total_Inventory__c=800));

System.debug(merchList);

merchList.sort();
System.assertEquals('Notebooks', merchList[0].Name);
System.assertEquals('Pens', merchList[1].Name);
System.assertEquals('Blue pens', merchList[1].Description__c);
System.assertEquals('Pens', merchList[2].Name);
System.assertEquals('Red pens', merchList[2].Description__c);
System.debug(merchList);

Custom Sort Order of sObjects

To implement a custom sort order for sObjects in lists, create a wrapper class for the sObject and implement the Comparable
Interface. The wrapper class contains the sObject in question and implements the compareTo method, in which you specify
the sort logic.

This example shows how to create a wrapper class for the Merchandise__c custom object. The implementation of the
compareTo method in this class compares two merchandise objects based on the Price field—the class member variable
contained in this instance, and the merchandise object passed into the method.

global class MerchandiseWrapper implements Comparable {

public Merchandise__c merchItem;

// Constructor
public MerchandiseWrapper(Merchandise__c m) {

merchItem = m;
}

// Compare merchandise items based on the merchandise price.
global Integer compareTo(Object compareTo) {

// Cast argument to MerchandiseWrapper
MerchandiseWrapper compareToMerch = (MerchandiseWrapper)compareTo;

// The return value of 0 indicates that both elements are equal.
Integer returnValue = 0;
if (merchItem.Price__c > compareToMerch.merchItem.Price__c) {

// Set return value to a positive value.
returnValue = 1;

} else if (merchItem.Price__c < compareToMerch.merchItem.Price__c) {
// Set return value to a negative value.
returnValue = -1;

}

return returnValue;

40

Language Constructs Collections

}
}

This example provides a test for the MerchandiseWrapper class. It sorts a list of MerchandiseWrapper objects and verifies
that the list elements are sorted by the merchandise price.

@isTest
private class MerchandiseWrapperTest {

static testmethod void test1() {
MerchandiseWrapper[] merchList = new List<MerchandiseWrapper>();
merchList.add(new MerchandiseWrapper(new Merchandise__c(

Name='Pens',
Description__c='Red pens',
Price__c=2,
Total_Inventory__c=1000)));

merchList.add(new MerchandiseWrapper(new Merchandise__c(
Name='Notebooks',
Description__c='Cool notebooks',
Price__c=3.50,
Total_Inventory__c=2000)));

merchList.add(new MerchandiseWrapper(new Merchandise__c(
Name='Pens',
Description__c='Blue pens',
Price__c=1.75,
Total_Inventory__c=800)));

// Sort the wrapper objects using the implementation of the
// compareTo method.
merchList.sort();

// Verify the sort order
System.assertEquals('Pens', merchList[0].merchItem.Name);
System.assertEquals(1.75, merchList[0].merchItem.Price__c);
System.assertEquals('Pens', merchList[1].merchItem.Name);
System.assertEquals(2, merchList[1].merchItem.Price__c);
System.assertEquals('Notebooks', merchList[2].merchItem.Name);
System.assertEquals(3.5, merchList[2].merchItem.Price__c);

// Write the sorted list contents to the debug log.
System.debug(merchList);

}
}

Sets

A set is an unordered collection of primitives or sObjects that do not contain any duplicate elements. For example, the following
table represents a set of String, that uses city names:

'Tokyo''Paris''New York''San Francisco'

To declare a set, use the Set keyword followed by the primitive data type name within <> characters. For example:

new Set<String>()

41

Language Constructs Collections

The following are ways to declare and populate a set:

Set<String> s1 = new Set<String>{'a', 'b + c'}; // Defines a new set with two elements
Set<String> s2 = new Set<String>(s1); // Defines a new set that contains the

// elements of the set created in the previous step

To access elements in a set, use the system methods provided by Apex. For example:

Set<Integer> s = new Set<Integer>(); // Define a new set
s.add(1); // Add an element to the set
System.assert(s.contains(1)); // Assert that the set contains an element
s.remove(1); // Remove the element from the set

Uniqueness of sObjects is determined by comparing fields. For example, if you try to add two invoice statements with the
same name to a set, only one is added.

// Create two invoice statements, a1 and a2
Invoice_Statement__c a1 = new Invoice_Statement__c(Description__c='desc');
Invoice_Statement__c a2 = new Invoice_Statement__c(Description__c='desc');

// Add both invoices to the new set
Set<Invoice_Statement__c> mySet =

new Set<Invoice_Statement__c>{a1, a2};

// Verify that the set only contains one item
System.assertEquals(mySet.size(), 1);

However, if you add a description to one of the invoice statements, it is considered unique:

// Create two invoice statements, a1 and a2.
// Add a description to a2.
Invoice_Statement__c a1 = new Invoice_Statement__c();
Invoice_Statement__c a2 = new Invoice_Statement__c(Description__c='desc');

// Add both invoices to the new set
Set<Invoice_Statement__c> mySet =

new Set<Invoice_Statement__c>{a1, a2};

// Verify that the set only contains one item
System.assertEquals(mySet.size(), 2);

For more information, including a complete list of all supported set system methods, see Set Methods on page 287.

Note the following limitations on sets:

• Unlike Java, Apex developers do not need to reference the algorithm that is used to implement a set in their declarations
(for example, HashSet or TreeSet). Apex uses a hash structure for all sets.

• A set is an unordered collection. Do not rely on the order in which set results are returned. The order of objects returned
by sets may change without warning.

Maps

A map is a collection of key-value pairs where each unique key maps to a single value. Keys can be any primitive data type,
while values can be a primitive, sObject, collection type or an Apex object. For example, the following table represents a map
of countries and currencies:

42

Language Constructs Collections

'India''England''France''Japan''United States'Country (Key)

'Rupee''Pound''Euro''Yen''Dollar'Currency (Value)

Similar to lists, map values can contain any collection, and can be nested within one another. For example, you can have a
map of Integers to maps, which, in turn, map Strings to lists. A map can only contain up to five levels of nested collections
inside it.

To declare a map, use the Map keyword followed by the data types of the key and the value within <> characters. For example:

Map<String, String> country_currencies = new Map<String, String>();
Map<ID, Set<String>> m = new Map<ID, Set<String>>();
Map<ID, Map<ID, Merchandise__c[]>> m2 = new Map<ID, Map<ID, Merchandise__c[]>>();

You can use the generic sObject data type with maps. You can also create a generic instance of a map.

As with lists, you can populate map key-value pairs when the map is declared by using curly brace ({}) syntax. Within the
curly braces, specify the key first, then specify the value for that key using =>. For example:

Map<String, String> MyStrings = new Map<String, String>
{'a' => 'b', 'c' => 'd'.toUpperCase()};

// Merchandise__c[] is synonymous with List<Merchandise__c>
Merchandise__c[] merchList = new Merchandise__c[5];
Map<Integer, List<Merchandise__c>> m4 = new Map<

Integer, List<Merchandise__c>>{1 => merchList};

In the first example, the value for the key a is b, and the value for the key c is d. In the second, the key 1 has the value of the
list merchList.

To access elements in a map, use the system methods provided by Apex. For example:

//Define a new merchandise item
Merchandise__c mer = new Merchandise__c();
// Define a new map
Map<Integer, Merchandise__c> m = new Map<Integer, Merchandise__c>();
// Insert a new key-value pair in the map
m.put(1, mer);
// Assert that the map contains a key
System.assert(!m.containsKey(3));
// Retrieve a value, given a particular key
Merchandise__c a = m.get(1);
// Return a set that contains all of the keys in the map
Set<Integer> s = m.keySet();

For more information, including a complete list of all supported map system methods, see Map Methods on page 283.

Note the following considerations on maps:

• Unlike Java, Apex developers do not need to reference the algorithm that is used to implement a map in their declarations
(for example, HashMap or TreeMap). Apex uses a hash structure for all maps.

• Do not rely on the order in which map results are returned. The order of objects returned by maps may change without
warning. Always access map elements by key.

• A map key can hold the null value.

43

Language Constructs Collections

Maps from SObject Arrays

Maps from an ID or String data type to an sObject can be initialized from a list of sObjects. The IDs of the objects (which
must be non-null and distinct) are used as the keys. One common usage of this map type is for in-memory “joins” between
two tables. For instance, this example loads a map of IDs and invoice statements:

Map<ID, Invoice_Statement__c> m = new Map<ID, Invoice_Statement__c>([SELECT Id, Description__c
FROM Invoice_Statement__c]);

In the example, the SOQL query returns a list of contacts with their Id and Description__c fields. The new operator uses
the list to create a map. For more information, see SOQL and SOSL Queries on page 64.

Iterating Collections

Collections can consist of lists, sets, or maps. Modifying a collection's elements while iterating through that collection is not
supported and causes an error. Do not directly add or remove elements while iterating through the collection that includes
them.

Adding Elements During Iteration

To add elements while iterating a list, set or map, keep the new elements in a temporary list, set, or map and add them to the
original after you finish iterating the collection.

Removing Elements During Iteration

To remove elements while iterating a list, create a new list, then copy the elements you wish to keep. Alternatively, add the
elements you wish to remove to a temporary list and remove them after you finish iterating the collection.

Note:

The List.remove method performs linearly. Using it to remove elements has time and resource implications.

To remove elements while iterating a map or set, keep the keys you wish to remove in a temporary list, then remove them
after you finish iterating the collection.

Enums

An enum is an abstract data type with values that each take on exactly one of a finite set of identifiers that you specify. Enums
are typically used to define a set of possible values that do not otherwise have a numerical order, such as the suit of a card, or
a particular season of the year. Although each value corresponds to a distinct integer value, the enum hides this implementation
so that you do not inadvertently misuse the values, such as using them to perform arithmetic. After you create an enum,
variables, method arguments, and return types can be declared of that type.

Note: Unlike Java, the enum type itself has no constructor syntax.

To define an enum, use the enum keyword in your declaration and use curly braces to demarcate the list of possible values.
For example, the following code creates an enum called Season:

public enum Season {WINTER, SPRING, SUMMER, FALL}

44

Language Constructs Enums

By creating the enum Season, you have also created a new data type called Season. You can use this new data type as you
might any other data type. For example:

Season e = Season.WINTER;

Season m(Integer x, Season e) {

If (e == Season.SUMMER) return e;
//...

}

You can also define a class as an enum. Note that when you create an enum class you do not use the class keyword in the
definition.

public enum MyEnumClass { X, Y }

You can use an enum in any place you can use another data type name. If you define a variable whose type is an enum, any
object you assign to it must be an instance of that enum class.

Any webService methods can use enum types as part of their signature. When this occurs, the associated WSDL file includes
definitions for the enum and its values, which can then be used by the API client.

Apex provides the following system-defined enums:

• System.StatusCode

This enum corresponds to the API error code that is exposed in the WSDL document for all API operations. For example:

StatusCode.CANNOT_INSERT_UPDATE_ACTIVATE_ENTITY
StatusCode.INSUFFICIENT_ACCESS_ON_CROSS_REFERENCE_ENTITY

The full list of status codes is available in the WSDL file for your organization. For more information about accessing the
WSDL file for your organization, see “Downloading Database.com WSDLs and Client Authentication Certificates” in
the Database.com online help.

• System.XmlTag:

This enum returns a list of XML tags used for parsing the result XML from a webService method. For more information,
see XmlStreamReader Class on page 402.

• System.ApplicationReadWriteMode: This enum indicates if an organization is in 5 Minute Upgrade read-only mode
during Database.com upgrades and downtimes. For more information, see Using the
System.ApplicationReadWriteMode Enum on page 358.

• System.LoggingLevel:

This enum is used with the system.debug method, to specify the log level for all debug calls. For more information,
see System Methods on page 352.

• System.RoundingMode:

This enum is used by methods that perform mathematical operations to specify the rounding behavior for the operation,
such as the Decimal divide method and the Double round method. For more information, see Rounding Mode on
page 266.

• System.SoapType:

This enum is returned by the field describe result getSoapType method. For more informations, see Schema.SOAPType
Enum Values on page 304.

45

Language Constructs Enums

• System.DisplayType:

This enum is returned by the field describe result getType method. For more information, see Schema.DisplayType
Enum Values on page 302.

• System.JSONToken:

This enum is used for parsing JSON content. For more information, see System.JSONToken Enum on page 338.

• Dom.XmlNodeType:

This enum specifies the node type in a DOM document. For more information, see Node Types on page 412.

Note: System-defined enums cannot be used in Web service methods.

All enum values, including system enums, have common methods associated with them. For more information, see Enum
Methods on page 291.

You cannot add user-defined methods to enum values.

Understanding Rules of Conversion

In general, Apex requires you to explicitly convert one data type to another. For example, a variable of the Integer data type
cannot be implicitly converted to a String. You must use the string.format method. However, a few data types can be
implicitly converted, without using a method.

Numbers form a hierarchy of types. Variables of lower numeric types can always be assigned to higher types without explicit
conversion. The following is the hierarchy for numbers, from lowest to highest:

1. Integer
2. Long
3. Double
4. Decimal

Note: Once a value has been passed from a number of a lower type to a number of a higher type, the value is converted
to the higher type of number.

Note that the hierarchy and implicit conversion is unlike the Java hierarchy of numbers, where the base interface number is
used and implicit object conversion is never allowed.

In addition to numbers, other data types can be implicitly converted. The following rules apply:

• IDs can always be assigned to Strings.

• Strings can be assigned to IDs. However, at runtime, the value is checked to ensure that it is a legitimate ID. If it is not,
a runtime exception is thrown.

• The instanceOf keyword can always be used to test whether a string is an ID.

Additional Considerations for Data Types
Data Types of Numeric Values

Numeric values represent Integer values unless they are appended with L for a Long or with .0 for a Double or Decimal.
For example, the expression Long d = 123; declares a Long variable named d and assigns it to an Integer numeric
value (123), which is implicitly converted to a Long. The Integer value on the right hand side is within the range for

46

Language Constructs Understanding Rules of Conversion

Integers and the assignment succeeds. However, if the numeric value on the right hand side exceeds the maximum value
for an Integer, you get a compilation error. In this case, the solution is to append L to the numeric value so that it
represents a Long value which has a wider range, as shown in this example: Long d = 2147483648L;.

Overflow of Data Type Values
Arithmetic computations that produce values larger than the maximum value of the current type are said to overflow.
For example, Integer i = 2147483647 + 1; yields a value of –2147483648 because 2147483647 is the maximum
value for an Integer, so adding one to it wraps the value around to the minimum negative value for Integers, –2147483648.

If arithmetic computations generate results larger than the maximum value for the current type, the end result will be
incorrect because the computed values that are larger than the maximum will overflow. For example, the expression
Long MillsPerYear = 365 * 24 * 60 * 60 * 1000; results in an incorrect result because the products of
Integers on the right hand side are larger than the maximum Integer value and they overflow. As a result, the final
product isn't the expected one. You can avoid this by ensuring that the type of numeric values or variables you are using
in arithmetic operations are large enough to hold the results. In this example, append L to numeric values to make them
Long so the intermediate products will be Long as well and no overflow occurs. The following example shows how to
correctly compute the amount of milliseconds in a year by multiplying Long numeric values.

Long MillsPerYear = 365L * 24L * 60L * 60L * 1000L;
Long ExpectedValue = 31536000000L;
System.assertEquals(MillsPerYear, ExpectedValue);

Loss of Fractions in Divisions
When dividing numeric Integer or Long values, the fractional portion of the result, if any, is removed before performing
any implicit conversions to a Double or Decimal. For example, Double d = 5/3; returns 1.0 because the actual result
(1.666...) is an Integer and is rounded to 1 before being implicitly converted to a Double. To preserve the fractional
value, ensure that you are using Double or Decimal numeric values in the division. For example, Double d = 5.0/3.0;
returns 1.6666666666666667 because 5.0 and 3.0 represent Double values, which results in the quotient being a Double
as well and no fractional value is lost.

Variables
Local variables are declared with Java-style syntax. For example:

Integer i = 0;
String str;
Merchandise__c m;
Merchandise__c[] merch;
Set<String> s;
Map<ID, Merchandise__c> m;

As with Java, multiple variables can be declared and initialized in a single statement, using comma separation. For example:

Integer i, j, k;

All variables allow null as a value and are initialized to null if they are not assigned another value. For instance, in the
following example, i, and k are assigned values, while j is set to null because it is not assigned:

Integer i = 0, j, k = 1;

47

Language Constructs Variables

Variables can be defined at any point in a block, and take on scope from that point forward. Sub-blocks cannot redefine a
variable name that has already been used in a parent block, but parallel blocks can reuse a variable name. For example:

Integer i;
{

// Integer i; This declaration is not allowed
}

for (Integer j = 0; j < 10; j++);
for (Integer j = 0; j < 10; j++);

Case Sensitivity

To avoid confusion with case-insensitive SOQL and SOSL queries, Apex is also case-insensitive. This means:

• Variable and method names are case insensitive. For example:

Integer I;
//Integer i; This would be an error.

• References to object and field names are case insensitive. For example:

Merchandise__c m1;
MERCHANDISE__C m2;

• SOQL and SOSL statements are case insensitive. For example:

Merchandise__c[] merchItems = [sELect ID From MErchanDIse__c where nAme = 'Pencils'];

Also note that Apex uses the same filtering semantics as SOQL, which is the basis for comparisons in the SOAP API and
the Database.com user interface. The use of these semantics can lead to some interesting behavior. For example, if an end user
generates a report based on a filter for values that come before 'm' in the alphabet (that is, values < 'm'), null fields are returned
in the result. The rationale for this behavior is that users typically think of a field without a value as just a “space” character,
rather than its actual “null” value. Consequently, in Apex, the following expressions all evaluate to true:

String s;
System.assert('a' == 'A');
System.assert(s < 'b');
System.assert(!(s > 'b'));

Note: Although s < 'b' evaluates to true in the example above, 'b.'compareTo(s) generates an error because
you are trying to compare a letter to a null value.

Constants

Constants can be defined using the final keyword, which means that the variable can be assigned at most once, either in
the declaration itself, or with a static initializer method if the constant is defined in a class. For example:

public class myCls {
static final Integer PRIVATE_INT_CONST;
static final Integer PRIVATE_INT_CONST2 = 200;

48

Language Constructs Case Sensitivity

public static Integer calculate() {
return 2 + 7;

}

static {
PRIVATE_INT_CONST = calculate();

}
}

For more information, see Using the final Keyword on page 120.

Expressions
An expression is a construct made up of variables, operators, and method invocations that evaluates to a single value. This
section provides an overview of expressions in Apex and contains the following:

• Understanding Expressions

• Understanding Expression Operators

• Understanding Operator Precedence

• Extending sObject and List Expressions

• Using Comments

Understanding Expressions

An expression is a construct made up of variables, operators, and method invocations that evaluates to a single value. In Apex,
an expression is always one of the following types:

• A literal expression. For example:

1 + 1

• A new sObject, Apex object, list, set, or map. For example:

new Invoice_Statement__c(<field_initializers>)
new Integer[<n>]
new Invoice_Statement__c[]{<elements>}
new List<Invoice_Statement__c>()
new Set<String>{}
new Map<String, Integer>()
new myRenamingClass(string oldName, string newName)

• Any value that can act as the left-hand of an assignment operator (L-values), including variables, one-dimensional list
positions, and most sObject or Apex object field references. For example:

Integer i
myList[3]
myInvoice.Description__c
myRenamingClass.oldName

• Any sObject field reference that is not an L-value, including:

49

Language Constructs Expressions

◊ The ID of an sObject in a list (see Lists)

◊ A set of child records associated with an sObject (for example, the set of line items associated with a particular invoice
statement). This type of expression yields a query result, much like SOQL and SOSL queries.

• A SOQL or SOSL query surrounded by square brackets, allowing for on-the-fly evaluation in Apex. For example:

Invoice_Statement__c[] aa = [SELECT Id, Description__c FROM Invoice_Statement__c
WHERE Description__c ='some text'];

Integer i = [SELECT COUNT() FROM Merchandise__c WHERE Description__c ='Pencils'];
List<List<SObject>> searchList = [FIND 'map*' IN ALL FIELDS

RETURNING Merchandise__c (Id, Description__c),
Invoice_Statement__c, Line_Item__c];

For information, see SOQL and SOSL Queries on page 64.

• A static or instance method invocation. For example:

System.assert(true)
myRenamingClass.replaceNames()
changePoint(new Point(x, y));

Understanding Expression Operators

Expressions can also be joined to one another with operators to create compound expressions. Apex supports the following
operators:

DescriptionSyntaxOperator

Assignment operator (Right associative). Assigns the value of y to the L-value
x. Note that the data type of x must match the data type of y, and cannot be
null.

x = y=

Addition assignment operator (Right associative). Adds the value of y to
the original value of x and then reassigns the new value to x. See + for
additional information. x and y cannot be null.

x += y+=

Multiplication assignment operator (Right associative). Multiplies the value
of y with the original value of x and then reassigns the new value to x. Note

x *= y*=

that x and y must be Integers or Doubles, or a combination. x and y cannot
be null.

Subtraction assignment operator (Right associative). Subtracts the value of
y from the original value of x and then reassigns the new value to x. Note

x -= y-=

that x and y must be Integers or Doubles, or a combination. x and y cannot
be null.

Division assignment operator (Right associative). Divides the original value
of x with the value of y and then reassigns the new value to x. Note that x

x /= y/=

and y must be Integers or Doubles, or a combination. x and y cannot be
null.

50

Language Constructs Understanding Expression Operators

DescriptionSyntaxOperator

OR assignment operator (Right associative). If x, a Boolean, and y, a Boolean,
are both false, then x remains false. Otherwise, x is assigned the value of true.

Note:

x |= y|=

• This operator exhibits “short-circuiting” behavior, which means y is
evaluated only if x is false.

• x and y cannot be null.

AND assignment operator (Right associative). If x, a Boolean, and y, a
Boolean, are both true, then x remains true. Otherwise, x is assigned the value
of false.

Note:

x &= y&=

• This operator exhibits “short-circuiting” behavior, which means y is
evaluated only if x is true.

• x and y cannot be null.

Bitwise shift left assignment operator. Shifts each bit in x to the left by y
bits so that the high order bits are lost, and the new right bits are set to 0.
This value is then reassigned to x.

x <<= y<<=

Bitwise shift right signed assignment operator. Shifts each bit in x to the
right by y bits so that the low order bits are lost, and the new left bits are set

x >>= y>>=

to 0 for positive values of y and 1 for negative values of y. This value is then
reassigned to x.

Bitwise shift right unsigned assignment operator. Shifts each bit in x to the
right by y bits so that the low order bits are lost, and the new left bits are set
to 0 for all values of y. This value is then reassigned to x.

x >>>= y>>>=

Ternary operator (Right associative). This operator acts as a short-hand for
if-then-else statements. If x, a Boolean, is true, y is the result. Otherwise z
is the result. Note that x cannot be null.

x ? y : z? :

AND logical operator (Left associative). If x, a Boolean, and y, a Boolean,
are both true, then the expression evaluates to true. Otherwise the expression
evaluates to false.

Note:

x && y&&

• && has precedence over ||

• This operator exhibits “short-circuiting” behavior, which means y is
evaluated only if x is true.

• x and y cannot be null.

51

Language Constructs Understanding Expression Operators

DescriptionSyntaxOperator

OR logical operator (Left associative). If x, a Boolean, and y, a Boolean, are
both false, then the expression evaluates to false. Otherwise the expression
evaluates to true.

Note:

x || y||

• && has precedence over ||

• This operator exhibits “short-circuiting” behavior, which means y is
evaluated only if x is false.

• x and y cannot be null.

Equality operator. If the value of x equals the value of y, the expression
evaluates to true. Otherwise, the expression evaluates to false.

Note:

x == y==

• Unlike Java, == in Apex compares object value equality, not reference
equality. Consequently:

◊ String comparison using == is case insensitive

◊ ID comparison using == is case sensitive, and does not distinguish
between 15-character and 18-character formats

• For sObjects and sObject arrays, == performs a deep check of all sObject
field values before returning its result.

• For records, every field must have the same value for == to evaluate to
true.

• x or y can be the literal null.

• The comparison of any two values can never result in null.

• SOQL and SOSL use = for their equality operator, and not ==. Although
Apex and SOQL and SOSL are strongly linked, this unfortunate syntax
discrepancy exists because most modern languages use = for assignment
and == for equality. The designers of Apex deemed it more valuable to
maintain this paradigm than to force developers to learn a new assignment
operator. The result is that Apex developers must use == for equality tests
in the main body of the Apex code, and = for equality in SOQL and SOSL
queries.

Exact equality operator. If x and y reference the exact same location in
memory, the expression evaluates to true. Otherwise, the expression evaluates

x === y===

to false. Note that this operator only works for sObjects or collections (such
as a Map or list). For an Apex object (such as an Exception or instantiation
of a class) the exact equality operator is the same as the equality operator.

52

Language Constructs Understanding Expression Operators

DescriptionSyntaxOperator

Less than operator. If x is less than y, the expression evaluates to true.
Otherwise, the expression evaluates to false.

Note:

x < y<

• Unlike other database stored procedures, Apex does not support tri-state
Boolean logic, and the comparison of any two values can never result in
null.

• If x or y equal null and are Integers, Doubles, Dates, or Datetimes, the
expression is false.

• A non-null String or ID value is always greater than a null value.

• If x and y are IDs, they must reference the same type of object. Otherwise,
a runtime error results.

• If x or y is an ID and the other value is a String, the String value is
validated and treated as an ID.

• x and y cannot be Booleans.

• The comparison of two strings is performed according to the locale of the
context user.

Greater than operator. If x is greater than y, the expression evaluates to true.
Otherwise, the expression evaluates to false.

Note:

x > y>

• The comparison of any two values can never result in null.

• If x or y equal null and are Integers, Doubles, Dates, or Datetimes, the
expression is false.

• A non-null String or ID value is always greater than a null value.

• If x and y are IDs, they must reference the same type of object. Otherwise,
a runtime error results.

• If x or y is an ID and the other value is a String, the String value is
validated and treated as an ID.

• x and y cannot be Booleans.

• The comparison of two strings is performed according to the locale of the
context user.

Less than or equal to operator. If x is less than or equal to y, the expression
evaluates to true. Otherwise, the expression evaluates to false.

Note:

x <= y<=

• The comparison of any two values can never result in null.

• If x or y equal null and are Integers, Doubles, Dates, or Datetimes, the
expression is false.

• A non-null String or ID value is always greater than a null value.

• If x and y are IDs, they must reference the same type of object. Otherwise,
a runtime error results.

53

Language Constructs Understanding Expression Operators

DescriptionSyntaxOperator

• If x or y is an ID and the other value is a String, the String value is
validated and treated as an ID.

• x and y cannot be Booleans.

• The comparison of two strings is performed according to the locale of the
context user.

Greater than or equal to operator. If x is greater than or equal to y, the
expression evaluates to true. Otherwise, the expression evaluates to false.

Note:

x >= y>=

• The comparison of any two values can never result in null.

• If x or y equal null and are Integers, Doubles, Dates, or Datetimes, the
expression is false.

• A non-null String or ID value is always greater than a null value.

• If x and y are IDs, they must reference the same type of object. Otherwise,
a runtime error results.

• If x or y is an ID and the other value is a String, the String value is
validated and treated as an ID.

• x and y cannot be Booleans.

• The comparison of two strings is performed according to the locale of the
context user.

Inequality operator. If the value of x does not equal the value of y, the
expression evaluates to true. Otherwise, the expression evaluates to false.

Note:

x != y!=

• Unlike Java, != in Apex compares object value equality, not reference
equality.

• For sObjects and sObject arrays, != performs a deep check of all sObject
field values before returning its result.

• For records, != evaluates to true if the records have different values for
any field.

• x or y can be the literal null.

• The comparison of any two values can never result in null.

Exact inequality operator. If x and y do not reference the exact same location
in memory, the expression evaluates to true. Otherwise, the expression evaluates

x !== y!==

to false. Note that this operator only works for sObjects, collections (such as
a Map or list), or an Apex object (such as an Exception or instantiation of a
class).

Addition operator. Adds the value of x to the value of y according to the
following rules:

x + y+

• If x and y are Integers or Doubles, adds the value of x to the value of y.
If a Double is used, the result is a Double.

54

Language Constructs Understanding Expression Operators

DescriptionSyntaxOperator

• If x is a Date and y is an Integer, returns a new Date that is incremented
by the specified number of days.

• If x is a Datetime and y is an Integer or Double, returns a new Date that
is incremented by the specified number of days, with the fractional portion
corresponding to a portion of a day.

• If x is a String and y is a String or any other type of non-null argument,
concatenates y to the end of x.

Subtraction operator. Subtracts the value of y from the value of x according
to the following rules:

x - y-

• If x and y are Integers or Doubles, subtracts the value of x from the value
of y. If a Double is used, the result is a Double.

• If x is a Date and y is an Integer, returns a new Date that is decremented
by the specified number of days.

• If x is a Datetime and y is an Integer or Double, returns a new Date that
is decremented by the specified number of days, with the fractional portion
corresponding to a portion of a day.

Multiplication operator. Multiplies x, an Integer or Double, with y, another
Integer or Double. Note that if a double is used, the result is a Double.

x * y*

Division operator. Divides x, an Integer or Double, by y, another Integer or
Double. Note that if a double is used, the result is a Double.

x / y/

Logical complement operator. Inverts the value of a Boolean, so that true
becomes false, and false becomes true.

!x!

Unary negation operator. Multiplies the value of x, an Integer or Double,
by -1. Note that the positive equivalent + is also syntactically valid, but does
not have a mathematical effect.

-x-

Increment operator. Adds 1 to the value of x, an Integer or Double. If prefixed
(++x), the increment occurs before the rest of the statement is executed. If

x++

++x

++

postfixed (x--), the increment occurs after the rest of the statement is
executed.

Decrement operator. Subtracts 1 from the value of x, an Integer or Double.
If prefixed (--x), the decrement occurs before the rest of the statement is

x--

--x

--

executed. If postfixed (x--), the decrement occurs after the rest of the
statement is executed.

Bitwise AND operator. ANDs each bit in x with the corresponding bit in y
so that the result bit is set to 1 if both of the bits are set to 1. This operator
is not valid for types Long or Integer.

x & y&

Bitwise OR operator. ORs each bit in x with the corresponding bit in y so
that the result bit is set to 1 if at least one of the bits is set to 1. This operator
is not valid for types Long or Integer.

x | y|

55

Language Constructs Understanding Expression Operators

DescriptionSyntaxOperator

Bitwise exclusive OR operator. Exclusive ORs each bit in x with the
corresponding bit in y so that the result bit is set to 1 if exactly one of the bits
is set to 1 and the other bit is set to 0.

x ^ y^

Bitwise exclusive OR operator. Exclusive ORs each bit in x with the
corresponding bit in y so that the result bit is set to 1 if exactly one of the bits
is set to 1 and the other bit is set to 0.

x ^= y^=

Bitwise shift left operator. Shifts each bit in x to the left by y bits so that the
high order bits are lost, and the new right bits are set to 0.

x << y<<

Bitwise shift right signed operator. Shifts each bit in x to the right by y bits
so that the low order bits are lost, and the new left bits are set to 0 for positive
values of y and 1 for negative values of y.

x >> y>>

Bitwise shift right unsigned operator. Shifts each bit in x to the right by y
bits so that the low order bits are lost, and the new left bits are set to 0 for all
values of y.

x >>> y>>>

Parentheses. Elevates the precedence of an expression x so that it is evaluated
first in a compound expression.

(x)()

Understanding Operator Precedence

Apex uses the following operator precedence rules:

DescriptionOperatorsPrecedence

Grouping and prefix increments and decrements{} () ++ --1

Unary negation, type cast and object creation! -x +x (type) new2

Multiplication and division* /3

Addition and subtraction+ -4

Greater-than and less-than comparisons, reference
tests

< <= > >= instanceof5

Comparisons: equal and not-equal== !=6

Logical AND&&7

Logical OR||8

Assignment operators= += -= *= /= &=9

56

Language Constructs Understanding Operator Precedence

Extending sObject and List Expressions

As in Java, sObject and list expressions can be extended with method references and list expressions, respectively, to form new
expressions.

In the following example, a new variable containing the length of the new Invoice_Statement__c name is assigned to
descriptionLength.

Integer descriptionLength = new Invoice_Statement__c []{
new Invoice_Statement__c (Description__c='My invoice')}[0].Description__c.length();

In the above, new Invoice_Statement__c[] generates a list.

The list is populated by the SOQL statement {new Invoice_Statement__c(Description__c='My invoice')}.

Item 0, the first item in the list, is then accessed by the next part of the string [0].

The name of the sObject in the list is accessed, followed by the method returning the length Description__c.length().

In the following example, a name that has been shifted to lower case is returned.

String descChange = [SELECT Description__c
FROM Invoice_Statement__c][0].Description__c.toLowerCase();

Using Comments

Both single and multiline comments are supported in Apex code:

• To create a single line comment, use //. All characters on the same line to the right of the // are ignored by the parser.
For example:

Integer i = 1; // This comment is ignored by the parser

• To create a multiline comment, use /* and */ to demarcate the beginning and end of the comment block. For example:

Integer i = 1; /* This comment can wrap over multiple
lines without getting interpreted by the
parser. */

Assignment Statements
An assignment statement is any statement that places a value into a variable, generally in one of the following two forms:

[LValue] = [new_value_expression];
[LValue] = [[inline_soql_query]];

In the forms above, [LValue] stands for any expression that can be placed on the left side of an assignment operator. These
include:

57

Language Constructs Extending sObject and List Expressions

• A simple variable. For example:

Integer i = 1;
Invoice_Statement__c a = new Invoice_Statement__c();
Invoice_Statement__c[] invs = [SELECT Id FROM Invoice_Statement__c];

• A de-referenced list element. For example:

ints[0] = 1;
Invoice_Statement__c[0].Description__c = 'description';

• An sObject field reference that the context user has permission to edit. For example:

Invoice_Statement__c a = new Invoice_Statement__c();

// IDs cannot be set manually
// a.Id = 'a00900000013R8Q'; This code is invalid!

// Instead, insert the record. The system automatically assigns it an ID.
insert a;

// Fields also must be writeable for the context user
// a.CreatedDate = System.today(); This code is invalid because
// createdDate is read-only!

// Create a merchandise item to use for the line item
Merchandise__c m = new Merchandise__c(

Name='Pencils',
Description__c='Durable pencils',
Price__c=1.25,
Total_Inventory__c=100);

insert m;

// Since the invoice a has been inserted, it is now possible to
// create a new line item that is related to it
Line_Item__c li = new Line_Item__c(

Name='Two pencils',
Units_Sold__c=2,
Unit_Price__c=5,
Merchandise__c = m.id,
Invoice_Statement__c=a.Id);

insert li;
Line_Item__c li2 = [SELECT Id,Invoice_Statement__r.Description__c

FROM Line_Item__c WHERE Id=:li.Id];
// Notice that you can write to an invoice statement field directly
// through the relationship field on the line item
li2.Invoice_Statement__r.Description__c = 'new description';

Assignment is always done by reference. For example:

Invoice_Statement__c a = new Invoice_Statement__c();
Invoice_Statement__c b;
Invoice_Statement__c[] c = new Invoice_Statement__c[]{};
a.Description__c = 'Invoice 1';
b = a;
c.add(a);

// These asserts should now be true. You can reference the data
// originally allocated to invoice a through invoice b and invoice list c.

58

Language Constructs Assignment Statements

System.assertEquals(b.Description__c, 'Invoice 1');
System.assertEquals(c[0].Description__c, 'Invoice 1');

Similarly, two lists can point at the same value in memory. For example:

Invoice_Statement__c[] a = new Invoice_Statement__c[]{new Invoice_Statement__c()};
Invoice_Statement__c[] b = a;
a[0].Description__c = 'Invoice 1';
System.assert(b[0].Description__c == 'Invoice 1');

In addition to =, other valid assignment operators include +=, *=, /=, |=, &=, ++, and --. See Understanding Expression
Operators on page 50.

Conditional (If-Else) Statements
The conditional statement in Apex works similarly to Java:

if ([Boolean_condition])
// Statement 1

else
// Statement 2

The else portion is always optional, and always groups with the closest if. For example:

Integer x, sign;
// Your code
if (x <= 0) if (x == 0) sign = 0; else sign = -1;

is equivalent to:

Integer x, sign;
// Your code
if (x <= 0) {

if (x == 0) {
sign = 0;

} else {
sign = -1;

}
}

Repeated else if statements are also allowed. For example:

if (place == 1) {
medal_color = 'gold';

} else if (place == 2) {
medal_color = 'silver';

} else if (place == 3) {
medal_color = 'bronze';

} else {
medal_color = null;

}

59

Language Constructs Conditional (If-Else) Statements

Loops
Apex supports the following five types of procedural loops:

• do {statement} while (Boolean_condition);

• while (Boolean_condition) statement;

• for (initialization; Boolean_exit_condition; increment) statement;

• for (variable : array_or_set) statement;

• for (variable : [inline_soql_query]) statement;

All loops allow for loop control structures:

• break; exits the entire loop

• continue; skips to the next iteration of the loop

Do-While Loops

The Apex do-while loop repeatedly executes a block of code as long as a particular Boolean condition remains true. Its syntax
is:

do {
code_block

} while (condition);

Note: Curly braces ({}) are always required around a code_block.

As in Java, the Apex do-while loop does not check the Boolean condition statement until after the first loop is executed.
Consequently, the code block always runs at least once.

As an example, the following code outputs the numbers 1 - 10 into the debug log:

Integer count = 1;

do {
System.debug(count);
count++;

} while (count < 11);

While Loops

The Apex while loop repeatedly executes a block of code as long as a particular Boolean condition remains true. Its syntax
is:

while (condition) {
code_block

}

60

Language Constructs Loops

Note: Curly braces ({}) are required around a code_block only if the block contains more than one statement.

Unlike do-while, the while loop checks the Boolean condition statement before the first loop is executed. Consequently,
it is possible for the code block to never execute.

As an example, the following code outputs the numbers 1 - 10 into the debug log:

Integer count = 1;

while (count < 11) {
System.debug(count);
count++;

}

For Loops

Apex supports three variations of the for loop:

• The traditional for loop:

for (init_stmt; exit_condition; increment_stmt) {
code_block

}

• The list or set iteration for loop:

for (variable : list_or_set) {
code_block

}

where variable must be of the same primitive or sObject type as list_or_set.

• The SOQL for loop:

for (variable : [soql_query]) {
code_block

}

or

for (variable_list : [soql_query]) {
code_block

}

Both variable and variable_list must be of the same sObject type as is returned by the soql_query.

Note: Curly braces ({}) are required around a code_block only if the block contains more than one statement.

Each is discussed further in the sections that follow.

61

Language Constructs For Loops

Traditional For Loops

The traditional for loop in Apex corresponds to the traditional syntax used in Java and other languages. Its syntax is:

for (init_stmt; exit_condition; increment_stmt) {
code_block

}

When executing this type of for loop, the Apex runtime engine performs the following steps, in order:

1. Execute the init_stmt component of the loop. Note that multiple variables can be declared and/or initialized in this
statement.

2. Perform the exit_condition check. If true, the loop continues. If false, the loop exits.
3. Execute the code_block.
4. Execute the increment_stmt statement.
5. Return to Step 2.

As an example, the following code outputs the numbers 1 - 10 into the debug log. Note that an additional initialization variable,
j, is included to demonstrate the syntax:

for (Integer i = 0, j = 0; i < 10; i++) {
System.debug(i+1);

}

List or Set Iteration For Loops

The list or set iteration for loop iterates over all the elements in a list or set. Its syntax is:

for (variable : list_or_set) {
code_block

}

where variable must be of the same primitive or sObject type as list_or_set.

When executing this type of for loop, the Apex runtime engine assigns variable to each element in list_or_set, and
runs the code_block for each value.

For example, the following code outputs the numbers 1 - 10 to the debug log:

Integer[] myInts = new Integer[]{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

for (Integer i : myInts) {
System.debug(i);

}

SOQL For Loops

SOQL for loops iterate over all of the sObject records returned by a SOQL query. The syntax of a SOQL for loop is either:

for (variable : [soql_query]) {
code_block

}

62

Language Constructs For Loops

or

for (variable_list : [soql_query]) {
code_block

}

Both variable and variable_list must be of the same type as the sObjects that are returned by the soql_query.
As in standard SOQL queries, the [soql_query] statement can refer to code expressions in their WHERE clauses using the
: syntax. For example:

String s = 'Pen';
for (Merchandise__c a : [SELECT Id, Name from Merchandise__c

where Name LIKE :(s+'%')]) {
// Your code

}

The following example combines creating a list from a SOQL query, with the DML update method.

// Create a list of merchandise records from a SOQL query
List<Merchandise__c> merch = [SELECT Id, Name

FROM Merchandise__c
WHERE Name = 'Pen'];

// Loop through the list and update the Name field
for(Merchandise__c m : merch){

m.Name = 'Pencil';
}

// Update the database
update merch;

SOQL For Loops Versus Standard SOQL Queries

SOQL for loops differ from standard SOQL statements because of the method they use to retrieve sObjects. While the
standard queries discussed in SOQL and SOSL Queries can retrieve either the count of a query or a number of object records,
SOQL for loops retrieve all sObjects, using efficient chunking with calls to the query and queryMore methods of the
SOAP API. Developers should always use a SOQL for loop to process query results that return many records, to avoid the
limit on heap size.

Note that queries including an aggregate function don't support queryMore. A runtime exception occurs if you use a query
containing an aggregate function that returns more than 2000 rows in a for loop.

SOQL For Loop Formats

SOQL for loops can process records one at a time using a single sObject variable, or in batches of 200 sObjects at a time
using an sObject list:

• The single sObject format executes the for loop's <code_block> once per sObject record. Consequently, it is easy to
understand and use, but is grossly inefficient if you want to use data manipulation language (DML) statements within the
for loop body. Each DML statement ends up processing only one sObject at a time.

• The sObject list format executes the for loop's <code_block> once per list of 200 sObjects. Consequently, it is a little
more difficult to understand and use, but is the optimal choice if you need to use DML statements within the for loop
body. Each DML statement can bulk process a list of sObjects at a time.

63

Language Constructs For Loops

For example, the following code illustrates the difference between the two types of SOQL query for loops:

// Create a savepoint because the data should not be committed to the database
Savepoint sp = Database.setSavepoint();

insert new Invoice_Statement__c[]{
new Invoice_Statement__c(Description__c = 'yyy'),
new Invoice_Statement__c(Description__c = 'yyy'),
new Invoice_Statement__c(Description__c = 'yyy')};

// The single sObject format executes the for loop once per returned record
Integer i = 0;
for (Invoice_Statement__c tmp : [SELECT Id FROM Invoice_Statement__c

WHERE Description__c = 'yyy']) {
i++;

}
System.assert(i == 3); // Since there were three invoices named 'yyy' in the

// database, the loop executed three times

// The sObject list format executes the for loop once per returned batch
// of records
i = 0;
Integer j;
for (Invoice_Statement__c[] tmp : [SELECT Id FROM Invoice_Statement__c

WHERE Description__c = 'yyy']) {
j = tmp.size();
i++;

}
System.assert(j == 3); // The list should have contained the three invoices

// named 'yyy'
System.assert(i == 1); // Since a single batch can hold up to 100 records and,

// only three records should have been returned, the
// loop should have executed only once

// Revert the database to the original state
Database.rollback(sp);

Note:

• The break and continue keywords can be used in both types of inline query for loop formats. When using the
sObject list format, continue skips to the next list of sObjects.

• DML statements can only process up to 10,000 records at a time, and sObject list for loops process records in
batches of 200. Consequently, if you are inserting, updating, or deleting more than one record per returned record
in an sObject list for loop, it is possible to encounter runtime limit errors. See Understanding Execution Governors
and Limits on page 203.

SOQL and SOSL Queries
You can evaluate Database.com Object Query Language (SOQL) or Database.com Object Search Language (SOSL) statements
on-the-fly in Apex by surrounding the statement in square brackets.

SOQL Statements
SOQL statements evaluate to a list of sObjects, a single sObject, or an Integer for count method queries.

64

Language Constructs SOQL and SOSL Queries

For example, you could retrieve a list of merchandise items that are named Pen:

List<Merchandise__c> aa = [SELECT Id, Name FROM Merchandise__c WHERE Name = 'Pen'];

From this list, you can access individual elements:

if (!aa.isEmpty()) {
// Execute commands

}

You can also create new objects from SOQL queries on existing ones. The following example creates a new line item for the
first merchandise with a total inventory greater than 1000:

Line_Item__c li = new Line_Item__c(
Merchandise__c = [SELECT Name FROM Merchandise__c
WHERE Total_Inventory__c > 1000 LIMIT 1].Id);

li.Name='Two items';
li.Invoice_Statement__c=invoiceID;

Note that the newly created object contains null values for its fields, which will need to be set.

The count method can be used to return the number of rows returned by a query. The following example returns the total
number of merchandise items with a total inventory greater than 1000:

Integer i = [SELECT COUNT() FROM Merchandise__c WHERE Total_Inventory__c > 1000];

You can also operate on the results using standard arithmetic:

Integer j = 5 * [SELECT COUNT() FROM Merchandise__c];

For a full description of SOQL query syntax, see the Database.com SOQL and SOSL Reference Guide.

SOSL Statements
SOSL statements evaluate to a list of lists of sObjects, where each list contains the search results for a particular sObject type.
The result lists are always returned in the same order as they were specified in the SOSL query. SOSL queries are only supported
in Apex classes and anonymous blocks. You cannot use a SOSL query in a trigger. If a SOSL query does not return any records
for a specified sObject type, the search results include an empty list for that sObject.

For example, you can return a list of merchandise items, inventory statements, and line items that have fields that begin with
the phrase map:

List<List<SObject>> searchList = [FIND 'map*' IN ALL FIELDS RETURNING
Merchandise__c (Id, Name), Invoice_Statement__c,

Line_Item__c];

Note:

The syntax of the FIND clause in Apex differs from the syntax of the FIND clause in the SOAP API:

• In Apex, the value of the FIND clause is demarcated with single quotes. For example:

FIND 'map*' IN ALL FIELDS RETURNING Merchandise__c (Id, Name), Invoice_Statement__c,
Line_Item__c

65

Language Constructs SOQL and SOSL Queries

http://www.salesforce.com/us/developer/docs/dbcom_soql_sosl/index.htm

• In the Force.com API, the value of the FIND clause is demarcated with braces. For example:

FIND {map*} IN ALL FIELDS RETURNING Merchandise__c (Id, Name), Invoice_Statement__c,
Line_Item__c

From searchList, you can create arrays for each object returned:

Merchandise__c [] merch = ((List<Merchandise__c>)searchList[0]);
Invoice_Statement__c [] invoices = ((List<Invoice_Statement__c>)searchList[1]);
Line_Item__c [] li = ((List<Line_Item__c>)searchList[2]);

For a full description of SOSL query syntax, see the Database.com SOQL and SOSL Reference Guide.

Working with SOQL and SOSL Query Results

SOQL and SOSL queries only return data for sObject fields that are selected in the original query. If you try to access a field
that was not selected in the SOQL or SOSL query (other than ID), you receive a runtime error, even if the field contains a
value in the database. The following code example causes a runtime error:

insert new Invoice_Statement__c(Description__c = 'Singha');
Invoice_Statement__c inv = [SELECT Id FROM Invoice_Statement__c

WHERE Description__c = 'Singha' LIMIT 1];
// Note that description is not queried
String s = [SELECT Id FROM Invoice_Statement__c

WHERE Description__c = 'Singha' LIMIT 1].Description__c;

The following is the same code example rewritten so it does not produce a runtime error. Note that Description__c has
been added as part of the select statement, after Id.

insert new Invoice_Statement__c(Description__c = 'Singha');
Invoice_Statement__c inv = [SELECT Id FROM Invoice_Statement__c

WHERE Description__c = 'Singha' LIMIT 1];
// Note that description is now queried
String s = [SELECT Id,Description__c FROM Invoice_Statement__c

WHERE Description__c = 'Singha' LIMIT 1].Description__c;

Even if only one sObject field is selected, a SOQL or SOSL query always returns data as complete records. Consequently,
you must dereference the field in order to access it. For example, this code retrieves an sObject list from the database with a
SOQL query, accesses the first merchandise record in the list, and then dereferences the record's Price__c field:

Decimal price = [SELECT Price__c FROM Merchandise__c
WHERE Name = 'Pen'][0].Price__c;

// When only one result is returned in a SOQL query, it is not necessary
// to include the list's index.
Decimal price = [SELECT Price__c FROM Merchandise__c

WHERE Name = 'Pen' LIMIT 1].Price__c;

The only situation in which it is not necessary to dereference an sObject field in the result of an SOQL query, is when the
query returns an Integer as the result of a COUNT operation:

Integer i = [SELECT COUNT() FROM Merchandise__c];

Fields in records returned by SOSL queries must always be dereferenced.

66

Language Constructs Working with SOQL and SOSL Query Results

http://www.salesforce.com/us/developer/docs/dbcom_soql_sosl/index.htm

Also note that sObject fields that contain formulas return the value of the field at the time the SOQL or SOSL query was
issued. Any changes to other fields that are used within the formula are not reflected in the formula field value until the record
has been saved and re-queried in Apex. Like other read-only sObject fields, the values of the formula fields themselves cannot
be changed in Apex.

Working with SOQL Aggregate Functions

Aggregate functions in SOQL, such as SUM() and MAX(), allow you to roll up and summarize your data in a query. For more
information on aggregate functions, see ”Aggregate Functions” in the Database.com SOQL and SOSL Reference Guide.

You can use aggregate functions without using a GROUP BY clause. For example, you could use the AVG() aggregate function
to find the average Amount for all your opportunities.

AggregateResult[] groupedResults
= [SELECT AVG(Amount)aver FROM Opportunity];

Object avgAmount = groupedResults[0].get('aver');

Note that any query that includes an aggregate function returns its results in an array of AggregateResult objects. AggregateResult
is a read-only sObject and is only used for query results.

Aggregate functions become a more powerful tool to generate reports when you use them with a GROUP BY clause. For
example, you could find the average Amount for all your opportunities by campaign.

AggregateResult[] groupedResults
= [SELECT CampaignId, AVG(Amount)

FROM Opportunity
GROUP BY CampaignId];

for (AggregateResult ar : groupedResults) {
System.debug('Campaign ID' + ar.get('CampaignId'));
System.debug('Average amount' + ar.get('expr0'));

}

Any aggregated field in a SELECT list that does not have an alias automatically gets an implied alias with a format expri,
where i denotes the order of the aggregated fields with no explicit aliases. The value of i starts at 0 and increments for every
aggregated field with no explicit alias. For more information, see ”Using Aliases with GROUP BY” in the Database.com SOQL
and SOSL Reference Guide.

Note: Queries that include aggregate functions are subject to the same governor limits as other SOQL queries for
the total number of records returned. This limit includes any records included in the aggregation, not just the number
of rows returned by the query. If you encounter this limit, you should add a condition to the WHERE clause to reduce
the amount of records processed by the query.

Working with Very Large SOQL Queries

Your SOQL query may return so many sObjects that the limit on heap size is exceeded and an error occurs. To resolve, use
a SOQL query for loop instead, since it can process multiple batches of records through the use of internal calls to query
and queryMore.

For example, if the results are too large, the syntax below causes a runtime exception:

Merchandise__c[] merchandise = [SELECT Id FROM Merchandise__c];

67

Language Constructs Working with SOQL Aggregate Functions

http://www.salesforce.com/us/developer/docs/dbcom_soql_sosl/index.htm
http://www.salesforce.com/us/developer/docs/dbcom_soql_sosl/index.htm
http://www.salesforce.com/us/developer/docs/dbcom_soql_sosl/index.htm

Instead, use a SOQL query for loop as in one of the following examples:

// Use this format if you are not executing DML statements
// within the for loop
for (Merchandise__c m : [SELECT Id, Name FROM Merchandise__c

WHERE Name LIKE 'p%']) {
// Your code without DML statements here

}

// Use this format for efficiency if you are executing DML statements
// within the for loop
for (List<Merchandise__c> ml : [SELECT Id, Name FROM Merchandise__c

WHERE Name LIKE 'p%']) {
// Your code here
update ml;

}

The following example demonstrates a SOQL query for loop used to mass update records. Suppose you want to increase the
price of a merchandise item by 10% across all records for merchandise items whose names includes the word 'pen':

public void massUpdate() {
for (List<Merchandise__c> merchList : [SELECT Name FROM Merchandise__c]) {

for(Merchandise__c m : merchList) {
if (m.Name.contains('pen')) {

m.Price__c *= 1.1;
}

}
update merchList;

}
}

Instead of using a SOQL query in a for loop, the preferred method of mass updating records is to use batch Apex, which
minimizes the risk of hitting governor limits.

For more information, see SOQL For Loops on page 62.

More Efficient SOQL Queries
For best performance, SOQL queries must be selective, particularly for queries inside of triggers. To avoid long execution
times, non-selective SOQL queries may be terminated by the system. Developers will receive an error message when a
non-selective query in a trigger executes against an object that contains more than 100,000 records. To avoid this error, ensure
that the query is selective.

Selective SOQL Query Criteria

• A query is selective when one of the query filters is on an indexed field and the query filter reduces the resulting
number of rows below a system-defined threshold. The performance of the SOQL query improves when two or
more filters used in the WHERE clause meet the mentioned conditions.

• The selectivity threshold is 10% of the records for the first million records and less than 5% of the records after the
first million records, up to a maximum of 333,000 records. In some circumstances, for example with a query filter
that is an indexed standard field, the threshold may be higher. Also, the selectivity threshold is subject to change.

Custom Index Considerations for Selective SOQL Queries

• The following fields are indexed by default: primary keys (Id, Name and Owner fields), foreign keys (lookup or
master-detail relationship fields), audit dates (such as LastModifiedDate), and custom fields marked as External ID
or Unique.

• Salesforce.com Support can add custom indexes on request for customers.

68

Language Constructs Working with Very Large SOQL Queries

• A custom index can't be created on these types of fields: formula fields, multi-select picklists, currency fields in a
multicurrency organization, long text fields, and binary fields (fields of type blob, file, or encrypted text.) Note that
new data types, typically complex ones, may be added to Database.com and fields of these types may not allow custom
indexing.

• Typically, a custom index won't be used in these cases:

◊ The value(s) queried for exceeds the system-defined threshold mentioned above
◊ The filter operator is a negative operator such as NOT EQUAL TO (or !=), NOT CONTAINS, and NOT STARTS

WITH

◊ The CONTAINS operator is used in the filter and the number of rows to be scanned exceeds 333,000. This is
because the CONTAINS operator requires a full scan of the index. Note that this threshold is subject to change.

◊ When comparing with an empty value (Name != '')

However, there are other complex scenarios in which custom indexes won't be used. Contact your salesforce.com
representative if your scenario isn't covered by these cases or if you need further assistance with non-selective queries.

Examples of Selective SOQL Queries
To better understand whether a query on a large object is selective or not, let's analyze some queries. For these queries,
we will assume there are more than 100,000 records (including soft-deleted records, that is, deleted records that are still
in the Recycle Bin) for the Merchandise__c sObject.

Query 1:

SELECT Id FROM Merchandise__c WHERE Id IN (<list of merchandise IDs>)

The WHERE clause is on an indexed field (Id). If SELECT COUNT() FROM Merchandise__c WHERE Id IN (<list
of merchandise IDs>) returns fewer records than the selectivity threshold, the index on Id is used. This will typically
be the case since the list of IDs only contains a small amount of records.

Query 2:

SELECT Id FROM Merchandise__c WHERE Name != ''

Since Merchandise__c is a large object even though Name is indexed (primary key), this filter returns most of the records,
making the query non-selective.

Query 3:

SELECT Id FROM Merchandise__c WHERE Name != '' AND CustomField__c = 'ValueA'

Here we have to see if each filter, when considered individually, is selective. As we saw in the previous example the first
filter isn't selective. So let's focus on the second one. If the count of records returned by SELECT COUNT() FROM
Merchandise__c WHERE CustomField__c = 'ValueA' is lower than the selectivity threshold, and CustomField__c
is indexed, the query is selective.

Query 4:

SELECT Id FROM Merchandise__c WHERE FormulaField__c = 'ValueA'

Since a formula field can't be custom indexed, the query won't be selective, regardless of how many records have actually
'ValueA'. Remember that filtering on a formula field should be avoided, especially when querying on large objects, since
the formula needs to be evaluated for every Merchandise__c record on the fly.

69

Language Constructs Working with Very Large SOQL Queries

Using SOQL Queries That Return One Record

SOQL queries can be used to assign a single sObject value when the result list contains only one element. When the L-value
of an expression is a single sObject type, Apex automatically assigns the single sObject record in the query result list to the
L-value. A runtime exception results if zero sObjects or more than one sObject is found in the list. For example:

List<Merchandise__c> merchandiseItems = [SELECT Id FROM Merchandise__c];

// These lines of code are only valid if one row is returned from
// the query. Notice that the second line dereferences the field from the
// query without assigning it to an intermediary sObject variable.
Merchandise__c merch = [SELECT Id FROM Merchandise__c];
String name = [SELECT Name FROM Merchandise__c].Name;

Improving Performance by Not Searching on Null Values

In your SOQL and SOSL queries, avoid searching records that contain null values. Filter out null values first to improve
performance. In the following example, any records where the treadID value is null are filtered out of the returned values.

Public class TagWS {

/* getThreadTags
*
* a quick method to pull tags not in the existing list
*
*/
public static webservice List<String>

getThreadTags(String threadId, List<String> tags) {
system.debug(LoggingLevel.Debug,tags);

List<String> retVals = new List<String>();
Set<String> tagSet = new Set<String>();
Set<String> origTagSet = new Set<String>();
origTagSet.addAll(tags);

// Note WHERE clause verifies that threadId is not null

for(CSO_CaseThread_Tag__c t :
[SELECT Name FROM CSO_CaseThread_Tag__c
WHERE Thread__c = :threadId AND
WHERE threadID != null])

{
tagSet.add(t.Name);

}
for(String x : origTagSet) {
// return a minus version of it so the UI knows to clear it

if(!tagSet.contains(x)) retVals.add('-' + x);
}

for(String x : tagSet) {
// return a plus version so the UI knows it's new

if(!origTagSet.contains(x)) retvals.add('+' + x);
}

return retVals;
}

70

Language Constructs Using SOQL Queries That Return One Record

Understanding Foreign Key and Parent-Child Relationship SOQL Queries

The SELECT statement of a SOQL query can be any valid SOQL statement, including foreign key and parent-child record
joins. If foreign key joins are included, the resulting sObjects can be referenced using normal field notation. For example:

System.debug([SELECT Merchandise__r.Name FROM Line_Item__c
WHERE Name = 'Two pencils'].Merchandise__r.Name);

Additionally, parent-child relationships in sObjects act as SOQL queries as well. For example:

for (Invoice_Statement__c inv : [SELECT Id, Description__c,
(SELECT Name FROM Line_Items__r)
FROM Invoice_Statement__c
WHERE Description__c = 'Invoice 1']) {

Line_Item__c[] lis = inv.Line_Items__r;
system.debug('lis.size(): ' + lis.size());

}

Using Apex Variables in SOQL and SOSL Queries

SOQL and SOSL statements in Apex can reference Apex code variables and expressions if they are preceded by a colon (:).
This use of a local code variable within a SOQL or SOSL statement is called a bind. The Apex parser first evaluates the local
variable in code context before executing the SOQL or SOSL statement. Bind expressions can be used as:

• The search string in FIND clauses.

• The filter literals in WHERE clauses.

• The value of the IN or NOT IN operator in WHERE clauses, allowing filtering on a dynamic set of values. Note that this is
of particular use with a list of IDs or Strings, though it works with lists of any type.

• The division names in WITH DIVISION clauses.

• The numeric value in LIMIT clauses.

Bind expressions can't be used with other clauses, such as INCLUDES.

For example:

Merchandise__c A = new Merchandise__c(
Name='Pen',
Description__c='Black pens',
Price__c=1.25,
Total_Inventory__c=100);

insert A;
Merchandise__c B;

// A simple bind
B = [SELECT Id FROM Merchandise__c WHERE Id = :A.Id];

// A bind with arithmetic
B = [SELECT Id FROM Merchandise__c

WHERE Name = :('x' + 'xx')];

String s = 'XXX';

// A bind with expressions
B = [SELECT Id FROM Merchandise__c

WHERE Name = :'XXXX'.substring(0,3)];

71

Language Constructs Understanding Foreign Key and Parent-Child Relationship SOQL Queries

// A bind with an expression that is itself a query result
B = [SELECT Id FROM Merchandise__c

WHERE Name = :[SELECT Name FROM Merchandise__c
WHERE Id = :A.Id].Name];

Line_Item__c C = new Line_Item__c(
Name='Two pens',
Units_Sold__c=2,
Unit_Price__c=1.25,
Merchandise__c = m.Id,
Invoice_Statement__c=inv.Id));

insert new Line_Item__c[]{C,
new Line_Item__c(Name='Five pens',

Units_Sold__c=5,
Unit_Price__c=1.25,
Merchandise__c = m.Id,
Invoice_Statement__c=inv.Id)};

// Binds in both the parent and aggregate queries
B = [SELECT Id, (SELECT Id FROM Line_Item__c

WHERE Id = :C.Id)
FROM Merchandise__c
WHERE Id = :A.Id];

// One line item returned
SObject D = B.getSObjects('Line_Items__r');
Line_Item__c li = (Line_Item__c)D;

// A limit bind
Integer i = 1;
B = [SELECT Id FROM Merchandise__c LIMIT :i];

// An IN-bind with an Id list. Note that a list of sObjects
// can also be used--the Ids of the objects are used for
// the bind
Invoice_Statement__c[] cc = [SELECT Id FROM Invoice_Statement__c LIMIT 2];
Line_Item__c[] tt = [SELECT Id,Name FROM Line_Item__c WHERE Invoice_Statement__c IN :cc];

// An IN-bind with a String list
String[] ss = new String[]{'a0290000000UuT7', 'a0290000000UuSn'};
Merchandise__c[] aa = [SELECT Id FROM Merchandise__c

WHERE Id IN :ss];

// A SOSL query with binds in all possible clauses

String myString1 = 'aaa';
String myString2 = 'bbb';
Integer myInt3 = 11;
String myString4 = 'ccc';
Integer myInt5 = 22;

List<List<SObject>> searchList = [FIND :myString1 IN ALL FIELDS
RETURNING

Merchandise__c (Id, Name WHERE Name LIKE :myString2
LIMIT :myInt3),

Invoice_Statement__c,
Line_Item__c,

WITH DIVISION =:myString4
LIMIT :myInt5];

72

Language Constructs Using Apex Variables in SOQL and SOSL Queries

Querying All Records with a SOQL Statement

SOQL statements can use the ALL ROWS keywords to query all records in an organization, including deleted records For
example:

System.assertEquals(2, [SELECT COUNT() FROM Merchandise__c WHERE Name LIKE 'p%' ALL ROWS]);

You can use ALL ROWS to query records in your organization's Recycle Bin. You cannot use the ALL ROWS keywords with
the FOR UPDATE keywords.

Locking Statements
Apex allows developers to lock sObject records while they are being updated in order to prevent race conditions and other
thread safety problems. While an sObject record is locked, no other program or user is allowed to make updates.

To lock a set of sObject records in Apex, embed the keywords FOR UPDATE after any inline SOQL statement. For example,
the following statement, in addition to querying for two merchandise items, also locks the merchandise items that are returned:

Merchandise__c [] merchandise = [SELECT Id FROM Merchandise__c LIMIT 2 FOR UPDATE];

Note: You cannot use the ORDER BY keywords in any SOQL query that uses locking. However, query results are
automatically ordered by ID.

While the merchandise items are locked by this call, data manipulation language (DML) statements can modify their field
values in the database in the transaction.

Caution: Use care when setting locks in your Apex code. See Avoiding Deadlocks, below.

Locking in a SOQL For Loop

The FOR UPDATE keywords can also be used within SOQL for loops. For example:

for (Merchandise__c[] merchandise : [SELECT Id FROM Merchandise__c
FOR UPDATE]) {

// Your code
}

As discussed in SOQL For Loops, the example above corresponds internally to calls to the query() and queryMore()
methods in the SOAP API.

Note that there is no commit statement. If your Apex trigger completes successfully, any database changes are automatically
committed. If your Apex trigger does not complete successfully, any changes made to the database are rolled back.

73

Language Constructs Querying All Records with a SOQL Statement

Avoiding Deadlocks

Note that Apex has the possibility of deadlocks, as does any other procedural logic language involving updates to multiple
database tables or rows. To avoid such deadlocks, the Apex runtime engine:

1. First locks sObject parent records, then children.
2. Locks sObject records in order of ID when multiple records of the same type are being edited.

As a developer, use care when locking rows to ensure that you are not introducing deadlocks. Verify that you are using standard
deadlock avoidance techniques by accessing tables and rows in the same order from all locations in an application.

Transaction Control
All requests are delimited by the trigger, class method, Web Service, or anonymous block that executes the Apex code. If the
entire request completes successfully, all changes are committed to the database. If the request does not complete successfully,
all database changes are rolled back.

However, sometimes during the processing of records, your business rules require that partial work (already executed DML
statements) be “rolled back” so that the processing can continue in another direction. Apex gives you the ability to generate a
savepoint, that is, a point in the request that specifies the state of the database at that time. Any DML statement that occurs
after the savepoint can be discarded, and the database can be restored to the same condition it was in at the time you generated
the savepoint.

The following limitations apply to generating savepoint variables and rolling back the database:

• If you set more than one savepoint, then roll back to a savepoint that is not the last savepoint you generated, the later
savepoint variables become invalid. For example, if you generated savepoint SP1 first, savepoint SP2 after that, and then
you rolled back to SP1, the variable SP2 would no longer be valid. You will receive a runtime error if you try to use it.

• References to savepoints cannot cross trigger invocations, because each trigger invocation is a new execution context. If
you declare a savepoint as a static variable then try to use it across trigger contexts you will receive a runtime error.

• Each savepoint you set counts against the governor limit for DML statements.

• Each rollback counts against the governor limit for DML statements. You will receive a runtime error if you try to rollback
the database additional times.

The following is an example using the setSavepoint and rollback Database methods.

Invoice_Statement__c a = new Invoice_Statement__c();
insert a;
System.assertEquals(null, [SELECT Description__c FROM Invoice_Statement__c

WHERE Id = :a.Id].Description__c);

// Create a savepoint while the description field is null
Savepoint sp = Database.setSavepoint();

// Change the description
a.Description__c = '123';
update a;
System.assertEquals('123', [SELECT Description__c FROM Invoice_Statement__c

WHERE Id = :a.Id].Description__c);

// Rollback to the previous null value
Database.rollback(sp);

74

Language Constructs Avoiding Deadlocks

System.assertEquals(null, [SELECT Description__c FROM Invoice_Statement__c
WHERE Id = :a.Id].Description__c);

Exception Statements
Apex uses exceptions to note errors and other events that disrupt the normal flow of code execution. throw statements can be
used to generate exceptions, while try, catch, and finally can be used to gracefully recover from an exception.

You can also create your own exceptions using the Exception class. For more information, see Exception Class on page 376.

Throw Statements

A throw statement allows you to signal that an error has occurred. To throw an exception, use the throw statement and
provide it with an exception object to provide information about the specific error. For example:

throw exceptionObject;

Try-Catch-Finally Statements

The try, catch, and finally statements can be used to gracefully recover from a thrown exception:

• The try statement identifies a block of code in which an exception can occur.

• The catch statement identifies a block of code that can handle a particular type of exception. A single try statement can
have multiple associated catch statements, however, each catch statement must have a unique exception type.

• The finally statement optionally identifies a block of code that is guaranteed to execute and allows you to clean up after
the code enclosed in the try block. A single try statement can have only one associated finally statement.

Syntax
The syntax of these statements is as follows:

try {
code_block
} catch (exceptionType) {
code_block
}
// Optional catch statements for other exception types.
// Note that the general exception type, 'Exception',
// must be the last catch block when it is used.
} catch (Exception e) {
code_block
}
// Optional finally statement
} finally {
code_block

}

75

Language Constructs Exception Statements

Example
For example:

try {
// Your code here

} catch (ListException e) {
// List Exception handling code here

} catch (Exception e) {
// Generic exception handling code here

}

Note: Limit exceptions caused by an execution governor cannot be caught. See Understanding Execution Governors
and Limits on page 203.

76

Language Constructs Try-Catch-Finally Statements

Chapter 3

Invoking Apex

You can invoke your Apex code using one of several mechanisms. You can write
an Apex trigger and have your trigger code invoked for the events your trigger

In this chapter ...

• Triggers specifies—before or after a certain operation for a specified sObject type. You
• Apex Scheduler can also write an Apex class and schedule it to run at specified intervals, or run

code snippets in an anonymous block. Finally, you can use the Ajax toolkit to
invoke Web service methods implemented in Apex.

• Anonymous Blocks
• Apex in AJAX

This chapter includes the following:

• Triggers
• Apex scheduler (for Apex classes only)
• Anonymous Blocks
• AJAX Toolkit

77

Triggers
Apex can be invoked through the use of triggers. A trigger is Apex code that executes before or after the following types of
operations:

• insert

• update

• delete

• upsert

• undelete

For example, you can have a trigger run before an object's records are inserted into the database, after records have been deleted,
or even after a record is restored from the Recycle Bin.

Triggers can be divided into two types:

• Before triggers can be used to update or validate record values before they are saved to the database.

• After triggers can be used to access field values that are set by the database (such as a record's Id or lastUpdated field),
and to affect changes in other records, such as logging into an audit table or firing asynchronous events with a queue.

Triggers can also modify other records of the same type as the records that initially fired the trigger. For example, suppose
you created a merchandise object, if a trigger fires after an update of merchandise record A, the trigger can also modify
merchandise record B, C, and D. Because triggers can cause other records to change, and because these changes can, in turn,
fire more triggers, the Apex runtime engine considers all such operations a single unit of work and sets limits on the number
of operations that can be performed to prevent infinite recursion. See Understanding Execution Governors and Limits on
page 203.

Additionally, if you update or delete a record in its before trigger, or delete a record in its after trigger, you will receive a runtime
error. This includes both direct and indirect operations.

Implementation Considerations
Before creating triggers, consider the following:

• upsert triggers fire both before and after insert or before and after update triggers as appropriate.
• Triggers that execute after a record has been undeleted only work with specific objects. See Triggers and Recovered Records

on page 85.
• Field history is not recorded until the end of a trigger. If you query field history in a trigger, you will not see any history

for the current transaction.
• For Apex saved using Salesforce.com API version 20.0 or earlier, if an API call causes a trigger to fire, the batch of 200

records to process is further split into batches of 100 records. For Apex saved using Salesforce.com API version 21.0 and
later, no further splits of API batches occur. Note that static variable values are reset between batches, but governor limits
are not. Do not use static variables to track state information between batches.

Bulk Triggers

All triggers are bulk triggers by default, and can process multiple records at a time. You should always plan on processing more
than one record at a time.

78

Invoking Apex Triggers

Note: An Event object that is defined as recurring is not processed in bulk for insert, delete, or update triggers.

Bulk triggers can handle both single record updates and bulk operations like:

• Data import

• Force.com Bulk API calls

• Mass actions, such as record owner changes and deletes

• Recursive Apex methods and triggers that invoke bulk DML statements

Trigger Syntax

To define a trigger, use the following syntax:

trigger triggerName on ObjectName (trigger_events) {
code_block

}

where trigger_events can be a comma-separated list of one or more of the following events:

• before insert

• before update

• before delete

• after insert

• after update

• after delete

• after undelete

Note:

• You can only use the webService keyword in a trigger when it is in a method defined as asynchronous; that is,
when the method is defined with the @future keyword.

• A trigger invoked by an insert, delete, or update of a recurring event or recurring task results in a runtime
error when the trigger is called in bulk from the Force.com API.

For example, the following code defines a trigger for the before insert and before update events on the
Invoice_Statement__c object:

trigger myInvoiceTrigger on Invoice_Statement__c (before insert, before update) {
// Your code here

}

The code block of a trigger cannot contain the static keyword. Triggers can only contain keywords applicable to an inner
class. In addition, you do not have to manually commit any database changes made by a trigger. If your Apex trigger completes
successfully, any database changes are automatically committed. If your Apex trigger does not complete successfully, any
changes made to the database are rolled back.

79

Invoking Apex Trigger Syntax

Trigger Context Variables

All triggers define implicit variables that allow developers to access runtime context. These variables are contained in the
System.Trigger class:

UsageVariable

Returns true if the current context for the Apex code is a trigger, not a Web service or an
executeanonymous() call.

isExecuting

Returns true if this trigger was fired due to an insert operation.isInsert

Returns true if this trigger was fired due to an update operation.isUpdate

Returns true if this trigger was fired due to a delete operation.isDelete

Returns true if this trigger was fired before any record was saved.isBefore

Returns true if this trigger was fired after all records were saved.isAfter

Returns true if this trigger was fired after a record is recovered from the Recycle Bin (that is,
after an undelete operation from Apex or the API.)

isUndelete

Returns a list of the new versions of the sObject records.

Note that this sObject list is only available in insert and update triggers, and the records
can only be modified in before triggers.

new

A map of IDs to the new versions of the sObject records.

Note that this map is only available in before update, after insert, and after
update triggers.

newMap

Returns a list of the old versions of the sObject records.

Note that this sObject list is only available in update and delete triggers.

old

A map of IDs to the old versions of the sObject records.

Note that this map is only available in update and delete triggers.

oldMap

The total number of records in a trigger invocation, both old and new.size

Note: If any record that fires a trigger includes an invalid field value (for example, a formula that divides by zero),
that value is set to null in the new, newMap, old, and oldMap trigger context variables.

For example, in this simple trigger, Trigger.new is a list of sObjects and can be iterated over in a for loop, or used as a
bind variable in the IN clause of a SOQL query:

Trigger t on Invoice_Statement__c (after insert) {
for (Invoice_Statement__c a : Trigger.new) {

// Iterate over each sObject
}

// This single query finds every line item that is
// associated with any of the triggering invoice statements.

80

Invoking Apex Trigger Context Variables

// Note that although Trigger.new is a collection of
// records, when used as a bind variable in a SOQL query, Apex automatically
// transforms the list of records into a list of corresponding Ids.
Line_Item__c[] li = [SELECT Name FROM Line_Item__c

WHERE Invoice_Statement__r.Id IN :Trigger.new];
}

This trigger uses Boolean context variables like Trigger.isBefore and Trigger.isDelete to define code that only
executes for specific trigger conditions:

trigger myInvoiceTrigger on Invoice_Statement__c(before delete, before insert, before update,

after delete, after insert, after update) {
if (Trigger.isBefore) {

if (Trigger.isDelete) {
// In a before delete trigger, the trigger accesses the records that will be
// deleted with the Trigger.old list.
for (Invoice_Statement__c a : Trigger.old) {

if (a.Description__c != 'okToDelete') {
a.addError('You can\'t delete this record!');

}
}

} else {

// In before insert or before update triggers, the trigger accesses the new records
// with the Trigger.new list.

for (Invoice_Statement__c a : Trigger.new) {
if (a.Description__c == 'bad') {

a.name.addError('Invalid invoice');
}

}
if (Trigger.isInsert) {

for (Invoice_Statement__c a : Trigger.new) {
System.assertEquals('some description', a.Description__c);
System.assertEquals('Open', a.Status__c);

}

// If the trigger is not a before trigger, it must be an after trigger.
} else {

if (Trigger.isInsert) {
List<Line_Item__c> li = new List<Line_Item__c>();
Merchandise__c m = new Merchandise__c(

Name='Pencils',
Description__c='Durable pencils',
Price__c=5,
Total_Inventory__c=100);

insert m;
for (Invoice_Statement__c a : Trigger.new) {

if(a.Description__c == 'Invoice A') {
li.add(new Line_Item__c(Name='Some pencils',

Units_Sold__c =2,
Unit_Price__c=5,
Invoice_Statement__c = a.Id,
Merchandise__c = m.Id));

}
}

insert li;
}

}
}}}

81

Invoking Apex Trigger Context Variables

Context Variable Considerations

Be aware of the following considerations for trigger context variables:

• trigger.new and trigger.old cannot be used in Apex DML operations.

• You can use an object to change its own field values using trigger.new, but only in before triggers. In all after triggers,
trigger.new is not saved, so a runtime exception is thrown.

• trigger.old is always read-only.

• You cannot delete trigger.new.

The following table lists considerations about certain actions in different trigger events:

Can delete original object
using a delete DML
operation

Can update original object
using an update DML
operation

Can change fields using
trigger.new

Trigger Event

Not applicable. The original
object has not been created;

Not applicable. The original
object has not been created;

Allowed.before insert

nothing can reference it, so
nothing can update it.

nothing can reference it, so
nothing can update it.

Allowed, but unnecessary. The
object is deleted immediately
after being inserted.

Allowed.Not allowed. A runtime error
is thrown, as trigger.new
is already saved.

after insert

Not allowed. A runtime error
is thrown.

Not allowed. A runtime error
is thrown.

Allowed.before update

Allowed. The updates are
saved before the object is

Allowed. Even though bad
code could cause an infinite

Not allowed. A runtime error
is thrown, as trigger.new
is already saved.

after update

deleted, so if the object is
undeleted, the updates become
visible.

recursion doing this
incorrectly, the error would be
found by the governor limits.

Not allowed. A runtime error
is thrown. The deletion is
already in progress.

Allowed. The updates are
saved before the object is
deleted, so if the object is
undeleted, the updates become
visible.

Not allowed. A runtime error
is thrown. trigger.new is
not available in before delete
triggers.

before delete

Not applicable. The object has
already been deleted.

Not applicable. The object has
already been deleted.

Not allowed. A runtime error
is thrown. trigger.new is
not available in after delete
triggers.

after delete

Allowed, but unnecessary. The
object is deleted immediately
after being inserted.

Allowed.Not allowed. A runtime error
is thrown. trigger.old is
not available in after undelete
triggers.

after undelete

82

Invoking Apex Context Variable Considerations

Common Bulk Trigger Idioms

Although bulk triggers allow developers to process more records without exceeding execution governor limits, they can be
more difficult for developers to understand and code because they involve processing batches of several records at a time. The
following sections provide examples of idioms that should be used frequently when writing in bulk.

Using Maps and Sets in Bulk Triggers

Set and map data structures are critical for successful coding of bulk triggers. Sets can be used to isolate distinct records, while
maps can be used to hold query results organized by record ID.

For example, this bulk trigger from the sample quoting application first adds each pricebook entry associated with the
OpportunityLineItem records in Trigger.new to a set, ensuring that the set contains only distinct elements. It then queries
the PricebookEntries for their associated product color, and places the results in a map. Once the map is created, the trigger
iterates through the OpportunityLineItems in Trigger.new and uses the map to assign the appropriate color.

// When a new line item is added to an opportunity, this trigger copies the value of the
// associated product's color to the new record.
trigger oppLineTrigger on OpportunityLineItem (before insert) {

// For every OpportunityLineItem record, add its associated pricebook entry
// to a set so there are no duplicates.
Set<Id> pbeIds = new Set<Id>();
for (OpportunityLineItem oli : Trigger.new)

pbeIds.add(oli.pricebookentryid);

// Query the PricebookEntries for their associated product color and place the results
// in a map.
Map<Id, PricebookEntry> entries = new Map<Id, PricebookEntry>(

[select product2.color__c from pricebookentry
where id in :pbeIds]);

// Now use the map to set the appropriate color on every OpportunityLineItem processed
// by the trigger.
for (OpportunityLineItem oli : Trigger.new)

oli.color__c = entries.get(oli.pricebookEntryId).product2.color__c;
}

Correlating Records with Query Results in Bulk Triggers

Use the Trigger.newMap and Trigger.oldMap ID-to-sObject maps to correlate records with query results. For example,
this trigger from the sample quoting app uses Trigger.oldMap to create a set of unique IDs (Trigger.oldMap.keySet()).
The set is then used as part of a query to create a list of quotes associated with the opportunities being processed by the trigger.
For every quote returned by the query, the related opportunity is retrieved from Trigger.oldMap and prevented from being
deleted:

trigger oppTrigger on Opportunity (before delete) {
for (Quote__c q : [SELECT opportunity__c FROM quote__c

WHERE opportunity__c IN :Trigger.oldMap.keySet()]) {
Trigger.oldMap.get(q.opportunity__c).addError('Cannot delete

opportunity with a quote');
}

}

83

Invoking Apex Common Bulk Trigger Idioms

Using Triggers to Insert or Update Records with Unique Fields

When an insert or upsert event causes a record to duplicate the value of a unique field in another new record in that batch,
the error message for the duplicate record includes the ID of the first record. However, it is possible that the error message
may not be correct by the time the request is finished.

When there are triggers present, the retry logic in bulk operations causes a rollback/retry cycle to occur. That retry cycle assigns
new keys to the new records. For example, if two records are inserted with the same value for a unique field, and you also have
an insert event defined for a trigger, the second duplicate record fails, reporting the ID of the first record. However, once
the system rolls back the changes and re-inserts the first record by itself, the record receives a new ID. That means the error
message reported by the second record is no longer valid.

Defining Triggers

Trigger code is stored as metadata under the object with which they are associated. To define a trigger in Database.com:

1. For a custom object, click Create > Objects and click the name of the object.
2. In the Triggers related list, click New.
3. Click Version Settings to specify the version of Apex and the API used with this trigger.
4. Select the Is Active checkbox if the trigger should be compiled and enabled. Leave this checkbox deselected if you only

want to store the code in your organization's metadata. This checkbox is selected by default.
5. In the Body text box, enter the Apex for the trigger. A single trigger can be up to 1 million characters in length.

To define a trigger, use the following syntax:

trigger triggerName on ObjectName (trigger_events) {
code_block

}

where trigger_events can be a comma-separated list of one or more of the following events:

• before insert

• before update

• before delete

• after insert

• after update

• after delete

• after undelete

Note:

• You can only use the webService keyword in a trigger when it is in a method defined as asynchronous; that
is, when the method is defined with the @future keyword.

• A trigger invoked by an insert, delete, or update of a recurring event or recurring task results in a runtime
error when the trigger is called in bulk from the Force.com API.

6. Click Save.

Note: Triggers are stored with an isValid flag that is set to true as long as dependent metadata has not changed
since the trigger was last compiled. If any changes are made to object names or fields that are used in the trigger,
including superficial changes such as edits to an object or field description, the isValid flag is set to false until the

84

Invoking Apex Defining Triggers

Apex compiler reprocesses the code. Recompiling occurs when the trigger is next executed, or when a user re-saves
the trigger in metadata.

The Apex Trigger Editor
When editing Apex, an editor is available with the following functionality:

Syntax highlighting
The editor automatically applies syntax highlighting for keywords and all functions and operators.

Search ()
Search enables you to search for text within the current page, class, or trigger. To use search, enter a string in the Search
textbox and click Find Next.

• To replace a found search string with another string, enter the new string in the Replace textbox and click replace
to replace just that instance, or Replace All to replace that instance and all other instances of the search string that
occur in the page, class, or trigger.

• To make the search operation case sensitive, select the Match Case option.
• To use a regular expression as your search string, select the Regular Expressions option. The regular expressions

follow Javascript's regular expression rules. A search using regular expressions can find strings that wrap over more
than one line.

If you use the replace operation with a string found by a regular expression, the replace operation can also bind regular
expression group variables ($1, $2, and so on) from the found search string. For example, to replace an <H1> tag
with an <H2> tag and keep all the attributes on the original <H1> intact, search for <H1(\s+)(.*)> and replace it
with <H2$1$2>.

Go to line ()
This button allows you to highlight a specified line number. If the line is not currently visible, the editor scrolls to that
line.

Undo () and Redo ()
Use undo to reverse an editing action and redo to recreate an editing action that was undone.

Font size
Select a font size from the drop-down list to control the size of the characters displayed in the editor.

Line and column position
The line and column position of the cursor is displayed in the status bar at the bottom of the editor. This can be used

with go to line () to quickly navigate through the editor.

Line and character count
The total number of lines and characters is displayed in the status bar at the bottom of the editor.

Triggers and Recovered Records

The after undelete trigger event only works with recovered records—that is, records that were deleted and then recovered
through the undelete DML statement. These are also called undeleted records.

The after undelete trigger events only run on top-level objects.

85

Invoking Apex Triggers and Recovered Records

Triggers and Order of Execution

When you save a record with an insert, update, or upsert statement, Database.com performs the following events in
order.

Note: Before Database.com executes these events on the server, the browser runs JavaScript validation if the record
contains any dependent picklist fields. The validation limits each dependent picklist field to its available values. No
other validation occurs on the client side.

On the server, Database.com:

1. Loads the original record from the database or initializes the record for an upsert statement.
2. Loads the new record field values from the request and overwrites the old values.Database.com doesn't perform system

validation in this step when the request comes from other sources, such as an Apex application or a SOAP API call.
3. Executes all before triggers.
4. Runs most system validation steps again, such as verifying that all required fields have a non-null value, and runs any

user-defined validation rules. The only system validation that Database.com doesn't run a second time (when the request
comes from a standard UI edit page) is the enforcement of layout-specific rules.

5. Saves the record to the database, but doesn't commit yet.
6. Executes all after triggers.
7. Executes assignment rules.
8. Executes auto-response rules.
9. Executes workflow rules.
10. If there are workflow field updates, updates the record again.
11. If the record was updated with workflow field updates, fires before and after triggers one more time (and only one

more time), in addition to standard validations. Custom validation rules are not run again.

Note: The before and after triggers fire one more time only if something needs to be updated. If the fields
have already been set to a value, the triggers are not fired again.

12. If the record contains a roll-up summary field or is part of a cross-object workflow, performs calculations and updates the
roll-up summary field in the parent record. Parent record goes through save procedure.

13. If the parent record is updated, and a grand-parent record contains a roll-up summary field or is part of a cross-object
workflow, performs calculations and updates the roll-up summary field in the parent record. Grand-parent record goes
through save procedure.

14. Executes Criteria Based Sharing evaluation.
15. Commits all DML operations to the database.
16. Executes post-commit logic, such as sending email.

Note: During a recursive save, Database.com skips steps 7 through 13.

Additional Considerations
Trigger.old contains a version of the objects before the specific update that fired the trigger. However, there is an exception.
When a record is updated and subsequently triggers a workflow rule field update, Trigger.old in the last update trigger
won’t contain the version of the object immediately prior to the workflow update, but the object before the initial update was
made. For example, suppose an existing record has a number field with an initial value of 1. A user updates this field to 10,

86

Invoking Apex Triggers and Order of Execution

and a workflow rule field update fires and increments it to 11. In the update trigger that fires after the workflow field update,
the field value of the object obtained from Trigger.old is the original value of 1, rather than 10, as would typically be the
case.

Operations That Don't Invoke Triggers

Triggers are only invoked for data manipulation language (DML) operations that are initiated or processed by the Java
application server. Consequently, some system bulk operations don't currently invoke triggers. Some examples include:

• Cascading delete operations. Records that did not initiate a delete don't cause trigger evaluation.

• Cascading updates of child records that are reparented as a result of a merge operation

• Mass campaign status changes

• Mass division transfers

• Mass address updates

• Mass approval request transfers

• Mass email actions

• Modifying custom field data types

• Renaming or replacing picklists

• Managing price books

• Changing a user's default division with the transfer division option checked

• Changes to the following objects:

◊ BrandTemplate

◊ MassEmailTemplate

◊ Folder

Note the following for the ContentVersion object:

• Content pack operations involving the ContentVersion object, including slides and slide autorevision, don't invoke triggers.

Note: Content packs are revised when a slide inside of the pack is revised.

• Values for the TagCsv and VersionData fields are only available in triggers if the request to create or update
ContentVersion records originates from the API.

• You can't use before or after delete triggers with the ContentVersion object.

Things to consider about FeedItem and FeedComment triggers:

• FeedItem and FeedComment objects don't support updates. Don't use before update or after update triggers.

• FeedItem and FeedComment objects can't be undeleted. Don't use the after undelete trigger.

• Only FeedItems of Type TextPost, LinkPost, and ContentPost can be inserted, and therefore invoke the before
or after insert trigger. User status updates don't cause the FeedItem triggers to fire.

• While FeedPost objects were supported for API versions 18.0, 19.0, and 20.0, don't use any insert or delete triggers saved
against versions prior to 21.0.

• For FeedItem the following fields are not available in the before insert trigger:

◊ ContentSize

◊ ContentType

87

Invoking Apex Operations That Don't Invoke Triggers

In addition, the ContentData field is not available in any delete trigger.

• For FeedComment before insert and after insert triggers, the fields of a ContentVersion associated with the
FeedComment (obtained through FeedComment.RelatedRecordId) are not available.

• Apex code uses additional security when executing in a Chatter context. To post to a private group, the user running the
code must be a member of that group. If the running user isn't a member, you can set the CreatedById field to be a
member of the group in the FeedItem record.

Fields that Aren’t Available or Can’t Be Updated in Triggers

QuestionDataCategorySelection Entity Not Available in After Insert Triggers
The after insert trigger that fires after inserting one ore more Question records doesn’t have access to the
QuestionDataCategorySelection records that are associated with the inserted Questions. For example, the following
query doesn’t return any results in an after insert trigger:

QuestionDataCategorySelection[] dcList =

[select Id,DataCategoryName from QuestionDataCategorySelection where ParentId IN :questions];

Fields Not Updateable in Before Triggers
Some field values are set during the system save operation, which occurs after before triggers have fired. As a result, these
fields cannot be modified or accurately detected in before insert or before update triggers. Some examples include:

• Task.isClosed

• Opportunity.amount*
• Opportunity.ForecastCategory

• Opportunity.isWon

• Opportunity.isClosed

• Contract.activatedDate

• Contract.activatedById

• Case.isClosed

• Solution.isReviewed

• Id (for all records)**
• createdDate (for all records)**
• lastUpdated (for all records)

* When Opportunity has no lineitems, Amount can be modified by a before trigger.

** Id and createdDate can be detected in before update triggers, but cannot be modified.

Trigger Exceptions

Triggers can be used to prevent DML operations from occurring by calling the addError() method on a record or field.
When used on Trigger.new records in insert and update triggers, and on Trigger.old records in delete triggers,
the custom error message is displayed in the application interface and logged.

Note: Users experience less of a delay in response time if errors are added to before triggers.

88

Invoking Apex Fields that Aren’t Available or Can’t Be Updated in Triggers

A subset of the records being processed can be marked with the addError() method:

• If the trigger was spawned by a DML statement in Apex, any one error results in the entire operation rolling back. However,
the runtime engine still processes every record in the operation to compile a comprehensive list of errors.

• If the trigger was spawned by a bulk DML call in the Force.com API, the runtime engine sets aside the bad records and
attempts to do a partial save of the records that did not generate errors. See Bulk DML Exception Handling on page 252.

If a trigger ever throws an unhandled exception, all records are marked with an error and no further processing takes place.

Trigger and Bulk Request Best Practices

A common development pitfall is the assumption that trigger invocations never include more than one record. Apex triggers
are optimized to operate in bulk, which, by definition, requires developers to write logic that supports bulk operations.

This is an example of a flawed programming pattern. It assumes that only one record is pulled in during a trigger invocation.
This doesn't support bulk operations invoked through SOAP API.

trigger MileageTrigger on Mileage__c (before insert, before update) {
User c = [SELECT Id FROM User WHERE mileageid__c = Trigger.new[0].id];

}

This is another example of a flawed programming pattern. It assumes that less than 100 records are pulled in during a trigger
invocation. If more than 20 records are pulled into this request, the trigger would exceed the SOQL query limit of 100 SELECT
statements:

trigger MileageTrigger on Mileage__c (before insert, before update) {
for(mileage__c m : Trigger.new){

User c = [SELECT Id FROM user WHERE mileageid__c = m.Id];
}

}

For more information on governor limits, see Understanding Execution Governors and Limits on page 203.

This example demonstrates the correct pattern to support the bulk nature of triggers while respecting the governor limits:

Trigger MileageTrigger on Mileage__c (before insert, before update) {
Set<ID> ids = Trigger.new.keySet();
List<User> c = [SELECT Id FROM user WHERE mileageid__c in :ids];

}

This pattern respects the bulk nature of the trigger by passing the Trigger.new collection to a set, then using the set in a
single SOQL query. This pattern captures all incoming records within the request while limiting the number of SOQL queries.

Best Practices for Designing Bulk Programs
The following are the best practices for this design pattern:

• Minimize the number of data manipulation language (DML) operations by adding records to collections and performing
DML operations against these collections.

89

Invoking Apex Trigger and Bulk Request Best Practices

• Minimize the number of SOQL statements by preprocessing records and generating sets, which can be placed in single
SOQL statement used with the IN clause.

See Also:
What are the Limitations of Apex?

Apex Scheduler
To invoke Apex classes to run at specific times, first implement the Schedulable interface for the class, then specify the
schedule using either the Schedule Apex page in the Database.com user interface, or the System.schedule method.

For more information about the Schedule Apex page, see “Scheduling Apex” in the Database.com online help.

Important: Database.com only adds the process to the queue at the scheduled time. Actual execution may be delayed
based on service availability.

You can only have 25 classes scheduled at one time. You can evaluate your current count by viewing the Scheduled
Jobs page in Database.com or programmatically using SOAP API to query the CronTrigger object.

Use extreme care if you are planning to schedule a class from a trigger. You must be able to guarantee that the trigger
will not add more scheduled classes than the 25 that are allowed. In particular, consider API bulk updates, import
wizards, mass record changes through the user interface, and all cases where more than one record can be updated at
a time.

Implementing the Schedulable Interface
To schedule an Apex class to run at regular intervals, first write an Apex class that implements the Database.com-provided
interface Schedulable.

The scheduler runs as system: all classes are executed, whether the user has permission to execute the class or not. For more
information on setting class permissions, see “Apex Class Security Overview” in the Database.com online help.

To monitor or stop the execution of a scheduled Apex job using the Database.com user interface, click Monitoring > Scheduled
Jobs. For more information, see “Monitoring Scheduled Jobs” in the Database.com online help.

The Schedulable interface contains one method that must be implemented, execute.

global void execute(SchedulableContext sc){}

Use this method to instantiate the class you want to schedule.

Tip: Though it's possible to do additional processing in the execute method, we recommend that all processing
take place in a separate class.

The following example implements the Schedulable interface for a class called mergeNumbers:

global class scheduledMerge implements Schedulable{
global void execute(SchedulableContext SC) {

mergeNumbers M = new mergeNumbers();
}

}

90

Invoking Apex Apex Scheduler

The following example uses the System.Schedule method to implement the above class.

scheduledMerge m = new scheduledMerge();
String sch = '20 30 8 10 2 ?';
system.schedule('Merge Job', sch, m);

You can also use the Schedulable interface with batch Apex classes. The following example implements the Schedulable
interface for a batch Apex class called batchable:

global class scheduledBatchable implements Schedulable{
global void execute(SchedulableContext sc) {

batchable b = new batchable();
database.executebatch(b);

}
}

Use the SchedulableContext object to keep track of the scheduled job once it's scheduled. The SchedulableContext method
getTriggerID returns the Id of the CronTrigger object associated with this scheduled job as a string. Use this method to
track the progress of the scheduled job.

To stop execution of a job that was scheduled, use the System.abortJob method with the ID returned by the.getTriggerID
method.

Testing the Apex Scheduler
The following is an example of how to test using the Apex scheduler.

The System.schedule method starts an asynchronous process. This means that when you test scheduled Apex, you must
ensure that the scheduled job is finished before testing against the results. Use the Test methods startTest and stopTest
around the System.schedule method to ensure it finishes before continuing your test. All asynchronous calls made after
the startTest method are collected by the system. When stopTest is executed, all asynchronous processes are run
synchronously. If you don’t include the System.schedule method within the startTest and stopTest methods, the
scheduled job executes at the end of your test method for Apex saved using Salesforce.com API version 25.0 and later, but
not in earlier versions.

This is the class to be tested.

global class TestScheduledApexFromTestMethod implements Schedulable {

// This test runs a scheduled job at midnight Sept. 3rd. 2022

public static String CRON_EXP = '0 0 0 3 9 ? 2022';

global void execute(SchedulableContext ctx) {
CronTrigger ct = [SELECT Id, CronExpression, TimesTriggered, NextFireTime

FROM CronTrigger WHERE Id = :ctx.getTriggerId()];

System.assertEquals(CRON_EXP, ct.CronExpression);
System.assertEquals(0, ct.TimesTriggered);
System.assertEquals('2022-09-03 00:00:00', String.valueOf(ct.NextFireTime));

Merchandise__c a = [SELECT Id, Name FROM Merchandise__c WHERE Name =
'Merchandise A'];

a.name = 'Updated Merchandise';
update a;

}
}

91

Invoking Apex Apex Scheduler

http://www.salesforce.com/us/developer/docs/dbcom_objects/index_CSH.htm#sforce_api_objects_crontrigger.htm

The following tests the above class:

@istest

class TestClass {

static testmethod void test() {
Test.startTest();

Merchandise__c a = new Merchandise__c();
a.Name = 'Merchandise A';
a.Description__c='Office supplies';
a.Price__c=1.25;
a.Total_Inventory__c=100;
insert a;

// Schedule the test job
String jobId = System.schedule('testBasicScheduledApex',
TestScheduledApexFromTestMethod.CRON_EXP,

new TestScheduledApexFromTestMethod());
// Get the information from the CronTrigger API object
CronTrigger ct = [SELECT Id, CronExpression, TimesTriggered,

NextFireTime
FROM CronTrigger WHERE id = :jobId];

// Verify the expressions are the same
System.assertEquals(TestScheduledApexFromTestMethod.CRON_EXP,

ct.CronExpression);

// Verify the job has not run
System.assertEquals(0, ct.TimesTriggered);

// Verify the next time the job will run
System.assertEquals('2022-09-03 00:00:00',

String.valueOf(ct.NextFireTime));
System.assertNotEquals('Updated Merchandise',

[SELECT id, name FROM Merchandise__c WHERE id = :a.id].name);

Test.stopTest();

System.assertEquals('Updated Merchandise',
[SELECT Id, Name FROM Merchandise__c WHERE Id = :a.Id].Name);

}
}

Using the System.Schedule Method
After you implement a class with the Schedulable interface, use the System.Schedule method to execute it. The scheduler
runs as system: all classes are executed, whether the user has permission to execute the class or not.

Note: Use extreme care if you are planning to schedule a class from a trigger. You must be able to guarantee that the
trigger will not add more scheduled classes than the 25 that are allowed. In particular, consider API bulk updates,
import wizards, mass record changes through the user interface, and all cases where more than one record can be
updated at a time.

The System.Schedule method takes three arguments: a name for the job, an expression used to represent the time and
date the job is scheduled to run, and the name of the class. This expression has the following syntax:

Seconds Minutes Hours Day_of_month Month Day_of_week optional_year

92

Invoking Apex Apex Scheduler

Note: Database.com only adds the process to the queue at the scheduled time. Actual execution may be delayed based
on service availability.

The System.Schedule method uses the user's timezone for the basis of all schedules.

The following are the values for the expression:

Special CharactersValuesName

None0–59Seconds

None0–59Minutes

, - * /0–23Hours

, - * ? / L W1–31Day_of_month

, - * /1–12 or the following:Month

• JAN

• FEB

• MAR

• APR

• MAY

• JUN

• JUL

• AUG

• SEP

• OCT

• NOV

• DEC

, - * ? / L #1–7 or the following:Day_of_week

• SUN

• MON

• TUE

• WED

• THU

• FRI

• SAT

, - * /null or 1970–2099optional_year

The special characters are defined as follows:

DescriptionSpecial Character

Delimits values. For example, use JAN, MAR, APR to specify more than one
month.

,

Specifies a range. For example, use JAN-MAR to specify more than one month.-

93

Invoking Apex Apex Scheduler

DescriptionSpecial Character

Specifies all values. For example, if Month is specified as *, the job is scheduled
for every month.

*

Specifies no specific value. This is only available for Day_of_month and
Day_of_week, and is generally used when specifying a value for one and not
the other.

?

Specifies increments. The number before the slash specifies when the intervals
will begin, and the number after the slash is the interval amount. For example,

/

if you specify 1/5 for Day_of_month, the Apex class runs every fifth day of the
month, starting on the first of the month.

Specifies the end of a range (last). This is only available for Day_of_month and
Day_of_week. When used with Day of month, L always means the last day

L

of the month, such as January 31, February 28 for leap years, and so on. When
used with Day_of_week by itself, it always means 7 or SAT. When used with
a Day_of_week value, it means the last of that type of day in the month. For
example, if you specify 2L, you are specifying the last Monday of the month.
Do not use a range of values with L as the results might be unexpected.

Specifies the nearest weekday (Monday-Friday) of the given day. This is only
available for Day_of_month. For example, if you specify 20W, and the 20th is

W

a Saturday, the class runs on the 19th. If you specify 1W, and the first is a
Saturday, the class does not run in the previous month, but on the third, which
is the following Monday.

Tip: Use the L and W together to specify the last weekday of the month.

Specifies the nth day of the month, in the format weekday#day_of_month.
This is only available for Day_of_week. The number before the # specifies

#

weekday (SUN-SAT). The number after the # specifies the day of the month.
For example, specifying 2#2 means the class runs on the second Monday of
every month.

The following are some examples of how to use the expression.

DescriptionExpression

Class runs every day at 1 PM.0 0 13 * * ?

Class runs the last Friday of every month at 10 PM.0 0 22 ? * 6L

Class runs Monday through Friday at 10 AM.0 0 10 ? * MON-FRI

Class runs every day at 8 PM during the year 2010.0 0 20 * * ? 2010

94

Invoking Apex Apex Scheduler

In the following example, the class proschedule implements the Schedulable interface. The class is scheduled to run at
8 AM, on the 13th of February.

proschedule p = new proschedule();
String sch = '0 0 8 13 2 ?';
system.schedule('One Time Pro', sch, p);

Apex Scheduler Best Practices and Limits
• Database.com only adds the process to the queue at the scheduled time. Actual execution may be delayed based on service

availability.
• Use extreme care if you are planning to schedule a class from a trigger. You must be able to guarantee that the trigger will

not add more scheduled classes than the 25 that are allowed. In particular, consider API bulk updates, import wizards,
mass record changes through the user interface, and all cases where more than one record can be updated at a time.

• Though it's possible to do additional processing in the execute method, we recommend that all processing take place in
a separate class.

• You can only have 25 classes scheduled at one time. You can evaluate your current count by viewing the Scheduled Jobs
page in Database.com or programmatically using SOAP API to query the CronTrigger object.

Anonymous Blocks
An anonymous block is Apex code that does not get stored in the metadata, but that can be compiled and executed using one
of the following:

• Developer Console

• Force.com IDE

• The executeAnonymous SOAP API call:

ExecuteAnonymousResult executeAnonymous(String code)

You can use anonymous blocks to quickly evaluate Apex on the fly, such as in the Developer Console or the Force.com IDE,
or to write code that changes dynamically at runtime. For example, you might write a client Web application that takes input
from a user and then uses an anonymous block of Apex to insert a new record with using the given input.

Note the following about the content of an anonymous block (for executeAnonymous, the code String):

• Can include user-defined methods and exceptions.

• User-defined methods cannot include the keyword static.

• You do not have to manually commit any database changes.

• If your Apex trigger completes successfully, any database changes are automatically committed. If your Apex trigger does
not complete successfully, any changes made to the database are rolled back.

• Unlike classes and triggers, anonymous blocks execute as the current user and can fail to compile if the code violates the
user's object- and field-level permissions.

• Do not have a scope other than local. For example, though it is legal to use the global access modifier, it has no meaning.
The scope of the method is limited to the anonymous block.

95

Invoking Apex Anonymous Blocks

Even though a user-defined method can refer to itself or later methods without the need for forward declarations, variables
cannot be referenced before their actual declaration. In the following example, the Integer int must be declared while
myProcedure1 does not:

Integer int1 = 0;

void myProcedure1() {
myProcedure2();

}

void myProcedure2() {
int1++;

}

myProcedure1();

The return result for anonymous blocks includes:

• Status information for the compile and execute phases of the call, including any errors that occur

• The debug log content, including the output of any calls to the System.debug method (see Understanding the Debug
Log on page 189)

• The Apex stack trace of any uncaught code execution exceptions, including the class, method, and line number for each
call stack element

For more information on executeAnonymous(), see SOAP API and SOAP Headers for Apex. See also Using the Developer
Console and the Force.com IDE.

Apex in AJAX
The AJAX toolkit includes built-in support for invoking Apex through anonymous blocks or public webService methods.
To do so, include the following lines in your AJAX code:

<script src="/soap/ajax/15.0/connection.js" type="text/javascript"></script>
<script src="/soap/ajax/15.0/apex.js" type="text/javascript"></script>

Note: For AJAX buttons, use the alternate forms of these includes.

To invoke Apex, use one of the following two methods:

• Execute anonymously via sforce.apex.executeAnonymous (script). This method returns a result similar to the
API's result type, but as a JavaScript structure.

• Use a class WSDL. For example, you can call the following Apex class:

global class myClass {
webService static Id CreateInvoiceLineItem(

Integer units, Decimal price, Invoice_Statement__c inv) {
Line_Item__c i = new Line_Item__c(

Units_Sold__c=units,
Unit_Price__c=price,
Invoice_Statement__r=inv);

return i.id;

96

Invoking Apex Apex in AJAX

http://wiki.developerforce.com/index.php/Force.com_IDE

}
}

By using the following JavaScript code:

var invoice = sforce.sObject("Invoice_Statement__c");
var id = sforce.apex.execute("myClass","CreateInvoiceLineItem",

{units:"5",
price:"1.25",
inv:invoice});

The execute method takes primitive data types, sObjects, and lists of primitives or sObjects.

To call a webService method with no parameters, use {} as the third parameter for sforce.apex.execute. For example,
to call the following Apex class:

global class myClass{
webService static String getContextUserName() {

return UserInfo.getFirstName();
}

}

Use the following JavaScript code:

var contextUser = sforce.apex.execute("myClass", "getContextUserName", {});

Both examples result in native JavaScript values that represent the return type of the methods.

Use the following line to display a popup window with debugging information:

sforce.debug.trace=true;

97

Invoking Apex Apex in AJAX

Chapter 4

Classes, Objects, and Interfaces

A class is a template or blueprint from which Apex objects are created. Classes
consist of other classes, user-defined methods, variables, exception types, and

In this chapter ...

• Understanding Classes static initialization code. They are stored in the application under Develop >
Apex Classes.• Interfaces and Extending Classes

• Keywords Once successfully saved, class methods or variables can be invoked by other Apex
code, or through the SOAP API (or AJAX Toolkit) for methods that have been
designated with the webService keyword.

• Annotations
• Classes and Casting
• Differences Between Apex Classes

and Java Classes
In most cases, the class concepts described here are modeled on their counterparts
in Java, and can be quickly understood by those who are familiar with them.

• Class Definition Creation
• Understanding Classes—more about creating classes in Apex• Class Security
• Interfaces and Extending Classes—information about interfaces

• Enforcing Object and Field
Permissions • Keywords and Annotations—additional modifiers for classes, methods or

variables
• Namespace Prefix

• Classes and Casting—assigning a class of one data type to another
• Version Settings

• Differences Between Apex Classes and Java Classes—how Apex and Java
differ

• Class Definition Creation and Class Security—creating a class in the
Database.com user interface as well as enabling users to access a class

• Namespace Prefix and Version Settings—using a namespace prefix and
versioning Apex classes

98

Understanding Classes
As in Java, you can create classes in Apex. A class is a template or blueprint from which objects are created. An object is an
instance of a class. For example, the PurchaseOrder class describes an entire purchase order, and everything that you can
do with a purchase order. An instance of the PurchaseOrder class is a specific purchase order that you send or receive.

All objects have state and behavior, that is, things that an object knows about itself, and things that an object can do. The state
of a PurchaseOrder object—what it knows—includes the user who sent it, the date and time it was created, and whether it
was flagged as important. The behavior of a PurchaseOrder object—what it can do—includes checking inventory, shipping
a product, or notifying a customer.

A class can contain variables and methods. Variables are used to specify the state of an object, such as the object's Name or
Type. Since these variables are associated with a class and are members of it, they are commonly referred to as member variables.
Methods are used to control behavior, such as getOtherQuotes or copyLineItems.

An interface is like a class in which none of the methods have been implemented—the method signatures are there, but the
body of each method is empty. To use an interface, another class must implement it by providing a body for all of the methods
contained in the interface.

For more general information on classes, objects, and interfaces, see
http://java.sun.com/docs/books/tutorial/java/concepts/index.html

Defining Apex Classes

In Apex, you can define top-level classes (also called outer classes) as well as inner classes, that is, a class defined within another
class. You can only have inner classes one level deep. For example:

public class myOuterClass {
// Additional myOuterClass code here
class myInnerClass {
// myInnerClass code here

}
}

To define a class, specify the following:

1. Access modifiers:

• You must use one of the access modifiers (such as public or global) in the declaration of a top-level class.
• You do not have to use an access modifier in the declaration of an inner class.

2. Optional definition modifiers (such as virtual, abstract, and so on)
3. Required: The keyword class followed by the name of the class
4. Optional extensions and/or implementations

Use the following syntax for defining classes:

private | public | global
[virtual | abstract | with sharing | without sharing | (none)]
class ClassName [implements InterfaceNameList | (none)] [extends ClassName | (none)]
{
// The body of the class
}

99

Classes, Objects, and Interfaces Understanding Classes

http://java.sun.com/docs/books/tutorial/java/concepts/index.html

• The private access modifier declares that this class is only known locally, that is, only by this section of code. This is the
default access for inner classes—that is, if you don't specify an access modifier for an inner class, it is considered private.
This keyword can only be used with inner classes.

• The public access modifier declares that this class is visible in your application or namespace.

• The global access modifier declares that this class is known by all Apex code everywhere. All classes that contain methods
defined with the webService keyword must be declared as global. If a method or inner class is declared as global,
the outer, top-level class must also be defined as global.

• The with sharing and without sharing keywords specify the sharing mode for this class. For more information,
see Using the with sharing or without sharing Keywords on page 123.

• The virtual definition modifier declares that this class allows extension and overrides. You cannot override a method
with the override keyword unless the class has been defined as virtual.

• The abstract definition modifier declares that this class contains abstract methods, that is, methods that only have their
signature declared and no body defined.

A class can implement multiple interfaces, but only extend one existing class. This restriction means that Apex does not support
multiple inheritance. The interface names in the list are separated by commas. For more information about interfaces, see
Interfaces and Extending Classes on page 114.

For more information about method and variable access modifiers, see Access Modifiers on page 108.

Extended Class Example

The following is an extended example of a class, showing all the features of Apex classes. The keywords and concepts introduced
in the example are explained in more detail throughout this chapter.

// Top-level (outer) class must be public or global (usually public unless they contain
// a Web Service, then they must be global)
public class OuterClass {

// Static final variable (constant) – outer class level only
private static final Integer MY_INT;

// Non-final static variable - use this to communicate state across triggers
// within a single request)
public static String sharedState;

// Static method - outer class level only
public static Integer getInt() { return MY_INT; }

// Static initialization (can be included where the variable is defined)
static {
MY_INT = 2;

}

// Member variable for outer class
private final String m;

// Instance initialization block - can be done where the variable is declared,
// or in a constructor
{
m = 'a';

}

// Because no constructor is explicitly defined in this outer class, an implicit,
// no-argument, public constructor exists

// Inner interface
public virtual interface MyInterface {

100

Classes, Objects, and Interfaces Extended Class Example

// No access modifier is necessary for interface methods - these are always
// public or global depending on the interface visibility
void myMethod();

}

// Interface extension
interface MySecondInterface extends MyInterface {
Integer method2(Integer i);

}

// Inner class - because it is virtual it can be extended.
// This class implements an interface that, in turn, extends another interface.
// Consequently the class must implement all methods.
public virtual class InnerClass implements MySecondInterface {

// Inner member variables
private final String s;
private final String s2;

// Inner instance initialization block (this code could be located above)
{

this.s = 'x';
}

// Inline initialization (happens after the block above executes)
private final Integer i = s.length();

// Explicit no argument constructor
InnerClass() {

// This invokes another constructor that is defined later
this('none');

}

// Constructor that assigns a final variable value
public InnerClass(String s2) {
this.s2 = s2;

}

// Instance method that implements a method from MyInterface.
// Because it is declared virtual it can be overridden by a subclass.
public virtual void myMethod() { /* does nothing */ }

// Implementation of the second interface method above.
// This method references member variables (with and without the "this" prefix)
public Integer method2(Integer i) { return this.i + s.length(); }

}

// Abstract class (that subclasses the class above). No constructor is needed since
// parent class has a no-argument constructor
public abstract class AbstractChildClass extends InnerClass {

// Override the parent class method with this signature.
// Must use the override keyword
public override void myMethod() { /* do something else */ }

// Same name as parent class method, but different signature.
// This is a different method (displaying polymorphism) so it does not need
// to use the override keyword
protected void method2() {}

// Abstract method - subclasses of this class must implement this method
abstract Integer abstractMethod();

}

// Complete the abstract class by implementing its abstract method
public class ConcreteChildClass extends AbstractChildClass {

101

Classes, Objects, and Interfaces Extended Class Example

// Here we expand the visibility of the parent method - note that visibility
// cannot be restricted by a sub-class
public override Integer abstractMethod() { return 5; }

}

// A second sub-class of the original InnerClass
public class AnotherChildClass extends InnerClass {
AnotherChildClass(String s) {
// Explicitly invoke a different super constructor than one with no arguments
super(s);

}
}

// Exception inner class
public virtual class MyException extends Exception {
// Exception class member variable
public Double d;

// Exception class constructor
MyException(Double d) {
this.d = d;

}

// Exception class method, marked as protected
protected void doIt() {}

}

// Exception classes can be abstract and implement interfaces
public abstract class MySecondException extends Exception implements MyInterface {
}

}

This code example illustrates:

• A top-level class definition (also called an outer class)

• Static variables and static methods in the top-level class, as well as static initialization code blocks

• Member variables and methods for the top-level class

• Classes with no user-defined constructor — these have an implicit, no-argument constructor

• An interface definition in the top-level class

• An interface that extends another interface

• Inner class definitions (one level deep) within a top-level class

• A class that implements an interface (and, therefore, its associated sub-interface) by implementing public versions of the
method signatures

• An inner class constructor definition and invocation

• An inner class member variable and a reference to it using the this keyword (with no arguments)

• An inner class constructor that uses the this keyword (with arguments) to invoke a different constructor

• Initialization code outside of constructors — both where variables are defined, as well as with anonymous blocks in curly
braces ({}). Note that these execute with every construction in the order they appear in the file, as with Java.

• Class extension and an abstract class

• Methods that override base class methods (which must be declared virtual)

• The override keyword for methods that override subclass methods

• Abstract methods and their implementation by concrete sub-classes

• The protected access modifier

• Exceptions as first class objects with members, methods, and constructors

102

Classes, Objects, and Interfaces Extended Class Example

This example shows how the class above can be called by other Apex code:

// Construct an instance of an inner concrete class, with a user-defined constructor
OuterClass.InnerClass ic = new OuterClass.InnerClass('x');

// Call user-defined methods in the class
System.assertEquals(2, ic.method2(1));

// Define a variable with an interface data type, and assign it a value that is of
// a type that implements that interface
OuterClass.MyInterface mi = ic;

// Use instanceof and casting as usual
OuterClass.InnerClass ic2 = mi instanceof OuterClass.InnerClass ?

(OuterClass.InnerClass)mi : null;
System.assert(ic2 != null);

// Construct the outer type
OuterClass o = new OuterClass();
System.assertEquals(2, OuterClass.getInt());

// Construct instances of abstract class children
System.assertEquals(5, new OuterClass.ConcreteChildClass().abstractMethod());

// Illegal - cannot construct an abstract class
// new OuterClass.AbstractChildClass();

// Illegal – cannot access a static method through an instance
// o.getInt();

// Illegal - cannot call protected method externally
// new OuterClass.ConcreteChildClass().method2();

This code example illustrates:

• Construction of the outer class

• Construction of an inner class and the declaration of an inner interface type

• A variable declared as an interface type can be assigned an instance of a class that implements that interface

• Casting an interface variable to be a class type that implements that interface (after verifying this using the instanceof
operator)

Declaring Class Variables

To declare a variable, specify the following:

• Optional: Modifiers, such as public or final, as well as static.

• Required: The data type of the variable, such as String or Boolean.

• Required: The name of the variable.

• Optional: The value of the variable.

Use the following syntax when defining a variable:

[public | private | protected | global | final] [static] data_type variable_name
[= value]

103

Classes, Objects, and Interfaces Declaring Class Variables

For example:

private static final Integer MY_INT;
private final Integer i = 1;

Defining Class Methods

To define a method, specify the following:

• Optional: Modifiers, such as public or protected.

• Required: The data type of the value returned by the method, such as String or Integer. Use void if the method does not
return a value.

• Required: A list of input parameters for the method, separated by commas, each preceded by its data type, and enclosed
in parentheses (). If there are no parameters, use a set of empty parentheses. A method can only have 32 input parameters.

• Required: The body of the method, enclosed in braces {}. All the code for the method, including any local variable
declarations, is contained here.

Use the following syntax when defining a method:

(public | private | protected | global) [override] [static] data_type method_name
(input parameters)
{
// The body of the method
}

Note: You can only use override to override methods in classes that have been defined as virtual.

For example:

public static Integer getInt() {
return MY_INT;

}

As in Java, methods that return values can also be run as a statement if their results are not assigned to another variable.

Note that user-defined methods:

• Can be used anywhere that system methods are used.

• Can be recursive.

• Can have side effects, such as DML insert statements that initialize sObject record IDs. See Apex Data Manipulation
Language (DML) Operations on page 237.

• Can refer to themselves or to methods defined later in the same class or anonymous block. Apex parses methods in two
phases, so forward declarations are not needed.

• Can be polymorphic. For example, a method named foo can be implemented in two ways, one with a single Integer
parameter and one with two Integer parameters. Depending on whether the method is called with one or two Integers,
the Apex parser selects the appropriate implementation to execute. If the parser cannot find an exact match, it then seeks
an approximate match using type coercion rules. For more information on data conversion, see Understanding Rules of
Conversion on page 46.

104

Classes, Objects, and Interfaces Defining Class Methods

Note: If the parser finds multiple approximate matches, a parse-time exception is generated.

• When using void methods that have side effects, user-defined methods are typically executed as stand-alone procedure
statements in Apex code. For example:

System.debug('Here is a note for the log.');

• Can have statements where the return values are run as a statement if their results are not assigned to another variable.
This is the same as in Java.

Passing Method Arguments By Value
In Apex, all primitive data type arguments, such as Integer or String, are passed into methods by value. This means that any
changes to the arguments exist only within the scope of the method. When the method returns, the changes to the arguments
are lost.

Non-primitive data type arguments, such as sObjects, are also passed into methods by value. This means that when the method
returns, the passed-in argument still references the same object as before the method call and can't be changed to point to
another object. However, the values of the object's fields can be changed in the method.

The following are examples of passing primitive and non-primitive data type arguments into methods.

Example: Passing Primitive Data Type Arguments

This example shows how a primitive argument of type String is passed by value into another method. The
debugStatusMessage method in this example creates a String variable, msg, and assigns it a value. It then passes this
variable as an argument to another method, which modifies the value of this String. However, since String is a primitive type,
it is passed by value, and when the method returns, the value of the original variable, msg, is unchanged. An assert statement
verifies that the value of msg is still the old value.

public class PassPrimitiveTypeExample {
public static void debugStatusMessage() {

String msg = 'Original value';
processString(msg);
// The value of the msg variable didn't
// change; it is still the old value.
System.assertEquals(msg, 'Original value');

}

public static void processString(String s) {
s = 'Modified value';

}
}

Example: Passing Non-Primitive Data Type Arguments

This example shows how a List argument is passed by value into another method and can be modified. It also shows that the
List argument can’t be modified to point to another List object. First, the createTemperatureHistory method creates
a variable, fillMe, that is a List of Integers and passes it to a method. The called method fills this list with Integer values
representing rounded temperature values. When the method returns, an assert verifies that the contents of the original List
variable has changed and now contains five values. Next, the example creates a second List variable, createMe, and passes it
to another method. The called method assigns the passed-in argument to a newly created List that contains new Integer values.

105

Classes, Objects, and Interfaces Defining Class Methods

When the method returns, the original createMe variable doesn’t point to the new List but still points to the original List,
which is empty. An assert verifies that createMe contains no values.

public class PassNonPrimitiveTypeExample {

public static void createTemperatureHistory() {
List<Integer> fillMe = new List<Integer>();
reference(fillMe);
// The list is modified and contains five items
// as expected.
System.assertEquals(fillMe.size(),5);

List<Integer> createMe = new List<Integer>();
referenceNew(createMe);
// The list is not modified because it still points
// to the original list, not the new list
// that the method created.
System.assertEquals(createMe.size(),0);

}

public static void reference(List<Integer> m) {
// Add rounded temperatures for the last five days.
m.add(70);
m.add(68);
m.add(75);
m.add(80);
m.add(82);

}

public static void referenceNew(List<Integer> m) {
// Assign argument to a new List of
// five temperature values.
m = new List<Integer>{55, 59, 62, 60, 63};

}
}

Using Constructors

A constructor is code that is invoked when an object is created from the class blueprint. You do not need to write a constructor
for every class. If a class does not have a user-defined constructor, an implicit, no-argument, public one is used.

The syntax for a constructor is similar to a method, but it differs from a method definition in that it never has an explicit return
type and it is not inherited by the object created from it.

After you write the constructor for a class, you must use the new keyword in order to instantiate an object from that class,
using that constructor. For example, using the following class:

public class TestObject {

// The no argument constructor
public TestObject() {

// more code here
}

}

A new object of this type can be instantiated with the following code:

TestObject myTest = new TestObject();

106

Classes, Objects, and Interfaces Using Constructors

If you write a constructor that takes arguments, you can then use that constructor to create an object using those arguments.
If you create a constructor that takes arguments, and you still want to use a no-argument constructor, you must include one
in your code. Once you create a constructor for a class, you no longer have access to the default, no-argument public constructor.
You must create your own.

In Apex, a constructor can be overloaded, that is, there can be more than one constructor for a class, each having different
parameters. The following example illustrates a class with two constructors: one with no arguments and one that takes a simple
Integer argument. It also illustrates how one constructor calls another constructor using the this(...) syntax, also know as
constructor chaining.

public class TestObject2 {

private static final Integer DEFAULT_SIZE = 10;

Integer size;

//Constructor with no arguments
public TestObject2() {

this(DEFAULT_SIZE); // Using this(...) calls the one argument constructor
}

// Constructor with one argument
public TestObject2(Integer ObjectSize) {
size = ObjectSize;

}
}

New objects of this type can be instantiated with the following code:

TestObject2 myObject1 = new TestObject2(42);
TestObject2 myObject2 = new TestObject2();

Every constructor that you create for a class must have a different argument list. In the following example, all of the constructors
are possible:

public class Leads {

// First a no-argument constructor
public Leads () {}

// A constructor with one argument
public Leads (Boolean call) {}

// A constructor with two arguments
public Leads (String email, Boolean call) {}

// Though this constructor has the same arguments as the
// one above, they are in a different order, so this is legal
public Leads (Boolean call, String email) {}

}

When you define a new class, you are defining a new data type. You can use class name in any place you can use other data
type names, such as String or Boolean. If you define a variable whose type is a class, any object you assign to it must be an
instance of that class or subclass.

107

Classes, Objects, and Interfaces Using Constructors

Access Modifiers

Apex allows you to use the private, protected, public, and global access modifiers when defining methods and
variables.

While triggers and anonymous blocks can also use these access modifiers, they are not as useful in smaller portions of Apex.
For example, declaring a method as global in an anonymous block does not enable you to call it from outside of that code.

For more information on class access modifiers, see Defining Apex Classes on page 99.

Note: Interface methods have no access modifiers. They are always global. For more information, see Interfaces and
Extending Classes on page 114.

By default, a method or variable is visible only to the Apex code within the defining class. You must explicitly specify a method
or variable as public in order for it to be available to other classes in the same application namespace (see Namespace Prefix
on page 137). You can change the level of visibility by using the following access modifiers:

private

This is the default, and means that the method or variable is accessible only within the Apex class in which it is defined.
If you do not specify an access modifier, the method or variable is private.

protected

This means that the method or variable is visible to any inner classes in the defining Apex class. You can only use this
access modifier for instance methods and member variables. Note that it is strictly more permissive than the default
(private) setting, just like Java.

public

This means the method or variable can be used by any Apex in this application or namespace.

Note: In Apex, the public access modifier is not the same as it is in Java. This was done to discourage joining
applications, to keep the code for each application separate. In Apex, if you want to make something public like
it is in Java, you need to use the global access modifier.

global

This means the method or variable can be used by any Apex code that has access to the class, not just the Apex code in
the same application. This access modifier should be used for any method that needs to be referenced outside of the
application, either in the SOAP API or by other Apex code. If you declare a method or variable as global, you must
also declare the class that contains it as global.

Note: We recommend using the global access modifier rarely, if at all. Cross-application dependencies are
difficult to maintain.

To use the private, protected, public, or global access modifiers, use the following syntax:

[(none)|private|protected|public|global] declaration

For example:

private string s1 = '1';

108

Classes, Objects, and Interfaces Access Modifiers

public string gets1() {
return this.s1;

}

Static and Instance

In Apex, you can have static methods, variables, and initialization code. Apex classes can’t be static. You can also have instance
methods, member variables, and initialization code (which have no modifier), and local variables:

• Static methods, variables, or initialization code are associated with a class, and are only allowed in outer classes. When you
declare a method or variable as static, it's initialized only once when a class is loaded.

• Instance methods, member variables, and initialization code are associated with a particular object and have no definition
modifier. When you declare instance methods, member variables, or initialization code, an instance of that item is created
with every object instantiated from the class.

• Local variables are associated with the block of code in which they are declared. All local variables should be initialized
before they are used.

The following is an example of a local variable whose scope is the duration of the if code block:

Boolean myCondition = true;
if (myCondition) {

integer localVariable = 10;
}

Using Static Methods and Variables

You can only use static methods and variables with outer classes. Inner classes have no static methods or variables. A static
method or variable does not require an instance of the class in order to run.

All static member variables in a class are initialized before any object of the class is created. This includes any static initialization
code blocks. All of these are run in the order in which they appear in the class.

Static methods are generally used as utility methods and never depend on a particular instance member variable value. Because
a static method is only associated with a class, it cannot access any instance member variable values of its class.

Static variables are only static within the scope of the request. They are not static across the server, or across the entire
organization.

Use static variables to store information that is shared within the confines of the class. All instances of the same class share a
single copy of the static variables. For example, all triggers that are spawned by the same request can communicate with each
other by viewing and updating static variables in a related class. A recursive trigger might use the value of a class variable to
determine when to exit the recursion.

Suppose you had the following class:

public class p {
public static boolean firstRun = true;

}

A trigger that uses this class could then selectively fail the first run of the trigger:

trigger t1 on Invoice_Statement__c (
before delete, after delete, after undelete) {

if(Trigger.isBefore){

109

Classes, Objects, and Interfaces Static and Instance

if(Trigger.isDelete){
if(p.firstRun){

Trigger.old[0].addError('Before Invoice Delete Error');
p.firstRun=false;

}
}

}
}

Class static variables cannot be accessed through an instance of that class. So if class C has a static variable S, and x is an
instance of C, then x.S is not a legal expression.

The same is true for instance methods: if M() is a static method then x.M() is not legal. Instead, your code should refer to
those static identifiers using the class: C.S and C.M().

If a local variable is named the same as the class name, these static methods and variables are hidden.

Inner classes behave like static Java inner classes, but do not require the static keyword. Inner classes can have instance
member variables like outer classes, but there is no implicit pointer to an instance of the outer class (using the this keyword).

Note: For Apex saved using Salesforce.com API version 20.0 or earlier, if an API call causes a trigger to fire, the
batch of 200 records to process is further split into batches of 100 records. For Apex saved using Salesforce.com API
version 21.0 and later, no further splits of API batches occur. Note that static variable values are reset between batches,
but governor limits are not. Do not use static variables to track state information between batches.

Using Instance Methods and Variables

Instance methods and member variables are used by an instance of a class, that is, by an object. Instance member variables are
declared inside a class, but not within a method. Instance methods usually use instance member variables to affect the behavior
of the method.

Suppose you wanted to have a class that collects two dimensional points and plot them on a graph. The following skeleton
class illustrates this, making use of member variables to hold the list of points and an inner class to manage the two-dimensional
list of points.

public class Plotter {

// This inner class manages the points
class Point {

Double x;
Double y;

Point(Double x, Double y) {
this.x = x;
this.y = y;

}
Double getXCoordinate() {

return x;
}

Double getYCoordinate() {
return y;

}
}

List<Point> points = new List<Point>();

public void plot(Double x, Double y) {
points.add(new Point(x, y));

}

110

Classes, Objects, and Interfaces Static and Instance

// The following method takes the list of points and does something with them
public void render() {
}

}

Using Initialization Code

Instance initialization code is a block of code in the following form that is defined in a class:

{

//code body

}

The instance initialization code in a class is executed every time an object is instantiated from that class. These code blocks
run before the constructor.

If you do not want to write your own constructor for a class, you can use an instance initialization code block to initialize
instance variables. However, most of the time you should either give the variable a default value or use the body of a constructor
to do initialization and not use instance initialization code.

Static initialization code is a block of code preceded with the keyword static:

static {

//code body

}

Similar to other static code, a static initialization code block is only initialized once on the first use of the class.

A class can have any number of either static or instance initialization code blocks. They can appear anywhere in the code body.
The code blocks are executed in the order in which they appear in the file, the same as in Java.

You can use static initialization code to initialize static final variables and to declare any information that is static, such as a
map of values. For example:

public class MyClass {

class RGB {

Integer red;
Integer green;
Integer blue;

RGB(Integer red, Integer green, Integer blue) {
this.red = red;
this.green = green;
this.blue = blue;

}
}

static Map<String, RGB> colorMap = new Map<String, RGB>();

static {
colorMap.put('red', new RGB(255, 0, 0));
colorMap.put('cyan', new RGB(0, 255, 255));
colorMap.put('magenta', new RGB(255, 0, 255));

111

Classes, Objects, and Interfaces Static and Instance

}
}

Apex Properties

An Apex property is similar to a variable, however, you can do additional things in your code to a property value before it is
accessed or returned. Properties can be used in many different ways: they can validate data before a change is made; they can
prompt an action when data is changed, such as altering the value of other member variables; or they can expose data that is
retrieved from some other source, such as another class.

Property definitions include one or two code blocks, representing a get accessor and a set accessor:

• The code in a get accessor executes when the property is read.

• The code in a set accessor executes when the property is assigned a new value.

A property with only a get accessor is considered read-only. A property with only a set accessor is considered write-only. A
property with both accessors is read-write.

To declare a property, use the following syntax in the body of a class:

Public class BasicClass {

// Property declaration
access_modifier return_type property_name {

get {
//Get accessor code block

}
set {

//Set accessor code block
}

}
}

Where:

• access_modifier is the access modifier for the property. All modifiers that can be applied to variables can also be applied
to properties. These include: public, private, global, protected, static, virtual, abstract, override and
transient. For more information on access modifiers, see Access Modifiers on page 108.

• return_type is the type of the property, such as Integer, Double, sObject, and so on. For more information, see Data
Types on page 30.

• property_name is the name of the property

For example, the following class defines a property named prop. The property is public. The property returns an integer data
type.

public class BasicProperty {
public integer prop {

get { return prop; }
set { prop = value; }

}
}

112

Classes, Objects, and Interfaces Apex Properties

The following code segment calls the class above, exercising the get and set accessors:

BasicProperty bp = new BasicProperty();
bp.prop = 5; // Calls set accessor
System.assert(bp.prop == 5); // Calls get accessor

Note the following:

• The body of the get accessor is similar to that of a method. It must return a value of the property type. Executing the get
accessor is the same as reading the value of the variable.

• The get accessor must end in a return statement.

• We recommend that your get accessor should not change the state of the object that it is defined on.

• The set accessor is similar to a method whose return type is void.

• When you assign a value to the property, the set accessor is invoked with an argument that provides the new value.

• When the set accessor is invoked, the system passes an implicit argument to the setter called value of the same data type
as the property.

• Properties cannot be defined on interface.

• Apex properties are based on their counterparts in C#, with the following differences:

◊ Properties provide storage for values directly. You do not need to create supporting members for storing values.

◊ It is possible to create automatic properties in Apex. For more information, see Using Automatic Properties on page
113.

Using Automatic Properties
Properties do not require additional code in their get or set accessor code blocks. Instead, you can leave get and set accessor
code blocks empty to define an automatic property. Automatic properties allow you to write more compact code that is easier
to debug and maintain. They can be declared as read-only, read-write, or write-only. The following example creates three
automatic properties:

public class AutomaticProperty {
public integer MyReadOnlyProp { get; }
public double MyReadWriteProp { get; set; }
public string MyWriteOnlyProp { set; }

}

The following code segment exercises these properties:

AutomaticProperty ap = new AutomaticProperty();
ap.MyReadOnlyProp = 5; // This produces a compile error: not writable
ap.MyReadWriteProp = 5; // No error
System.assert(MyWriteOnlyProp == 5); // This produces a compile error: not readable

Using Static Properties
When a property is declared as static, the property's accessor methods execute in a static context. This means that the
accessors do not have access to non-static member variables defined in the class. The following example creates a class with
both static and instance properties:

public class StaticProperty {
public static integer StaticMember;
public integer NonStaticMember;
public static integer MyGoodStaticProp {
get{return MyGoodStaticProp;}

113

Classes, Objects, and Interfaces Apex Properties

}
// The following produces a system error
// public static integer MyBadStaticProp { return NonStaticMember; }

public integer MyGoodNonStaticProp {
get{return NonStaticMember;}

}
}

The following code segment calls the static and instance properties:

StaticProperty sp = new StaticProperty();
// The following produces a system error: a static variable cannot be
// accessed through an object instance
// sp.MyGoodStaticProp = 5;

// The following does not produce an error
StaticProperty.MyGoodStaticProp = 5;

Using Access Modifiers on Property Accessors
Property accessors can be defined with their own access modifiers. If an accessor includes its own access modifier, this modifier
overrides the access modifier of the property. The access modifier of an individual accessor must be more restrictive than the
access modifier on the property itself. For example, if the property has been defined as public, the individual accessor cannot
be defined as global. The following class definition shows additional examples:

global virtual class PropertyVisibility {
// X is private for read and public for write
public integer X { private get; set; }
// Y can be globally read but only written within a class
global integer Y { get; public set; }
// Z can be read within the class but only subclasses can set it
public integer Z { get; protected set; }

}

Interfaces and Extending Classes
An interface is like a class in which none of the methods have been implemented—the method signatures are there, but the
body of each method is empty. To use an interface, another class must implement it by providing a body for all of the methods
contained in the interface.

Interfaces can provide a layer of abstraction to your code. They separate the specific implementation of a method from the
declaration for that method. This way you can have different implementations of a method based on your specific application.

Defining an interface is similar to defining a new class. For example, a company might have two types of purchase orders,
ones that come from customers, and others that come from their employees. Both are a type of purchase order. Suppose you
needed a method to provide a discount. The amount of the discount can depend on the type of purchase order.

You can model the general concept of a purchase order as an interface and have specific implementations for customers and
employees. In the following example the focus is only on the discount aspect of a purchase order.

public class PurchaseOrders {

// An interface that defines what a purchase order looks like in general
public interface PurchaseOrder {

// All other functionality excluded

114

Classes, Objects, and Interfaces Interfaces and Extending Classes

Double discount();
}

// One implementation of the interface for customers
public virtual class CustomerPurchaseOrder implements PurchaseOrder {

public virtual Double discount() {
return .05; // Flat 5% discount

}
}

// Employee purchase order extends Customer purchase order, but with a
// different discount
public class EmployeePurchaseOrder extends CustomerPurchaseOrder{

public override Double discount() {
return .10; // It’s worth it being an employee! 10% discount

}
}

}

Note the following about the above example:

• The interface PurchaseOrder is defined as a general prototype. Methods defined within an interface have no access
modifiers and contain just their signature.

• The CustomerPurchaseOrder class implements this interface; therefore, it must provide a definition for the discount
method. As with Java, any class that implements an interface must define all of the methods contained in the interface.

• The employee version of the purchase order extends the customer version. A class extends another class using the keyword
extends. A class can only extend one other class, but it can implement more than one interface.

When you define a new interface, you are defining a new data type. You can use an interface name in any place you can use
another data type name. If you define a variable whose type is an interface, any object you assign to it must be an instance of
a class that implements the interface, or a sub-interface data type.

An interface can extend another interface. As with classes, when an interface extends another interface, all the methods and
properties of the extended interface are available to the extending interface.

See also Classes and Casting on page 130.

Parameterized Typing and Interfaces

Apex, in general, is a statically-typed programming language, which means users must specify the data type for a variable
before that variable can be used. For example, the following is legal in Apex:

Integer x = 1;

The following is not legal if x has not been defined earlier:

x = 1;

Lists, maps and sets are parameterized in Apex: they take any data type Apex supports for them as an argument. That data
type must be replaced with an actual data type upon construction of the list, map or set. For example:

List<String> myList = new List<String>();

Parameterized typing allows interfaces to be implemented with generic data type parameters that are replaced with actual data
types upon construction.

115

Classes, Objects, and Interfaces Parameterized Typing and Interfaces

The following gives an example of how the syntax of a parameterized interface works. In this example, the interface Pair has
two type variables, T and U. A type variable can be used like a regular type in the body of the interface.

public virtual interface Pair<T, U> {
T getFirst();
U getSecond();
void setFirst(T val);
void setSecond(U val);
Pair<U, T> swap();

}

The following interface DoubleUp extends the Pair interface. It uses the type variable T:

public interface DoubleUp<T> extends Pair<T, T> {}

Tip: Notice that Pair must be defined as virtual for it to be extended by DoubleUp.

Implementing Parameterized Interfaces
A class that implements a parameterized interface must pass data types in as arguments to the interface's type parameters.

public class StringPair implements DoubleUp<String> {
private String s1;
private String s2;

public StringPair(String s1, String s2) {
this.s1 = s1;
this.s2 = s2;

}

public String getFirst() { return this.s1; }
public String getSecond() { return this.s2; }

public void setFirst(String val) { this.s1 = val; }
public void setSecond(String val) { this.s2 = val; }

public Pair<String, String> swap() {
return new StringPair(this.s2, this.s1);

}
}

Type variables can never appear outside an interface declaration, such as in a class. However, fully instantiated types, such as
Pair<String, String> are allowed anywhere in Apex that any other data type can appear. For example, the following
are legal in Apex:

Pair<String, String> y = x.swap();
DoubleUp<String> z = (DoubleUp<String>) y;

In this example, when the compiler compiles the class StringPair, it must check that the class implements all of the methods
in DoubleUp<String> and in Pair<String, String>. So the compliler substitutes String for T and String for U inside
the body of interface Pair<T, U>.

DoubleUp<String> x = new StringPair('foo', 'bar');

116

Classes, Objects, and Interfaces Parameterized Typing and Interfaces

This means that the following method prototypes must implement in StringPair for the class to successfully compile:

String getFirst();
String getSecond();
void setFirst(String val);
void setSecond(String val);
Pair<String, String> swap();

Overloading Methods
In this example, the following interface is used:

public interface Overloaded<T> {
void foo(T x);
void foo(String x);

}

The interface Overloaded is legal in Apex: you can overload a method by defining two or more methods with the same name
but different parameters. However, you cannot have any ambiguity when invoking an overloaded method.

The following class successfully implements the Overloaded interface because it simultaneously implements both method
prototypes specified in the interface:

public class MyClass implements Overloaded<String> {
public void foo(String x) {}

}

The following executes successfully because m is typed as MyClass, therefore MyClass.foo is the unique, matching method.

MyClass m = new MyClass();
m.foo('bar');

The following does not execute successfully because o is typed as Overloaded<String>, and so there are two matching
methods for o.foo(), neither of which typed to a specific method. The compiler cannot distinguish which of the two matching
methods should be used. :

Overloaded<String> o = m;
o.foo('bar');

Subtyping with Parameterized Lists
In Apex, if type T is a subtype of U, then List<T> would be a subtype of List<U>. For example, the following is legal:

List<String> slst = new List<String> {'foo', 'bar'};
List<Object> olst = slst;

However, you cannot use this in interfaces with parameterized types, such as for List, Map or Set. The following is not legal:

public interface I<T> {}
I<String> x = ...;
I<Object> y = x; // Compile error: Illegal assignment from I<String> to I<Object>

117

Classes, Objects, and Interfaces Parameterized Typing and Interfaces

Custom Iterators

An iterator traverses through every item in a collection. For example, in a while loop in Apex, you define a condition for
exiting the loop, and you must provide some means of traversing the collection, that is, an iterator. In the following example,
count is incremented by 1 every time the loop is executed (count++) :

while (count < 11) {
System.debug(count);

count++;
}

Using the Iterator interface you can create a custom set of instructions for traversing a List through a loop. This is useful
for data that exists in sources outside of Database.com that you would normally define the scope of using a SELECT statement.
Iterators can also be used if you have multiple SELECT statements.

Using Custom Iterators
To use custom iterators, you must create an Apex class that implements the Iterator interface.

The Iterator interface has the following instance methods:

DescriptionReturnsArgumentsName

Returns true if there is another item in the collection
being traversed, false otherwise.

BooleanhasNext

Returns the next item in the collection.Any typenext

All methods in the Iterator interface must be declared as global.

You can only use a custom iterator in a while loop. For example:

IterableString x = new IterableString('This is a really cool test.');

while(x.hasNext()){
system.debug(x.next());

}

Iterators are not currently supported in for loops.

Using Custom Iterators with Iterable
If you do not want to use a custom iterator with a list, but instead want to create your own data structure, you can use the
Iterable interface to generate the data structure.

The Iterable interface has the following method:

DescriptionReturnsArgumentsName

Returns a reference to the iterator for this interface.Iterator classiterator

The iterator method must be declared as global. It creates a reference to the iterator that you can then use to traverse
the data structure.

118

Classes, Objects, and Interfaces Custom Iterators

In the following example a custom iterator iterates through a collection:

global class CustomIterable
implements
Iterator<Invoice_Statement__c>{

List<Invoice_Statement__c>
invoices {get; set;}

Integer i {get; set;}

public CustomIterable(){
invoices =
[SELECT Id, Description__c
FROM Invoice_Statement__c
WHERE Description__c = 'false'];

i = 0;
}

global boolean hasNext(){
if(i >= invoices.size()) {

return false;
} else {

return true;
}

}

global Invoice_Statement__c next(){
// 8 is an arbitrary
// constant in this example.
// It represents the
// maximum size of the list.
if(i == 8){ i++; return null;}
i=i+1;
return invoices[i-1];

}
}

The following calls the above code:

global class foo implements iterable<Invoice_Statement__c>{
global Iterator<Invoice_Statement__c> Iterator(){

return new CustomIterable();
}

}

The following is a batch job that uses an iterator:

global class batchClass implements
Database.batchable<Invoice_Statement__c>{
global Iterable<Invoice_Statement__c> start(

Database.batchableContext info){
return new foo();

}
global void execute(Database.batchableContext info,

List<Invoice_Statement__c> scope){
List<Invoice_Statement__c> invsToUpdate =

new List<Invoice_Statement__c>();
for(Invoice_Statement__c a : scope){

a.Description__c = 'New description';
invsToUpdate.add(a);

}
update invsToUpdate;

}

119

Classes, Objects, and Interfaces Custom Iterators

global void finish(Database.batchableContext info){
}

}

Keywords
Apex has the following keywords available:

• final

• instanceof

• super

• this

• transient

• with sharing and without sharing

Using the final Keyword

You can use the final keyword to modify variables.

• Final variables can only be assigned a value once, either when you declare a variable or in initialization code. You must
assign a value to it in one of these two places.

• Static final variables can be changed in static initialization code or where defined.

• Member final variables can be changed in initialization code blocks, constructors, or with other variable declarations.

• To define a constant, mark a variable as both static and final (see Constants on page 48).

• Non-final static variables are used to communicate state at the class level (such as state between triggers). However, they
are not shared across requests.

• Methods and classes are final by default. You cannot use the final keyword in the declaration of a class or method. This
means they cannot be overridden. Use the virtual keyword if you need to override a method or class.

Using the instanceof Keyword

If you need to verify at runtime whether an object is actually an instance of a particular class, use the instanceof keyword.
The instanceof keyword can only be used to verify if the target type in the expression on the right of the keyword is a viable
alternative for the declared type of the expression on the left.

You could add the following check to the Report class in the classes and casting example before you cast the item back into
a CustomReport object.

If (Reports.get(0) instanceof CustomReport) {
// Can safely cast it back to a custom report object
CustomReport c = (CustomReport) Reports.get(0);
} Else {
// Do something with the non-custom-report.

}

120

Classes, Objects, and Interfaces Keywords

Using the super Keyword

The super keyword can be used by classes that are extended from virtual or abstract classes. By using super, you can override
constructors and methods from the parent class.

For example, if you have the following virtual class:

public virtual class SuperClass {
public String mySalutation;
public String myFirstName;
public String myLastName;

public SuperClass() {

mySalutation = 'Mr.';
myFirstName = 'Carl';
myLastName = 'Vonderburg';

}

public SuperClass(String salutation, String firstName, String lastName) {

mySalutation = salutation;
myFirstName = firstName;
myLastName = lastName;

}

public virtual void printName() {

System.debug('My name is ' + mySalutation + myLastName);
}

public virtual String getFirstName() {
return myFirstName;

}
}

You can create the following class that extends Superclass and overrides its printName method:

public class Subclass extends Superclass {
public override void printName() {

super.printName();
System.debug('But you can call me ' + super.getFirstName());

}
}

The expected output when calling Subclass.printName is My name is Mr. Vonderburg. But you can call
me Carl.

You can also use super to call constructors. Add the following constructor to SubClass:

public Subclass() {
super('Madam', 'Brenda', 'Clapentrap');

}

Now, the expected output of Subclass.printName is My name is Madam Clapentrap. But you can call
me Brenda.

121

Classes, Objects, and Interfaces Using the super Keyword

Best Practices for Using the super Keyword

• Only classes that are extending from virtual or abstract classes can use super.

• You can only use super in methods that are designated with the override keyword.

Using the this Keyword

There are two different ways of using the this keyword.

You can use the this keyword in dot notation, without parenthesis, to represent the current instance of the class in which it
appears. Use this form of the this keyword to access instance variables and methods. For example:

public class myTestThis {

string s;
{

this.s = 'TestString';
}

}

In the above example, the class myTestThis declares an instance variable s. The initialization code populates the variable
using the this keyword.

Or you can use the this keyword to do constructor chaining, that is, in one constructor, call another constructor. In this
format, use the this keyword with parentheses. For example:

public class testThis {

// First constructor for the class. It requires a string parameter.
public testThis(string s2) {
}

// Second constructor for the class. It does not require a parameter.
// This constructor calls the first constructor using the this keyword.

public testThis() {
this('None');

}
}

When you use the this keyword in a constructor to do constructor chaining, it must be the first statement in the constructor.

Using the transient Keyword

Use the transient keyword to declare instance variables that can't be saved. For example:

Transient Integer currentTotal;

You can also use the transient keyword in Apex classes that are serializable, namely classes that implement the Batchable
or Schedulable interface. In addition, you can use transient in classes that define the types of fields declared in the
serializable classes.

122

Classes, Objects, and Interfaces Using the this Keyword

Some Apex objects are automatically considered transient, that is, their value does not get saved as part of the page's view
state. These objects include the following:

• XmlStream classes

• Collections automatically marked as transient only if the type of object that they hold is automatically marked as transient,
such as a collection of Savepoints

• Most of the objects generated by system methods, such as Schema.getGlobalDescribe.

• JSONParser class instances. For more information, see JSON Support on page 322.

Static variables also don't get transmitted through the view state.

Using the with sharing or without sharing Keywords

Apex generally runs in system context; that is, the current user's permissions, field-level security, and sharing rules aren’t taken
into account during code execution.

Note: The only exceptions to this rule are Apex code that is executed with the executeAnonymous call.
executeAnonymous always executes using the full permissions of the current user. For more information on
executeAnonymous, see Anonymous Blocks on page 95.

Because these rules aren't enforced, developers who use Apex must take care that they don't inadvertently expose sensitive
data that would normally be hidden from users by user permissions, field-level security, or organization-wide defaults. They
should be particularly careful with Web services, which can be restricted by permissions, but execute in system context once
they are initiated.

Most of the time, system context provides the correct behavior for system-level operations such as triggers and Web services
that need access to all data in an organization. However, you can also specify that particular Apex classes should enforce the
sharing rules that apply to the current user. (For more information on sharing rules, see the Salesforce.com online help.)

Note: A user's permissions and field-level security are always ignored to ensure that Apex code can view all fields and
objects in an organization. If particular fields or objects are hidden for a user, the code would fail to compile at runtime.

Use the with sharing keywords when declaring a class to enforce the sharing rules that apply to the current user. For
example:

public with sharing class sharingClass {

// Code here

}

Use the without sharing keywords when declaring a class to ensure that the sharing rules for the current user are not
enforced. For example:

public without sharing class noSharing {

// Code here

}

If a class is not declared as either with or without sharing, the current sharing rules remain in effect. This means that if the
class is called by a class that has sharing enforced, then sharing is enforced for the called class.

123

Classes, Objects, and Interfaces Using the with sharing or without sharing Keywords

http://www.salesforce.com/us/developer/docs/apexcode/index_Left.htm#StartTopic=Content%2Fapex_classes_static.htm|SkinName=webhelp

Both inner classes and outer classes can be declared as with sharing. The sharing setting applies to all code contained in
the class, including initialization code, constructors, and methods. Classes inherit this setting from a parent class when one
class extends or implements another, but inner classes do not inherit the sharing setting from their container class.

For example:

public with sharing class CWith {
// All code in this class operates with enforced sharing rules.
public static void m() { }

}

public without sharing class CWithout {
// All code in this class ignores sharing rules and operates
// as if the context user has the Modify All Data permission.
public static void m() {

// This call into CWith operates with enforced sharing rules
// for the context user. When the call finishes, the code execution
// returns to without sharing mode.
CWith.m();

}

public class CInner {
// All code in this class executes with the same sharing context
// as the code that calls it.
// Inner classes are separate from outer classes.
. . .

// Again, this call into CWith operates with enforced
// sharing rules for the context user, regardless of the
// class that initially called this inner class.
// When the call finishes, the code execution returns
// to the sharing mode that was used to call this inner class.
CWith.m();

}

public class CInnerWithOut exends CWithout {
// All code in this class ignores sharing rules because
// this class extends a parent class that ignores sharing rules.

}
}

Caution: There is no guarantee that a class declared as with sharing doesn't call code that operates as without
sharing. Class-level security is always still necessary.

Enforcing the current user's sharing rules can impact:

• SOQL and SOSL queries. A query may return fewer rows than it would operating in system context.

• DML operations. An operation may fail because the current user doesn't have the correct permissions. For example, if the
user specifies a foreign key value that exists in the organization, but which the current user does not have access to.

Annotations
An Apex annotation modifies the way a method or class is used, similar to annotations in Java.

124

Classes, Objects, and Interfaces Annotations

Annotations are defined with an initial @ symbol, followed by the appropriate keyword. To add an annotation to a method,
specify it immediately before the method or class definition. For example:

global class MyClass {
@future
Public static void myMethod(String a)
{

//long-running Apex code
}

}

Apex supports the following annotations:

• @Future

• @IsTest

• @ReadOnly

• Apex REST annotations:

◊ @RestResource(urlMapping='/yourUrl')

◊ @HttpDelete

◊ @HttpGet

◊ @HttpPatch

◊ @HttpPost

◊ @HttpPut

Future Annotation

Use the future annotation to identify methods that are executed asynchronously. When you specify future, the method
executes when Database.com has available resources.

For example, you can use the future annotation when making an asynchronous Web service callout to an external service.
Without the annotation, the Web service callout is made from the same thread that is executing the Apex code, and no
additional processing can occur until the callout is complete (synchronous processing).

Methods with the future annotation must be static methods, and can only return a void type.

To make a method in a class execute asynchronously, define the method with the future annotation. For example:

global class MyFutureClass {

@future
static void myMethod(String a, Integer i) {
System.debug('Method called with: ' + a + ' and ' + i);
//do callout, other long running code

}
}

The following snippet shows how to specify that a method executes a callout:

@future (callout=true)
public static void doCalloutFromFuture() {
//Add code to perform callout

}

125

Classes, Objects, and Interfaces Future Annotation

You can specify (callout=false) to prevent a method from making callouts.

To test methods defined with the future annotation, call the class containing the method in a startTest, stopTest code
block. All asynchronous calls made after the startTest method are collected by the system. When stopTest is executed,
all asynchronous processes are run synchronously.

Methods with the future annotation have the following limits:

• No more than 10 method calls per Apex invocation

Note: Asynchronous calls, such as @future or executeBatch, called in a startTest, stopTest block, do
not count against your limits for the number of queued jobs.

• The parameters specified must be primitive dataypes, arrays of primitive datatypes, or collections of primitive datatypes.

• Methods with the future annotation cannot take sObjects or objects as arguments.

Remember that any method using the future annotation requires special consideration, because the method does not
necessarily execute in the same order it is called.

You cannot call a method annotated with future from a method that also has the future annotation. Nor can you call a
trigger from an annotated method that calls another annotated method.

The getContent and getContentAsPDF PageReference methods cannot be used in methods with the future annotation.

For more information about callouts, see Invoking Callouts Using Apex on page 221.

See Also:
Understanding Execution Governors and Limits

IsTest Annotation

Use the isTest annotation to define classes or individual methods that only contain code used for testing your application.
The isTest annotation is similar to creating methods declared as testMethod.

Note: Classes defined with the isTest annotation don't count against your organization limit of 3 MB for all Apex
code. Individual methods defined with the isTest annotation do count against your organization limits. See
Understanding Execution Governors and Limits on page 203.

Starting with Apex code saved using Salesforce.com API version 24.0, test methods don’t have access by default to pre-existing
data in the organization. However, test code saved against Salesforce.com API version 23.0 or earlier continues to have access
to all data in the organization and its data access is unchanged. See Isolation of Test Data from Organization Data in Unit
Tests on page 143.

Classes and methods defined as isTest can be either private or public. Classes defined as isTest must be top-level
classes.

This is an example of a private test class that contains two test methods.

@isTest
private class MyTestClass {

// Methods for testing
@isTest static void test1() {

// Implement test code

126

Classes, Objects, and Interfaces IsTest Annotation

}

@isTest static void test2() {
// Implement test code

}

}

This is an example of a public test class that contains a utility method for test data creation:

@isTest
public class TestUtil {

public static void createTestData() {
// Create some test invoices

}

}

Classes defined as isTest can't be interfaces or enums.

Methods of a public test class can only be called from a running test, that is, a test method or code invoked by a test method,
and can't be called by a non-test request. In addition, test class methods can be invoked using the Database.com user interface
or the API. For more information, see Running Unit Test Methods.

IsTest(SeeAllData=true) Annotation
For Apex code saved using Salesforce.com API version 24.0 and later, use the isTest(SeeAllData=true) annotation to
grant test classes and individual test methods access to all data in the organization, including pre-existing data that the test
didn’t create. Starting with Apex code saved using Salesforce.com API version 24.0, test methods don’t have access by default
to pre-existing data in the organization. However, test code saved against Salesforce.com API version 23.0 or earlier continues
to have access to all data in the organization and its data access is unchanged. See Isolation of Test Data from Organization
Data in Unit Tests on page 143.

Considerations of the IsTest(SeeAllData=true) Annotation

• If a test class is defined with the isTest(SeeAllData=true) annotation, this annotation applies to all its test
methods whether the test methods are defined with the @isTest annotation or the testmethod keyword.

• The isTest(SeeAllData=true) annotation is used to open up data access when applied at the class or method
level. However, using isTest(SeeAllData=false) on a method doesn’t restrict organization data access for that
method if the containing class has already been defined with the isTest(SeeAllData=true) annotation. In this
case, the method will still have access to all the data in the organization.

This example shows how to define a test class with the isTest(SeeAllData=true) annotation. All the test methods in
this class have access to all data in the organization.

// All test methods in this class can access all data.
@isTest(SeeAllData=true)
public class TestDataAccessClass {

// This test accesses an existing merchandise item.
// It also creates and accesses a new test merchandise item.
static testmethod void myTestMethod1() {

// Query an existing merchandise item in the organization.
Merchandise__c m = [SELECT Id, Price__c, Total_Inventory__c, Description__c

FROM Merchandise__c WHERE Name='Pencils' LIMIT 1];
System.assert(m != null);

// Create a test merchandise item based on the queried merchandise item.

127

Classes, Objects, and Interfaces IsTest Annotation

Merchandise__c testMerchandise = m.clone();
testMerchandise.Name = 'Test Pencil';
insert testMerchandise;

// Query the test merchandise that was inserted.
Merchandise__c testMerchandise2 = [SELECT Id, Price__c, Total_Inventory__c

FROM Merchandise__c WHERE Name='Test Pencil' LIMIT 1];
System.assert(testMerchandise2 != null);

}

// Like the previous method, this test method can also access all data
// because the containing class is annotated with @isTest(SeeAllData=true).
@isTest static void myTestMethod2() {

// Can access all data in the organization.
}

}

This second example shows how to apply the isTest(SeeAllData=true) annotation on a test method. Because the class
that the test method is contained in isn’t defined with this annotation, you have to apply this annotation on the test method
to enable access to all data for that test method. The second test method doesn’t have this annotation, so it can access only
the data it creates in addition to objects that are used to manage your organization, such as users.

// This class contains test methods with different data access levels.
@isTest
private class ClassWithDifferentDataAccess {

// Test method that has access to all data.
@isTest(SeeAllData=true)
static void testWithAllDataAccess() {

// Can query all data in the organization.
}

// Test method that has access to only the data it creates
// and organization setup and metadata objects.
@isTest static void testWithOwnDataAccess() {

// This method can still access the User object.
// This query returns the first user object.
User u = [SELECT UserName,Email FROM User LIMIT 1];
System.debug('UserName: ' + u.UserName);
System.debug('Email: ' + u.Email);

// Can access the test invoice that is created here.
Invoice_Statement__c inv = new Invoice_Statement__c(

Description__c='Invoice 1');
insert inv;
// Access the invoice that was just created.
Invoice_Statement__c insertedInv = [SELECT Id,Description__C

FROM Invoice_Statement__c
WHERE Description__c='Invoice 1'];

System.assert(insertedInv != null);
}

}

ReadOnly Annotation

The @ReadOnly annotation allows you to perform unrestricted queries against the database. All other limits still apply. It's
important to note that this annotation, while removing the limit of the number of returned rows for a request, blocks you from
performing the following operations within the request: DML operations, calls to System.schedule, and calls to methods
annotated with @future.

128

Classes, Objects, and Interfaces ReadOnly Annotation

The @ReadOnly annotation is available for Web services and the Schedulable interface. To use the @ReadOnly annotation,
the top level request must be in the schedule execution or the Web service invocation.

Apex REST Annotations

Six new annotations have been added that enable you to expose an Apex class as a RESTful Web service.

• @RestResource(urlMapping='/yourUrl')

• @HttpDelete

• @HttpGet

• @HttpPatch

• @HttpPost

• @HttpPut

See Also:
Apex REST Basic Code Sample

RestResource Annotation

The @RestResource annotation is used at the class level and enables you to expose an Apex class as a REST resource.

These are some considerations when using this annotation:

• The URL mapping is relative to https://instance.salesforce.com/services/apexrest/.

• A wildcard character (*) may be used.

• To use this annotation, your Apex class must be defined as global.

URL Guidelines

URL path mappings are as follows:

• The path must begin with a '/'
• If an '*' appears, it must be preceded by '/' and followed by '/', unless the '*' is the last character, in which case it need not

be followed by '/'

The rules for mapping URLs are:

• An exact match always wins.
• If no exact match is found, find all the patterns with wildcards that match, and then select the longest (by string length)

of those.
• If no wildcard match is found, an HTTP response status code 404 is returned.

The URL for a namespaced classes contains the namespace. For example, if your class is in namespace abc and the class is
mapped to your_url, then the API URL is modified as follows:
https://instance.salesforce.com/services/apexrest/abc/your_url/. In the case of a URL collision, the
namespaced class is always used.

129

Classes, Objects, and Interfaces Apex REST Annotations

HttpDelete Annotation

The @HttpDelete annotation is used at the method level and enables you to expose an Apex method as a REST resource.
This method is called when an HTTP DELETE request is sent, and deletes the specified resource.

To use this annotation, your Apex method must be defined as global static.

HttpGet Annotation

The @HttpGet annotation is used at the method level and enables you to expose an Apex method as a REST resource. This
method is called when an HTTP GET request is sent, and returns the specified resource.

These are some considerations when using this annotation:

• To use this annotation, your Apex method must be defined as global static.

• Methods annotated with @HttpGet are also called if the HTTP request uses the HEAD request method.

HttpPatch Annotation

The @HttpPatch annotation is used at the method level and enables you to expose an Apex method as a REST resource.
This method is called when an HTTP PATCH request is sent, and updates the specified resource.

To use this annotation, your Apex method must be defined as global static.

HttpPost Annotation

The @HttpPost annotation is used at the method level and enables you to expose an Apex method as a REST resource. This
method is called when an HTTP POST request is sent, and creates a new resource.

To use this annotation, your Apex method must be defined as global static.

HttpPut Annotation

The @HttpPut annotation is used at the method level and enables you to expose an Apex method as a REST resource. This
method is called when an HTTP PUT request is sent, and creates or updates the specified resource.

To use this annotation, your Apex method must be defined as global static.

Classes and Casting
In general, all type information is available at runtime. This means that Apex enables casting, that is, a data type of one class
can be assigned to a data type of another class, but only if one class is a child of the other class. Use casting when you want to
convert an object from one data type to another.

In the following example, CustomReport extends the class Report. Therefore, it is a child of that class. This means that
you can use casting to assign objects with the parent data type (Report) to the objects of the child data type (CustomReport).

130

Classes, Objects, and Interfaces Classes and Casting

In the following code block, first, a custom report object is added to a list of report objects. After that, the custom report object
is returned as a report object, then is cast back into a custom report object.

Public virtual class Report {

Public class CustomReport extends Report {
// Create a list of report objects

Report[] Reports = new Report[5];

// Create a custom report object
CustomReport a = new CustomReport();

// Because the custom report is a sub class of the Report class,
// you can add the custom report object a to the list of report objects

Reports.add(a);

// The following is not legal, because the compiler does not know that what you are
// returning is a custom report. You must use cast to tell it that you know what
// type you are returning
// CustomReport c = Reports.get(0);

// Instead, get the first item in the list by casting it back to a custom report object
CustomReport c = (CustomReport) Reports.get(0);

}
}

Figure 3: Casting Example

131

Classes, Objects, and Interfaces Classes and Casting

In addition, an interface type can be cast to a sub-interface or a class type that implements that interface.

Tip: To verify if a class is a specific type of class, use the instanceOf keyword. For more information, see Using
the instanceof Keyword on page 120.

Classes and Collections

Lists and maps can be used with classes and interfaces, in the same ways that lists and maps can be used with sObjects. This
means, for example, that you can use a user-defined data type only for the value of a map, not for the key. Likewise, you cannot
create a set of user-defined objects.

If you create a map or list of interfaces, any child type of the interface can be put into that collection. For instance, if the List
contains an interface i1, and MyC implements i1, then MyC can be placed in the list.

Collection Casting

Because collections in Apex have a declared type at runtime, Apex allows collection casting.

Collections can be cast in a similar manner that arrays can be cast in Java. For example, a list of CustomerPurchaseOrder
objects can be assigned to a list of PurchaseOrder objects if class CustomerPurchaseOrder is a child of class PurchaseOrder.

public virtual class PurchaseOrder {

Public class CustomerPurchaseOrder extends PurchaseOrder {

}
{

List<PurchaseOrder> POs = new PurchaseOrder[] {};
List<CustomerPurchaseOrder> CPOs = new CustomerPurchaseOrder[]{};
POs = CPOs;}

}

Once the CustomerPurchaseOrder list is assigned to the PurchaseOrder list variable, it can be cast back to a list of
CustomerPurchaseOrder objects, but only because that instance was originally instantiated as a list of CustomerPurchaseOrder.
A list of PurchaseOrder objects that is instantiated as such cannot be cast to a list of CustomerPurchaseOrder objects, even if
the list of PurchaseOrder objects contains only CustomerPurchaseOrder objects.

If the user of a PurchaseOrder list that only includes CustomerPurchaseOrders objects tries to insert a
non-CustomerPurchaseOrder subclass of PurchaseOrder (such as InternalPurchaseOrder), a runtime exception results.
This is because Apex collections have a declared type at runtime.

Note: Maps behave in the same way as lists with regards to the value side of the Map—if the value side of map A can
be cast to the value side of map B, and they have the same key type, then map A can be cast to map B. A runtime error
results if the casting is not valid with the particular map at runtime.

Differences Between Apex Classes and Java Classes
The following is a list of the major differences between Apex classes and Java classes:

• Inner classes and interfaces can only be declared one level deep inside an outer class.

132

Classes, Objects, and Interfaces Classes and Collections

• Static methods and variables can only be declared in a top-level class definition, not in an inner class.

• Inner classes behave like static Java inner classes, but do not require the static keyword. Inner classes can have instance
member variables like outer classes, but there is no implicit pointer to an instance of the outer class (using the this
keyword).

• The private access modifier is the default, and means that the method or variable is accessible only within the Apex
class in which it is defined. If you do not specify an access modifier, the method or variable is private.

• Specifying no access modifier for a method or variable and the private access modifier are synonymous.

• The public access modifier means the method or variable can be used by any Apex in this application or namespace.

• The global access modifier means the method or variable can be used by any Apex code that has access to the class, not
just the Apex code in the same application. This access modifier should be used for any method that needs to be referenced
outside of the application, either in the SOAP API or by other Apex code. If you declare a method or variable as global,
you must also declare the class that contains it as global.

• Methods and classes are final by default.

◊ The virtual definition modifier allows extension and overrides.

◊ The override keyword must be used explicitly on methods that override base class methods.

• Interface methods have no modifiers—they are always global.

• Exception classes must extend either exception or another user-defined exception.

◊ Their names must end with the word exception.

◊ Exception classes have four implicit constructors that are built-in, although you can add others.

For more information, see Exception Class on page 376.

• Classes and interfaces can be defined in triggers and anonymous blocks, but only as local.

Class Definition Creation
To create a class in Database.com:

1. Click Develop > Apex Classes.
2. Click New.
3. Click Version Settings to specify the version of Apex and the API used with this class. Use the default values for all

versions. This associates the class with the most recent version of Apex and the API. You can specify an older version of
Apex and the API to maintain specific behavior.

4. In the class editor, enter the Apex code for the class. A single class can be up to 1 million characters in length, not including
comments, test methods, or classes defined using @isTest.

5. Click Save to save your changes and return to the class detail screen, or click Quick Save to save your changes and continue
editing your class. Your Apex class must compile correctly before you can save your class.

Classes can also be automatically generated from a WSDL by clicking Generate from WSDL. See SOAP Services: Defining
a Class from a WSDL Document on page 222.

Once saved, classes can be invoked through class methods or variables by other Apex code, such as a trigger.

Note: To aid backwards-compatibility, classes are stored with the version settings for a specified version of Apex and
the API. Additionally, classes are stored with an isValid flag that is set to true as long as dependent metadata has
not changed since the class was last compiled. If any changes are made to object names or fields that are used in the

133

Classes, Objects, and Interfaces Class Definition Creation

class, including superficial changes such as edits to an object or field description, or if changes are made to a class that
calls this class, the isValid flag is set to false. When a trigger or Web service call invokes the class, the code is
recompiled and the user is notified if there are any errors. If there are no errors, the isValid flag is reset to true.

The Apex Class Editor
When editing Apex, an editor is available with the following functionality:

Syntax highlighting
The editor automatically applies syntax highlighting for keywords and all functions and operators.

Search ()
Search enables you to search for text within the current page, class, or trigger. To use search, enter a string in the Search
textbox and click Find Next.

• To replace a found search string with another string, enter the new string in the Replace textbox and click replace
to replace just that instance, or Replace All to replace that instance and all other instances of the search string that
occur in the page, class, or trigger.

• To make the search operation case sensitive, select the Match Case option.
• To use a regular expression as your search string, select the Regular Expressions option. The regular expressions

follow Javascript's regular expression rules. A search using regular expressions can find strings that wrap over more
than one line.

If you use the replace operation with a string found by a regular expression, the replace operation can also bind regular
expression group variables ($1, $2, and so on) from the found search string. For example, to replace an <H1> tag
with an <H2> tag and keep all the attributes on the original <H1> intact, search for <H1(\s+)(.*)> and replace it
with <H2$1$2>.

Go to line ()
This button allows you to highlight a specified line number. If the line is not currently visible, the editor scrolls to that
line.

Undo () and Redo ()
Use undo to reverse an editing action and redo to recreate an editing action that was undone.

Font size
Select a font size from the drop-down list to control the size of the characters displayed in the editor.

Line and column position
The line and column position of the cursor is displayed in the status bar at the bottom of the editor. This can be used

with go to line () to quickly navigate through the editor.

Line and character count
The total number of lines and characters is displayed in the status bar at the bottom of the editor.

Naming Conventions

We recommend following Java standards for naming, that is, classes start with a capital letter, methods start with a lowercase
verb, and variable names should be meaningful.

134

Classes, Objects, and Interfaces Naming Conventions

It is not legal to define a class and interface with the same name in the same class. It is also not legal for an inner class to have
the same name as its outer class. However, methods and variables have their own namespaces within the class so these three
types of names do not clash with each other. In particular it is legal for a variable, method, and a class within a class to have
the same name.

Name Shadowing

Member variables can be shadowed by local variables—in particular function arguments. This allows methods and constructors
of the standard Java form:

Public Class Shadow {
String s;
Shadow(String s) { this.s = s; } // Same name ok
setS(String s) { this.s = s; } // Same name ok

}

Member variables in one class can shadow member variables with the same name in a parent classes. This can be useful if the
two classes are in different top-level classes and written by different teams. For example, if one has a reference to a class C and
wants to gain access to a member variable M in parent class P (with the same name as a member variable in C) the reference
should be assigned to a reference to P first.

Static variables can be shadowed across the class hierarchy—so if P defines a static S, a subclass C can also declare a static S.
References to S inside C refer to that static—in order to reference the one in P, the syntax P.S must be used.

Static class variables cannot be referenced through a class instance. They must be referenced using the raw variable name by
itself (inside that top-level class file) or prefixed with the class name. For example:

public class p1 {
public static final Integer CLASS_INT = 1;
public class c { };

}
p1.c c = new p1.c();
// This is illegal
// Integer i = c.CLASS_INT;
// This is correct
Integer i = p1.CLASS_INT;

Class Security
You can specify which users can execute methods in a particular top-level class based on their user profile or permission sets.
You can only set security on Apex classes, not on triggers.

To set Apex class security from the class list page:

1. Click Develop > Apex Classes.
2. Next to the name of the class that you want to restrict, click Security.
3. Select the profiles that you want to enable from the Available Profiles list and click Add, or select the profiles that you

want to disable from the Enabled Profiles list and click Remove.
4. Click Save.

To set Apex class security from the class detail page:

135

Classes, Objects, and Interfaces Name Shadowing

1. Click Develop > Apex Classes.
2. Click the name of the class that you want to restrict.
3. Click Security.
4. Select the profiles that you want to enable from the Available Profiles list and click Add, or select the profiles that you

want to disable from the Enabled Profiles list and click Remove.
5. Click Save.

To set Apex class security from a permission set:

1. Click Manage Users > Permission Sets.
2. Select a permission set.
3. Click Apex Class Access.
4. Click Edit.
5. Select the Apex classes that you want to enable from the Available Apex Classes list and click Add, or select the Apex

classes that you want to disable from the Enabled Apex Classes list and click Remove.
6. Click Save.

To set Apex class security from a profile:

1. Click Manage Users > Profiles.
2. Select a profile.
3. In the Apex Class Access page or related list, click Edit.
4. Select the Apex classes that you want to enable from the Available Apex Classes list and click Add, or select the Apex

classes that you want to disable from the Enabled Apex Classes list and click Remove.
5. Click Save.

Enforcing Object and Field Permissions
Apex generally runs in system context; that is, the current user's permissions, field-level security, and sharing rules aren’t taken
into account during code execution. The only exceptions to this rule are Apex code that is executed with the
executeAnonymous call. executeAnonymous always executes using the full permissions of the current user. For more
information on executeAnonymous, see Anonymous Blocks on page 95.

Although Apex doesn't enforce object-level and field-level permissions by default, you can enforce these permissions in your
code by explicitly calling the sObject describe result methods (of Schema.DescribeSObjectResult) and the field describe result
methods (of Schema.DescribeFieldResult) that check the current user's access permission levels. In this way, you can verify if
the current user has the necessary permissions, and only if he or she has sufficient permissions, you can then perform a specific
DML operation or a query.

For example, you can call the isAccessible, isCreateable, or isUpdateable methods of
Schema.DescribeSObjectResult to verify whether the current user has read, create, or update access to an sObject,
respectively. Similarly, Schema.DescribeFieldResult exposes these access control methods that you can call to check
the current user's read, create, or update access for a field. In addition, you can call the isDeletable method provided by
Schema.DescribeSObjectResult to check if the current user has permission to delete a specific sObject.

These are some examples of how to call the access control methods.

136

Classes, Objects, and Interfaces Enforcing Object and Field Permissions

To check the field-level update permission of the merchandise’s price field before updating it:

if (Schema.sObjectType.Merchandise__c.fields.Price__c.isUpdateable()) {
// Update merchandise price

}

To check the field-level create permission of the merchandise’s price field before creating a new merchandise item:

if (Schema.sObjectType.Merchandise__c.fields.Price__c.isCreateable()) {
// Create new merchandise

}

To check the field-level read permission of the merchandise’s price field before querying for this field:

if (Schema.sObjectType.Merchandise__c.fields.Price__c.isAccessible()) {
Merchandise__c merch = [SELECT Price__c FROM Merchandise__c WHERE Id= :Id];

}

To check the object-level permission for the merchandise object before deleting a merchandise item.

if (Schema.sObjectType.Merchandise__c.isDeletable()) {
// Delete merchandise

}

Sharing rules are distinct from object-level and field-level permissions. They can coexist. If sharing rules are defined in
Database.com, you can enforce them at the class level by declaring the class with the with sharing keyword. For more
information, see Using the with sharing or without sharing Keywords. If you call the sObject describe result and field
describe result access control methods, the verification of object and field-level permissions is performed in addition to the
sharing rules that are in effect. Sometimes, the access level granted by a sharing rule could conflict with an object-level or
field-level permission.

Namespace Prefix
The application supports the use of namespace prefixes.

Because these fully-qualified names can be onerous to update in working SOQL statements, SOSL statements, and Apex
once a class is marked as “managed,” Apex supports a default namespace for schema names. When looking at identifiers, the
parser considers the namespace of the current object and then assumes that it is the namespace of all other objects and fields
unless otherwise specified. Consequently, a stored class should refer to custom object and field names directly (using
obj_or_field_name__c) for those objects that are defined within its same application namespace.

Namespace, Class, and Variable Name Precedence

Because local variables, class names, and namespaces can all hypothetically use the same identifiers, the Apex parser evaluates
expressions in the form of name1.name2.[...].nameN as follows:

1. The parser first assumes that name1 is a local variable with name2 - nameN as field references.
2. If the first assumption does not hold true, the parser then assumes that name1 is a class name and name2 is a static variable

name with name3 - nameN as field references.

137

Classes, Objects, and Interfaces Namespace Prefix

3. If the second assumption does not hold true, the parser then assumes that name1 is a namespace name, name2 is a class
name, name3 is a static variable name, and name4 - nameN are field references.

4. If the third assumption does not hold true, the parser reports an error.

If the expression ends with a set of parentheses (for example, name1.name2.[...].nameM.nameN()), the Apex parser
evaluates the expression as follows:

1. The parser first assumes that name1 is a local variable with name2 - nameM as field references, and nameN as a method
invocation.

2. If the first assumption does not hold true:

• If the expression contains only two identifiers (name1.name2()), the parser then assumes that name1 is a class name
and name2 is a method invocation.

• If the expression contains more than two identifiers, the parser then assumes that name1 is a class name, name2 is a
static variable name with name3 - nameM as field references, and nameN is a method invocation.

3. If the second assumption does not hold true, the parser then assumes that name1 is a namespace name, name2 is a class
name, name3 is a static variable name, name4 - nameM are field references, and nameN is a method invocation.

4. If the third assumption does not hold true, the parser reports an error.

However, with class variables Apex also uses dot notation to reference member variables. Those member variables might refer
to other class instances, or they might refer to an sObject which has its own dot notation rules to refer to field names (possibly
navigating foreign keys).

Once you enter an sObject field in the expression, the remainder of the expression stays within the sObject domain, that is,
sObject fields cannot refer back to Apex expressions.

For instance, if you have the following class:

public class c {
c1 c1 = new c1();
class c1 { c2 c2; }
class c2 { Invoice_Statement__c a; }

}

Then the following expressions are all legal:

c.c1.c2.a.name
c.c1.c2.a.owner.lastName.toLowerCase()

Type Resolution and System Namespace for Types

Because the type system must resolve user-defined types defined locally or in other classes, the Apex parser evaluates types as
follows:

1. For a type reference TypeN, the parser first looks up that type as a scalar type.
2. If TypeN is not found, the parser looks up locally defined types.
3. If TypeN still is not found, the parser looks up a class of that name.
4. If TypeN still is not found, the parser looks up system types such as sObjects.

For the type T1.T2 this could mean an inner type T2 in a top-level class T1, or it could mean a top-level class T2 in the
namespace T1 (in that order of precedence).

138

Classes, Objects, and Interfaces Type Resolution and System Namespace for Types

Version Settings
To aid backwards-compatibility, classes and triggers are stored with the version settings for a specific Salesforce.com API
version.

Typically, you reference the latest Salesforce.com API version. If you save an Apex class or trigger without specifying the
Salesforce.com API version, the class or trigger is associated with the latest installed version by default.

Setting the Database.com API Version for Classes and Triggers

To set the Salesforce.com API and Apex version for a class or trigger:

1. Edit either a class or trigger, and click Version Settings.
2. Select the Version of the Salesforce.com API. This is also the version of Apex associated with the class or trigger.
3. Click Save.

If you pass an object as a parameter in a method call from one Apex class, C1, to another class, C2, and C2 has different fields
exposed due to the Salesforce.com API version setting, the fields in the objects are controlled by the version settings of C2.

139

Classes, Objects, and Interfaces Version Settings

Chapter 5

Testing Apex

Apex provides a testing framework that allows you to write unit tests, run your
tests, check test results, and have code coverage results.

In this chapter ...

• Understanding Testing in Apex
This chapter provides an overview of unit tests, data visibility for tests, as well as
the tools that are available on Database.com for testing Apex.• Unit Testing Apex

• Running Unit Test Methods
• Understanding Testing in Apex• Testing Best Practices
• Unit Testing Apex• Testing Example
• Running Unit Test Methods
• Testing Best Practices
• Testing Example

140

Understanding Testing in Apex
Testing is the key to successful long term development, and is a critical component of the development process. We strongly
recommend that you use a test-driven development process, that is, test development that occurs at the same time as code
development.

Why Test Apex?

Testing is key to the success of your application, particularly if your application is to be deployed to customers. If you validate
that your application works as expected, that there are no unexpected behaviors, your customers are going to trust you more.

An application is seldom finished. You will have additional releases of it, where you change and extend functionality. If you
have written comprehensive tests, you can ensure that a regression is not introduced with any new functionality.

Before you can deploy your code, the following must be true:

• 75% of your Apex code must be covered by unit tests, and all of those tests must complete successfully.

Note the following:

◊ When deploying to a production organization, every unit test in your organization namespace is executed.

◊ Calls to System.debug are not counted as part of Apex code coverage.

◊ Test methods and test classes are not counted as part of Apex code coverage.

◊ While only 75% of your Apex code must be covered by tests, your focus shouldn't be on the percentage of code that is
covered. Instead, you should make sure that every use case of your application is covered, including positive and negative
cases, as well as bulk and single record. This should lead to 75% or more of your code being covered by unit tests.

• Every trigger has some test coverage.

• All classes and triggers compile successfully.

Database.com runs all tests in all organizations that have Apex code to verify that no behavior has been altered as a result of
any service upgrades.

What to Test in Apex

Salesforce.com recommends that you write tests for the following:

Single action

Test to verify that a single record produces the correct, expected result.

Bulk actions

Any Apex code, whether a trigger, a class or an extension, may be invoked for 1 to 200 records. You must test not only
the single record case, but the bulk cases as well.

Positive behavior

Test to verify that the expected behavior occurs through every expected permutation, that is, that the user filled out
everything correctly and did not go past the limits.

141

Testing Apex Understanding Testing in Apex

Negative behavior

There are likely limits to your applications, such as not being able to add a future date, not being able to specify a negative
amount, and so on. You must test for the negative case and verify that the error messages are correctly produced as well
as for the positive, within the limits cases.

Restricted user

Test whether a user with restricted access to the sObjects used in your code sees the expected behavior. That is, whether
they can run the code or receive error messages.

Note: Conditional and ternary operators are not considered executed unless both the positive and negative branches
are executed.

For examples of these types of tests, see Testing Example on page 151.

Unit Testing Apex
To facilitate the development of robust, error-free code, Apex supports the creation and execution of unit tests. Unit tests are
class methods that verify whether a particular piece of code is working properly. Unit test methods take no arguments, commit
no data to the database, send no emails, and are flagged with the testMethod keyword in the method definition.

For example:

public class myClass {
static testMethod void myTest() {

code_block
}

}

Use the isTest annotation to define classes or individual methods that only contain code used for testing your application.
The isTest annotation is similar to creating methods declared as testMethod.

Note: Classes defined with the isTest annotation don't count against your organization limit of 3 MB for all Apex
code. Individual methods defined with the isTest annotation do count against your organization limits. See
Understanding Execution Governors and Limits on page 203.

This is an example of a test class that contains two test methods.

@isTest
private class MyTestClass {

// Methods for testing
@isTest static void test1() {

// Implement test code
}

@isTest static void test2() {
// Implement test code

}

}

142

Testing Apex Unit Testing Apex

Unit Test Considerations
Here are some things to note about unit tests.

• Test methods can’t be used to test Web service callouts. Web service callouts are asynchronous, while unit tests are
synchronous.

• You can’t send email messages from a test method.
• Since test methods don’t commit data created in the test, you don’t have to delete test data upon completion.
• Tracked changes for a record (FeedTrackedChange records) in Chatter feeds aren't available when test methods modify

the associated record. FeedTrackedChange records require the change to the parent record they're associated with to be
committed to the database before they're created. Since test methods don't commit data, they don't result in the creation
of FeedTrackedChange records.

See Also:
IsTest Annotation

Isolation of Test Data from Organization Data in Unit Tests

Starting with Apex code saved using Salesforce.com API version 24.0 and later, test methods don’t have access by default to
pre-existing data in the organization, such as custom objects and custom settings data, and can only access data that they
create. However, objects that are used to manage your organization or metadata objects can still be accessed in your tests such
as:

• User

• Profile

• Organization

• ApexClass

• ApexTrigger

Whenever possible, you should create test data for each test. You can disable this restriction by annotating your test class or
test method with the IsTest(SeeAllData=true) annotation. For more information, see IsTest(SeeAllData=true)
Annotation.

Test code saved using Salesforce.com API version 23.0 or earlier continues to have access to all data in the organization and
its data access is unchanged.

Data Access Considerations

• If a new test method saved using Salesforce.com API version 24.0 or later calls a method in another class saved using
version 23.0 or earlier, the data access restrictions of the caller are enforced in the called method; that is, the called
method won’t have access to organization data because the caller doesn’t, even though it was saved in an earlier
version.

• This access restriction to test data applies to all code running in test context. For example, if a test method causes a
trigger to execute and the test can’t access organization data, the trigger won’t be able to either.

• There might be some cases where you can’t create certain types of data from your test method because of specific
limitations. For example, records that are created only after related records are committed to the database, like tracked
changes in Chatter. Tracked changes for a record (FeedTrackedChange records) in Chatter feeds aren't available
when test methods modify the associated record. FeedTrackedChange records require the change to the parent record

143

Testing Apex Isolation of Test Data from Organization Data in Unit Tests

they're associated with to be committed to the database before they're created. Since test methods don't commit data,
they don't result in the creation of FeedTrackedChange records.

Using the runAs Method

Generally, all Apex code runs in system mode, and the permissions and record sharing of the current user are not taken into
account. The system method runAs enables you to write test methods that change either the user contexts to an existing user
or a new user. When running as a user, all of that user's record sharing is then enforced. You can only use runAs in a test
method. The original system context is started again after all runAs test methods complete.

Note: Every call to runAs counts against the total number of DML statements issued in the process.

In the following example, a new test user is created, then code is run as that user, with that user's permissions and record
access:

public class TestRunAs {
public static testMethod void testRunAs() {

// Setup test data
// This code runs as the system user
Profile p = [SELECT Id FROM Profile WHERE Name='Standard User'];
User u = new User(Alias = 'standt', Email='standarduser@testorg.com',
EmailEncodingKey='UTF-8', LastName='Testing', LanguageLocaleKey='en_US',
LocaleSidKey='en_US', ProfileId = p.Id,
TimeZoneSidKey='America/Los_Angeles', UserName='standarduser@testorg.com');

System.runAs(u) {
// The following code runs as user 'u'
System.debug('Current User: ' + UserInfo.getUserName());
System.debug('Current Profile: ' + UserInfo.getProfileId()); }

}
}

You can nest more than one runAs method. For example:

public class TestRunAs2 {

public static testMethod void test2() {

Profile p = [SELECT Id FROM Profile WHERE Name='Standard User'];
User u2 = new User(Alias = 'newUser', Email='newuser@testorg.com',

EmailEncodingKey='UTF-8', LastName='Testing', LanguageLocaleKey='en_US',
LocaleSidKey='en_US', ProfileId = p.Id,
TimeZoneSidKey='America/Los_Angeles', UserName='newuser@testorg.com');

System.runAs(u2) {
// The following code runs as user u2.
System.debug('Current User: ' + UserInfo.getUserName());
System.debug('Current Profile: ' + UserInfo.getProfileId());

// The following code runs as user u3.
User u3 = [SELECT Id FROM User WHERE UserName='newuser@testorg.com'];
System.runAs(u3) {

System.debug('Current User: ' + UserInfo.getUserName());
System.debug('Current Profile: ' + UserInfo.getProfileId());

}

144

Testing Apex Using the runAs Method

// Any additional code here would run as user u2.
}

}
}

Best Practices for Using runAs
The following items use the permissions granted by the user specified with runAs running as a specific user:

• Dynamic Apex
• Methods using with sharing or without sharing

• Shared records

The original permissions are reset after runAs completes.

The runAs method ignores user license limits. You can create new users with runAs even if your organization has no additional
user licenses.

Using Limits, startTest, and stopTest

The Limits methods return the specific limit for the particular governor, such as the number of calls of a method or the amount
of heap size remaining.

There are two versions of every method: the first returns the amount of the resource that has been used in the current context,
while the second version contains the word “limit” and returns the total amount of the resource that is available for that context.
For example, getCallouts returns the number of callouts to an external service that have already been processed in the
current context, while getLimitCallouts returns the total number of callouts available in the given context.

In addition to the Limits methods, use the startTest and stopTest methods to validate how close the code is to reaching
governor limits.

The startTest method marks the point in your test code when your test actually begins. Each testMethod is allowed to
call this method only once. All of the code before this method should be used to initialize variables, populate data structures,
and so on, allowing you to set up everything you need to run your test. Any code that executes after the call to startTest
and before stopTest is assigned a new set of governor limits.

The startTest method does not refresh the context of the test: it adds a context to your test. For example, if your class
makes 98 SOQL queries before it calls startTest, and the first significant statement after startTest is a DML statement,
the program can now make an additional 100 queries. Once stopTest is called, however, the program goes back into the
original context, and can only make 2 additional SOQL queries before reaching the limit of 100.

The stopTest method marks the point in your test code when your test ends. Use this method in conjunction with the
startTest method. Each testMethod is allowed to call this method only once. Any code that executes after the stopTest
method is assigned the original limits that were in effect before startTest was called. All asynchronous calls made after the
startTest method are collected by the system. When stopTest is executed, all asynchronous processes are run synchronously.

Adding SOSL Queries to Unit Tests

To ensure that test methods always behave in a predictable way, any Database.com Object Search Language (SOSL) query
that is added to an Apex test method returns an empty set of search results when the test method executes. If you do not want
the query to return an empty list of results, you can use the Test.setFixedSearchResults system method to define a
list of record IDs that are returned by the search. All SOSL queries that take place later in the test method return the list of
record IDs that were specified by the Test.setFixedSearchResults method. Additionally, the test method can call
Test.setFixedSearchResults multiple times to define different result sets for different SOSL queries. If you do not

145

Testing Apex Using Limits, startTest, and stopTest

call the Test.setFixedSearchResults method in a test method, or if you call this method without specifying a list of
record IDs, any SOSL queries that take place later in the test method return an empty list of results.

The list of record IDs specified by the Test.setFixedSearchResults method replaces the results that would normally
be returned by the SOSL query if it were not subject to any WHERE or LIMIT clauses. If these clauses exist in the SOSL query,
they are applied to the list of fixed search results. For example:

public class SoslFixedResultsTest1 {

public static testMethod void testSoslFixedResults() {
Id [] fixedSearchResults= new Id[1];
fixedSearchResults[0] = '001x0000003G89h';
Test.setFixedSearchResults(fixedSearchResults);
List<List<SObject>> searchList = [FIND 'test'

IN ALL FIELDS RETURNING
Merchandise__c(Id, Name WHERE Name = 'test'

LIMIT 1)];
}

}

Although the merchandise record with an ID of 001x0000003G89h may not match the query string in the FIND clause
('test'), the record is passed into the RETURNING clause of the SOSL statement. If the record with ID 001x0000003G89h
matches the WHERE clause filter, the record is returned. If it does not match the WHERE clause, no record is returned.

Running Unit Test Methods
You can run unit tests for:

• A specific class

• A subset of classes

• All unit tests in your organization

To run a test, use any of the following:

• The Database.com user interface

• The Force.com IDE

• The API

Running Tests Through the Database.com User Interface
You can run unit tests on the Apex Test Execution page. Tests started on this page run asynchronously, that is, you don't have
to wait for a test class execution to finish. The Apex Test Execution page refreshes the status of a test and displays the results
after the test completes.

146

Testing Apex Running Unit Test Methods

To use the Apex Test Execution page:

1. Click Develop > Apex Test Execution.
2. Click Select Tests....
3. Select the tests to run. The list of tests contains classes that contain test methods.

Note: Classes whose tests are still running don't appear in the list.

4. Click Run.

After you run tests using the Apex Test Execution page, you can display the percentage of code covered by those tests on the
list of Apex classes. Click Develop > Apex Classes, then click Calculate your organization's code coverage.

You can also verify which lines of code are covered by tests for an individual class. Click Develop > Apex Classes, then click
the percentage number in the Code Coverage column for a class.

Click Develop > Apex Test Execution > View Test History to view all test results for your organization, not just tests that
you have run. Test results are retained for 30 days after they finish running, unless cleared.

Alternatively, use the Apex classes page to run tests.

To use the Apex Classes page to generate test results, click Develop > Apex Classes, then either click Run All Tests or click
the name of a specific class that contains tests and click Run Test.

After you use the Apex Classes page to generate test results, the test result page contains the following sections. Each section
can be expanded or collapsed.

• A summary section that details the number of tests run, the number of failures, the percentage of Apex code that is covered
by unit tests, the total execution time in milliseconds, and a link to a downloadable debug log file.

The debug log is automatically set to specific log levels and categories, which can't be changed.

LevelCategory

INFODatabase

FINEApex Code

FINEApex Profiling

FINESTWorkflow

INFOValidation

147

Testing Apex Running Unit Test Methods

Important: Before you can deploy Apex, the following must be true:

◊ 75% of your Apex code must be covered by unit tests, and all of those tests must complete successfully.

Note the following:

- When deploying to a production organization, every unit test in your organization namespace is executed.
- Calls to System.debug are not counted as part of Apex code coverage.
- Test methods and test classes are not counted as part of Apex code coverage.
- While only 75% of your Apex code must be covered by tests, your focus shouldn't be on the percentage of

code that is covered. Instead, you should make sure that every use case of your application is covered,
including positive and negative cases, as well as bulk and single record. This should lead to 75% or more
of your code being covered by unit tests.

◊ Every trigger has some test coverage.
◊ All classes and triggers compile successfully.

• Test successes, if any.
• Test failures, if any.
• A code coverage section.

This section lists all the classes and triggers in your organization, and the percentage of lines of code in each class and
trigger that are covered by tests. If you click the coverage percent number, a page displays, highlighting all the lines of code
for that class or trigger that are covered by tests in blue, as well as highlighting all the lines of code that are not covered by
tests in red. It also lists how many times a particular line in the class or trigger was executed by the test

• Test coverage warnings, if any.

Running Tests Using the Force.com IDE
In addition, you can execute tests with the Force.com IDE (see
https://wiki.developerforce.com/index.php/Apex_Toolkit_for_Eclipse).

Running Tests Using the API
Note: The API for asynchronous test runs is a Beta release.

Using objects and Apex code to insert and query those objects, you can add tests to the Apex job queue for execution and
check the results of completed test runs. This enables you to not only start tests asynchronously but also schedule your tests
to execute at specific times by using the Apex scheduler. See Apex Scheduler on page 90 for more information.

To start an asynchronous execution of unit tests and check their results, use these objects:

• ApexTestQueueItem: Represents a single Apex class in the Apex job queue.
• ApexTestResult: Represents the result of an Apex test method execution.

Insert an ApexTestQueueItem object to place its corresponding Apex class in the Apex job queue for execution. The Apex
job executes the test methods in the class. After the job executes, ApexTestResult contains the result for each single test
method executed as part of the test.

To abort a class that is in the Apex job queue, perform an update operation on the ApexTestQueueItem object and set its
Status field to Aborted.

If you insert multiple Apex test queue items in a single bulk operation, the queue items will share the same parent job. This
means that a test run can consist of the execution of the tests of several classes if all the test queue items are inserted in the
same bulk operation.

148

Testing Apex Running Unit Test Methods

https://wiki.developerforce.com/index.php/Apex_Toolkit_for_Eclipse

The maximum number of test queue items, and hence classes, that you can insert in the Apex job queue is the greater of 500
or 10 multiplied by the number of test classes in the organization.

This example shows how to use DML operations to insert and query the ApexTestQueueItem and ApexTestResult
objects. The enqueueTests method inserts queue items for all classes that end with Test. It then returns the parent job ID
of one queue item, which is the same for all queue items because they were inserted in bulk. The checkClassStatus method
retrieves all the queue items that correspond to the specified job ID. It then queries and outputs the name, job status, and pass
rate for each class. The checkMethodStatus method gets information of each test method that was executed as part of the
job.

public class TestUtil {

// Enqueue all classes ending in "Test".
public static ID enqueueTests() {

ApexClass[] testClasses =
[SELECT Id FROM ApexClass
WHERE Name LIKE '%Test'];

if (testClasses.size() > 0) {
ApexTestQueueItem[] queueItems = new List<ApexTestQueueItem>();
for (ApexClass cls : testClasses) {

queueItems.add(new ApexTestQueueItem(ApexClassId=cls.Id));
}

insert queueItems;

// Get the job ID of the first queue item returned.
ApexTestQueueItem item =

[SELECT ParentJobId FROM ApexTestQueueItem
WHERE Id=:queueItems[0].Id LIMIT 1];

return item.parentjobid;
}
return null;

}

// Get the status and pass rate for each class
// whose tests were run by the job.
// that correspond to the specified job ID.
public static void checkClassStatus(ID jobId) {

ApexTestQueueItem[] items =
[SELECT ApexClass.Name, Status, ExtendedStatus
FROM ApexTestQueueItem
WHERE ParentJobId=:jobId];

for (ApexTestQueueItem item : items) {
String extStatus = item.extendedstatus == null ? '' : item.extendedStatus;
System.debug(item.ApexClass.Name + ': ' + item.Status + extStatus);

}
}

// Get the result for each test method that was executed.
public static void checkMethodStatus(ID jobId) {

ApexTestResult[] results =
[SELECT Outcome, ApexClass.Name, MethodName, Message, StackTrace
FROM ApexTestResult
WHERE AsyncApexJobId=:jobId];

for (ApexTestResult atr : results) {
System.debug(atr.ApexClass.Name + '.' + atr.MethodName + ': ' + atr.Outcome);
if (atr.message != null) {

System.debug(atr.Message + '\n at ' + atr.StackTrace);
}

}
}

}

149

Testing Apex Running Unit Test Methods

You can also use the runTests() call from the SOAP API to run tests synchronously:

RunTestsResult[] runTests(RunTestsRequest ri)

This call allows you to run all tests in all classes, all tests in a specific namespace, or all tests in a subset of classes in a specific
namespace, as specified in the RunTestsRequest object. It returns the following:

• Total number of tests that ran
• Code coverage statistics (described below)
• Error information for each failed test
• Information for each test that succeeds
• Time it took to run the test

For more information on runTests(), see the WSDL located at
https://your_database.com_server/services/wsdl/apex, where your_database.com_server is equivalent
to the server on which your organization is located, such as <string_unique_to_your_org>.database.com.

Though administrators in a Database.com production organization cannot make changes to Apex code using the Database.com
user interface, it is still important to use runTests() to verify that the existing unit tests run to completion after a change is
made, such as adding a unique constraint to an existing field. Database.com production organizations must use the
compileAndTest SOAP API call to make changes to Apex code. For more information, see Deploying Apex on page 421.

For more information on runTests(), see SOAP API and SOAP Headers for Apex on page 443.

Testing Best Practices
Good tests should do the following:

• Cover as many lines of code as possible. Before you can deploy Apex, the following must be true:

Important:

◊ 75% of your Apex code must be covered by unit tests, and all of those tests must complete successfully.

Note the following:

- When deploying to a production organization, every unit test in your organization namespace is executed.

- Calls to System.debug are not counted as part of Apex code coverage.

- Test methods and test classes are not counted as part of Apex code coverage.

- While only 75% of your Apex code must be covered by tests, your focus shouldn't be on the percentage of
code that is covered. Instead, you should make sure that every use case of your application is covered,
including positive and negative cases, as well as bulk and single record. This should lead to 75% or more
of your code being covered by unit tests.

◊ Every trigger has some test coverage.

◊ All classes and triggers compile successfully.

• In the case of conditional logic (including ternary operators), execute each branch of code logic.

• Make calls to methods using both valid and invalid inputs.

• Complete successfully without throwing any exceptions, unless those errors are expected and caught in a try…catch
block.

150

Testing Apex Testing Best Practices

• Always handle all exceptions that are caught, instead of merely catching the exceptions.

• Use System.assert methods to prove that code behaves properly.

• Use the runAs method to test your application in different user contexts.

• Use the isTest annotation. Classes defined with the isTest annotation do not count against your organization limit of
3 MB for all Apex code. See IsTest Annotation on page 126.

• Exercise bulk trigger functionality—use at least 20 records in your tests.

• Use the ORDER BY keywords to ensure that the records are returned in the expected order.

• Not assume that record IDs are in sequential order.

Record IDs are not created in ascending order unless you insert multiple records with the same request. For example, if
you create a Merchandise__c item A, and receive the ID a0290000000UuSn, then create another merchandise item
B, the ID of item B may or may not be sequentially higher.

• On the list of Apex classes, there is a Code Coverage column. If you click the coverage percent number, a page displays,
highlighting all the lines of code for that class or trigger that are covered by tests in blue, as well as highlighting all the
lines of code that are not covered by tests in red. It also lists how many times a particular line in the class or trigger was
executed by the test

• Set up test data:

◊ Create the necessary data in test classes, so the tests do not have to rely on data in a particular organization.

◊ Create all test data before calling the starttest method.

◊ Since tests don't commit, you won't need to delete any data.

• Write comments stating not only what is supposed to be tested, but the assumptions the tester made about the data, the
expected outcome, and so on.

• Test the classes in your application individually. Never test your entire application in a single test.

If you are running many tests, consider the following:

• In the Force.com IDE, you may need to increase the Read timeout value for your Apex project. See
https://wiki.developerforce.com/index.php/Apex_Toolkit_for_Eclipse for details.

• In the Database.com user interface, you may need to test the classes in your organization individually, instead of trying to
run all of the tests at the same time using the Run All Tests button.

Testing Example
The following example includes cases for the following types of tests:

• Positive case with single and multiple records

• Negative case with single and multiple records

• Testing with other users

The test is used with a simple mileage tracking application. The existing code for the application verifies that not more than
500 miles are entered in a single day. The primary object is a custom object named Mileage__c. Here is the entire test class.
The following sections step through specific portions of the code.

@isTest
private class MileageTrackerTestSuite {

static testMethod void runPositiveTestCases() {

151

Testing Apex Testing Example

https://wiki.developerforce.com/index.php/Apex_Toolkit_for_Eclipse

Double totalMiles = 0;
final Double maxtotalMiles = 500;
final Double singletotalMiles = 300;
final Double u2Miles = 100;

//Set up user
User u1 = [SELECT Id FROM User WHERE Alias='auser'];

//Run As U1
System.RunAs(u1){

System.debug('Inserting 300 miles... (single record validation)');

Mileage__c testMiles1 = new Mileage__c(Miles__c = 300, Date__c = System.today());
insert testMiles1;

//Validate single insert
for(Mileage__c m:[SELECT miles__c FROM Mileage__c

WHERE CreatedDate = TODAY
and CreatedById = :u1.id
and miles__c != null]) {

totalMiles += m.miles__c;
}

System.assertEquals(singletotalMiles, totalMiles);

//Bulk validation
totalMiles = 0;
System.debug('Inserting 200 mileage records... (bulk validation)');

List<Mileage__c> testMiles2 = new List<Mileage__c>();
for(integer i=0; i<200; i++) {

testMiles2.add(new Mileage__c(Miles__c = 1, Date__c = System.today()));
}
insert testMiles2;

for(Mileage__c m:[SELECT miles__c FROM Mileage__c
WHERE CreatedDate = TODAY
and CreatedById = :u1.Id
and miles__c != null]) {

totalMiles += m.miles__c;
}

System.assertEquals(maxtotalMiles, totalMiles);

}//end RunAs(u1)

//Validate additional user:
totalMiles = 0;
//Setup RunAs
User u2 = [SELECT Id FROM User WHERE Alias='tuser'];
System.RunAs(u2){

Mileage__c testMiles3 = new Mileage__c(Miles__c = 100, Date__c = System.today());
insert testMiles3;

for(Mileage__c m:[SELECT miles__c FROM Mileage__c
WHERE CreatedDate = TODAY
and CreatedById = :u2.Id
and miles__c != null]) {

totalMiles += m.miles__c;
}

152

Testing Apex Testing Example

//Validate
System.assertEquals(u2Miles, totalMiles);

} //System.RunAs(u2)

} // runPositiveTestCases()

static testMethod void runNegativeTestCases() {

User u3 = [SELECT Id FROM User WHERE Alias='tuser'];
System.RunAs(u3){

System.debug('Inserting a record with 501 miles... (negative test case)');

Mileage__c testMiles3 = new Mileage__c(Miles__c = 501, Date__c = System.today());

try {
insert testMiles3;

} catch (DmlException e) {
//Assert Error Message
System.assert(e.getMessage().contains('Insert failed. First exception on ' +

'row 0; first error: FIELD_CUSTOM_VALIDATION_EXCEPTION, ' +
'Mileage request exceeds daily limit(500): [Miles__c]'),
e.getMessage());

//Assert field
System.assertEquals(Mileage__c.Miles__c, e.getDmlFields(0)[0]);

//Assert Status Code
System.assertEquals('FIELD_CUSTOM_VALIDATION_EXCEPTION' ,

e.getDmlStatusCode(0));
} //catch
} //RunAs(u3)

} // runNegativeTestCases()

} // class MileageTrackerTestSuite

Positive Test Case
The following steps through the above code, in particular, the positive test case for single and multiple records.

1. Add text to the debug log, indicating the next step of the code:

System.debug('Inserting 300 more miles...single record validation');

2. Create a Mileage__c object and insert it into the database.

Mileage__c testMiles1 = new Mileage__c(Miles__c = 300, Date__c = System.today());
insert testMiles1;

3. Validate the code by returning the inserted records:

for(Mileage__c m:[SELECT miles__c FROM Mileage__c
WHERE CreatedDate = TODAY
and CreatedById = :createdbyId
and miles__c != null]) {

totalMiles += m.miles__c;
}

153

Testing Apex Testing Example

4. Use the system.assertEquals method to verify that the expected result is returned:

System.assertEquals(singletotalMiles, totalMiles);

5. Before moving to the next test, set the number of total miles back to 0:

totalMiles = 0;

6. Validate the code by creating a bulk insert of 200 records.

First, add text to the debug log, indicating the next step of the code:

System.debug('Inserting 200 Mileage records...bulk validation');

7. Then insert 200 Mileage__c records:

List<Mileage__c> testMiles2 = new List<Mileage__c>();
for(Integer i=0; i<200; i++){
testMiles2.add(new Mileage__c(Miles__c = 1, Date__c = System.today()));

}
insert testMiles2;

8. Use System.assertEquals to verify that the expected result is returned:

for(Mileage__c m:[SELECT miles__c FROM Mileage__c
WHERE CreatedDate = TODAY
and CreatedById = :CreatedbyId
and miles__c != null]) {

totalMiles += m.miles__c;
}

System.assertEquals(maxtotalMiles, totalMiles);

Negative Test Case
The following steps through the above code, in particular, the negative test case.

1. Create a static test method called runNegativeTestCases:

static testMethod void runNegativeTestCases(){

2. Add text to the debug log, indicating the next step of the code:

System.debug('Inserting 501 miles... negative test case');

3. Create a Mileage__c record with 501 miles.

Mileage__c testMiles3 = new Mileage__c(Miles__c = 501, Date__c = System.today());

4. Place the insert statement within a try/catch block. This allows you to catch the validation exception and assert the
generated error message.

try {
insert testMiles3;
} catch (DmlException e) {

154

Testing Apex Testing Example

5. Now use the System.assert and System.assertEquals to do the testing. Add the following code to the catch
block you previously created:

//Assert Error Message
System.assert(e.getMessage().contains('Insert failed. First exception '+

'on row 0; first error: FIELD_CUSTOM_VALIDATION_EXCEPTION, '+
'Mileage request exceeds daily limit(500): [Miles__c]'),

e.getMessage());

//Assert Field
System.assertEquals(Mileage__c.Miles__c, e.getDmlFields(0)[0]);

//Assert Status Code
System.assertEquals('FIELD_CUSTOM_VALIDATION_EXCEPTION' ,

e.getDmlStatusCode(0));
}

}
}

Testing as a Second User
The following steps through the above code, in particular, running as a second user.

1. Before moving to the next test, set the number of total miles back to 0:

totalMiles = 0;

2. Set up the next user.

User u2 = [SELECT Id FROM User WHERE Alias='tuser'];
System.RunAs(u2){

3. Add text to the debug log, indicating the next step of the code:

System.debug('Setting up testing - deleting any mileage records for ' +
UserInfo.getUserName() +
' from today');

4. Then insert one Mileage__c record:

Mileage__c testMiles3 = new Mileage__c(Miles__c = 100, Date__c = System.today());
insert testMiles3;

5. Validate the code by returning the inserted records:

for(Mileage__c m:[SELECT miles__c FROM Mileage__c
WHERE CreatedDate = TODAY
and CreatedById = :u2.Id
and miles__c != null]) {

totalMiles += m.miles__c;
}

6. Use the system.assertEquals method to verify that the expected result is returned:

System.assertEquals(u2Miles, totalMiles);

155

Testing Apex Testing Example

Chapter 6

Dynamic Apex

Dynamic Apex enables developers to create more flexible applications by providing
them with the ability to:

In this chapter ...

• Understanding Apex Describe
Information • Access sObject and field describe information

Describe information provides information about sObject and field properties.
For example, the describe information for an sObject includes whether that

• Dynamic SOQL
• Dynamic SOSL

type of sObject supports operations like create or undelete, the sObject's name• Dynamic DML
and label, the sObject's fields and child objects, and so on. The describe
information for a field includes whether the field has a default value, whether
it is a calculated field, the type of the field, and so on.

Note that describe information provides information about objects in an
organization, not individual records.

• Write dynamic SOQL queries, dynamic SOSL queries and dynamic DML

Dynamic SOQL and SOSL queries provide the ability to execute SOQL or
SOSL as a string at runtime, while dynamic DML provides the ability to
create a record dynamically and then insert it into the database using DML.
Using dynamic SOQL, SOSL, and DML, an application can be tailored
precisely to the organization as well as the user's permissions.

156

Understanding Apex Describe Information
Apex provides two data structures for sObject and field describe information:

• Token—a lightweight, serializable reference to an sObject or a field that is validated at compile time.

• Describe result—an object that contains all the describe properties for the sObject or field. Describe result objects are not
serializable, and are validated at runtime.

It is easy to move from a token to its describe result, and vice versa. Both sObject and field tokens have the method
getDescribe which returns the describe result for that token. On the describe result, the getSObjectType and
getSObjectField methods return the tokens for sObject and field, respectively.

Because tokens are lightweight, using them can make your code faster and more efficient. For example, use the token version
of an sObject or field when you are determining the type of an sObject or field that your code needs to use. The token can be
compared using the equality operator (==) to determine whether an sObject is the Invoice_Statement__c object, for example,
or whether a field is the Name field or a custom calculated field.

The following code provides a general example of how to use tokens and describe results to access information about sObject
and field properties:

// Create a new invoice statement as the generic type sObject
sObject s = new Invoice_Statement__c();

// Verify that the generic sObject is an Invoice_Statement__c sObject
System.assert(s.getsObjectType() == Invoice_Statement__c.sObjectType);

// Get the sObject describe result for the
// invoice statement object
Schema.DescribeSObjectResult r =

Invoice_Statement__c.sObjectType.getDescribe();

// Get the field describe result for the Status__c
// field on the Invoice_Statement__c object
Schema.DescribeFieldResult f =

Schema.sObjectType.Invoice_Statement__c.fields.Status__c;

// Verify that the field token is the token for the
// Status__c field on an Invoice_Statement__c object
System.assert(f.getSObjectField() == Invoice_Statement__c.Status__c);

// Get the field describe result from the token
f = f.getSObjectField().getDescribe();

The following algorithm shows how you can work with describe information in Apex:

1. Generate a list or map of tokens for the sObjects in your organization (see Accessing All sObjects on page 160.)
2. Determine the sObject you need to access.
3. Generate the describe result for the sObject.
4. If necessary, generate a map of field tokens for the sObject (see Accessing All Field Describe Results for an sObject on

page 161.)
5. Generate the describe result for the field the code needs to access.

157

Dynamic Apex Understanding Apex Describe Information

Understanding Describe Information Permissions
Apex generally runs in system mode. All classes and triggers that are native to your organization have no restrictions on the
sObjects that they can look up dynamically. This means that with native code, you can generate a map of all the sObjects for
your organization, regardless of the current user's permission.

Using sObject Tokens
SObjects, such as MyCustomObject__c, act as static classes with special static methods and member variables for accessing
token and describe result information. You must explicitly reference an sObject and field name at compile time to gain access
to the describe result.

To access the token for an sObject, use one of the following methods:

• Access the sObjectType member variable on an sObject type, such as Invoice_Statement__c.

• Call the getSObjectType method on an sObject describe result, an sObject variable, a list, or a map.

Schema.SObjectType is the data type for an sObject token.

In the following example, the token for the Invoice_Statement__c sObject is returned:

Schema.sObjectType t = Invoice_Statement__c.sObjectType;

The following also returns a token for the Invoice_Statement__c sObject:

Invoice_Statement__c A = new Invoice_Statement__c();
Schema.sObjectType T = A.getSObjectType();

This example can be used to determine whether an sObject or a list of sObjects is of a particular type:

public class sObjectTest {
{
// Create a generic sObject variable s
SObject s = Database.query('SELECT Id FROM Invoice_Statement__c LIMIT 1');

// Verify if that sObject variable is an Invoice_Statement__c token
System.assertEquals(s.getSObjectType(), Invoice_Statement__c.sObjectType);

// Create a list of generic sObjects
List<sObject> l = new Invoice_Statement__c[]{};

// Verify if the list of sObjects contains Invoice_Statement__c tokens
System.assertEquals(l.getSObjectType(), Invoice_Statement__c.sObjectType);
}
}

Using sObject Describe Results
To access the describe result for an sObject, call the getDescribe method on an sObject token

Schema.DescribeSObjectResult is the data type for an sObject describe result.

The following example uses the getDescribe method on an sObject token:

Schema.DescribeSObjectResult D = Invoice_Statement__c.sObjectType.getDescribe();

For more information about the methods available with the sObject describe result, see sObject Describe Result Methods on
page 296.

158

Dynamic Apex Understanding Apex Describe Information

Using Field Tokens
To access the token for a field, use one of the following methods:

• Access the static member variable name of an sObject static type, for example, Invoice_Statement__c.Name.
• Call the getSObjectField method on a field describe result.

The field token uses the data type Schema.SObjectField.

In the following example, the field token is returned for the Invoice_Statement__c object's Status__c field:

Schema.SObjectField F = Invoice_Statement__c.Status__c;

In the following example, the field token is returned from the field describe result:

// Get the describe result for the status field on the
// Invoice_Statement__c object
Schema.DescribeFieldResult f =

Schema.sObjectType.Invoice_Statement__c.fields.Status__c;

// Verify that the field token is the token for
// the status field on an Invoice_Statement__c object
System.assert(f.getSObjectField() == Invoice_Statement__c.Status__c);

// Get the describe result from the token
f = f.getSObjectField().getDescribe();

Using Field Describe Results
To access the describe result for a field, use one of the following methods:

• Call the getDescribe method on a field token.
• Access the fields member variable of an sObject token with a field member variable (such as Name, BillingCity, and

so on.)

The field describe result uses the data type Schema.DescribeFieldResult.

The following example uses the getDescribe method:

Schema.DescribeFieldResult F = Invoice_Statement__c.Status__c.getDescribe();

This example uses the fields member variable method:

Schema.DescribeFieldResult F =
Schema.SObjectType.Invoice_Statement__c.fields.Status__c;

In the example above, the system uses special parsing to validate that the final member variable (Status__c) is valid for the
specified sObject at compile time. When the parser finds the fields member variable, it looks backwards to find the name
of the sObject (Invoice_Statement__c) and validates that the field name following the fields member variable is
legitimate. The fields member variable only works when used in this manner.

You can only have 100 fields member variable statements in an Apex class or trigger.

Note: You should not use the fields member variable without also using either a field member variable name or
the getMap method. For more information on getMap, see Accessing All Field Describe Results for an sObject on
page 161.

For more information about the methods available with a field describe result, see Describe Field Result Methods on page
298.

159

Dynamic Apex Understanding Apex Describe Information

Accessing All sObjects
Use the Schema getGlobalDescribe method to return a map that represents the relationship between all sObject names
(keys) to sObject tokens (values). For example:

Map<String, Schema.SObjectType> gd = Schema.getGlobalDescribe();

The map has the following characteristics:

• It is dynamic, that is, it is generated at runtime on the sObjects currently available for the organization, based on permissions.
• The sObject names are case insensitive.
• The keys use namespaces as required.
• The keys reflect whether the sObject is a custom object.

For example, if the code block that generates the map is in namespace N1, and an sObject is also in N1, the key in the map
is represented as MyObject__c. However, if the code block is in namespace N1, and the sObject is in namespace N2, the
key is N2__MyObject__c.

In addition, standard sObjects have no namespace prefix.

Creating sObjects Dynamically
You can create sObjects whose types are determined at run time by calling the newSObject method of the
Schema.sObjectType sObject token class. The following example shows how to get an sObject token that corresponds to
an sObject type name using the Schema.getGlobalDescribe method. Then, an instance of the sObject is created through
the newSObject method of Schema.sObjectType. This example also contains a test method that verifies the dynamic
creation of an invoice statement.

public class DynamicSObjectCreation {
public static sObject createObject(String typeName) {

Schema.SObjectType targetType = Schema.getGlobalDescribe().get(typeName);
if (targetType == null) {

// throw an exception
}

// Instantiate an sObject with the type passed in as an argument
// at run time.
return targetType.newSObject();

}

static testmethod void testObjectCreation() {
String typeName = 'Invoice_Statement__c';

// Create a new sObject by passing the sObject type as an argument.
Invoice_Statement__c inv = (Invoice_Statement__c)createObject(typeName);
// Verify that the sObject type name of the object created ends
// with the requested type since it can contain a namespace prefix.
System.assert(String.valueOf(inv.getSobjectType()).endsWith(typeName));

// Set fields for the sObject.
inv.Description__c = 'Invoice 1';
insert inv;

// Verify the new sObject got inserted.
Invoice_Statement__c[] invList = [SELECT Description__c from Invoice_Statement__c

WHERE Id = :inv.Id];
system.assert(invList.size() == 1);

}
}

160

Dynamic Apex Understanding Apex Describe Information

Accessing All Field Describe Results for an sObject
Use the field describe result's getMap method to return a map that represents the relationship between all the field names
(keys) and the field tokens (values) for an sObject.

The following example generates a map that can be used to access a field by name:

Map<String, Schema.SObjectField> M =
Schema.SObjectType.Invoice_Statement__c.fields.getMap();

Note: The value type of this map is not a field describe result. Using the describe results would take too many system
resources. Instead, it is a map of tokens that you can use to find the appropriate field. After you determine the field,
generate the describe result for it.

The map has the following characteristics:

• It is dynamic, that is, it is generated at runtime on the fields for that sObject.
• All field names are case insensitive.
• The keys use namespaces as required.
• The keys reflect whether the field is a custom object.

For example, if the code block that generates the map is in namespace N1, and a field is also in N1, the key in the map is
represented as MyField__c. However, if the code block is in namespace N1, and the field is in namespace N2, the key is
N2__MyField__c.

In addition, standard fields have no namespace prefix.

Dynamic SOQL
Dynamic SOQL refers to the creation of a SOQL string at runtime with Apex code. Dynamic SOQL enables you to create
more flexible applications. For example, you can create a search based on input from an end user, or update records with varying
field names.

To create a dynamic SOQL query at runtime, use the database query method, in one of the following ways:

• Return a single sObject when the query returns a single record:

sObject S = Database.query(string_limit_1);

• Return a list of sObjects when the query returns more than a single record:

List<sObject> L = Database.query(string);

The database query method can be used wherever an inline SOQL query can be used, such as in regular assignment statements
and for loops. The results are processed in much the same way as static SOQL queries are processed.

Dynamic SOQL results can be specified as concrete sObjects, such as MyCustomObject__c, or as the generic sObject data
type. At runtime, the system validates that the type of the query matches the declared type of the variable. If the query does
not return the correct sObject type, a runtime error is thrown. This means you do not need to cast from a generic sObject to
a concrete sObject.

161

Dynamic Apex Dynamic SOQL

Dynamic SOQL queries have the same governor limits as static queries. For more information on governor limits, see
Understanding Execution Governors and Limits on page 203.

For a full description of SOQL query syntax, see Salesforce Object Query Language (SOQL) in the Database.com SOQL and
SOSL Reference.

SOQL Injection
SOQL injection is a technique by which a user causes your application to execute database methods you did not intend by
passing SOQL statements into your code. This can occur in Apex code whenever your application relies on end user input to
construct a dynamic SOQL statement and you do not handle the input properly.

To prevent SOQL injection, use the escapeSingleQuotes method. This method adds the escape character (\) to all single
quotation marks in a string that is passed in from a user. The method ensures that all single quotation marks are treated as
enclosing strings, instead of database commands.

Dynamic SOSL
Dynamic SOSL refers to the creation of a SOSL string at runtime with Apex code. Dynamic SOSL enables you to create more
flexible applications. For example, you can create a search based on input from an end user, or update records with varying
field names.

To create a dynamic SOSL query at runtime, use the search query method. For example:

List<List <sObject>> myQuery = search.query(SOSL_search_string);

The following example exercises a simple SOSL query string.

String searchquery='FIND\'Edge*\'IN ALL FIELDS RETURNING
Merchandise__c(id,name),Invoice_Statement__c';
List<List<SObject>>searchList=search.query(searchquery);

Dynamic SOSL statements evaluate to a list of lists of sObjects, where each list contains the search results for a particular
sObject type. The result lists are always returned in the same order as they were specified in the dynamic SOSL query. From
the example above, the results from Merchandise__c are first, then Invoice_Statement__c.

The search query method can be used wherever an inline SOSL query can be used, such as in regular assignment statements
and for loops. The results are processed in much the same way as static SOSL queries are processed.

SOSL queries are only supported in Apex classes and anonymous blocks. You cannot use a SOSL query in a trigger.

Dynamic SOSL queries have the same governor limits as static queries. For more information on governor limits, see
Understanding Execution Governors and Limits on page 203.

For a full description of SOSL query syntax, see Salesforce Object Search Language (SOSL) in the Database.com SOQL and
SOSL Reference.

SOSL Injection
SOSL injection is a technique by which a user causes your application to execute database methods you did not intend by passing
SOSL statements into your code. This can occur in Apex code whenever your application relies on end user input to construct
a dynamic SOSL statement and you do not handle the input properly.

162

Dynamic Apex Dynamic SOSL

http://www.salesforce.com/us/developer/docs/dbcom_soql_sosl/index_CSH.htm#sforce_api_calls_soql.htm
http://www.salesforce.com/us/developer/docs/dbcom_soql_sosl/index_CSH.htm#sforce_api_calls_sosl.htm

To prevent SOSL injection, use the escapeSingleQuotes method. This method adds the escape character (\) to all single
quotation marks in a string that is passed in from a user. The method ensures that all single quotation marks are treated as
enclosing strings, instead of database commands.

Dynamic DML
In addition to querying describe information and building SOQL queries at runtime, you can also create sObjects dynamically,
and insert them into the database using DML.

To create a new sObject of a given type, use the newSObject method on an sObject token. Note that the token must be cast
into a concrete sObject type (such as Invoice_Statement__c). For example:

// Get a new invoice statement
Invoice_Statement__c A = new Invoice_Statement__c();
// Get the token for the invoice statement
Schema.sObjectType tokenA = A.getSObjectType();
// The following produces an error because the token
// is a generic sObject, not an Invoice_Statement__c
// Invoice_Statement__c B = tokenA.newSObject();
// The following works because the token is cast back
// into an Invoice_Statement__c
Invoice_Statement__c B = (Invoice_Statement__c)tokenA.newSObject();

Though the sObject token tokenA is a token of Invoice_Statement__c, it is considered an sObject because it is accessed
separately. It must be cast back into the concrete sObject type Invoice_Statement__c to use the newSObject method. For
more information on casting, see Classes and Casting on page 130.

This is another example that shows how to obtain the sObject token through the Schema.getGlobalDescribe method
and then creates a new sObject using the newSObject method on the token. This example also contains a test method that
verifies the dynamic creation of an invoice statement.

public class DynamicSObjectCreation {
public static sObject createObject(String typeName) {

Schema.SObjectType targetType = Schema.getGlobalDescribe().get(typeName);
if (targetType == null) {

// throw an exception
}

// Instantiate an sObject with the type passed in as an argument
// at run time.
return targetType.newSObject();

}

static testmethod void testObjectCreation() {
String typeName = 'Invoice_Statement__c';

// Create a new sObject by passing the sObject type as an argument.
Invoice_Statement__c inv = (Invoice_Statement__c)createObject(typeName);
// Verify that the sObject type name of the object created ends
// with the requested type since it can contain a namespace prefix.
System.assert(String.valueOf(inv.getSobjectType()).endsWith(typeName));

// Set fields for the sObject.
inv.Description__c = 'Invoice 1';
insert inv;

// Verify the new sObject got inserted.
Invoice_Statement__c[] invList = [SELECT Description__c from Invoice_Statement__c

163

Dynamic Apex Dynamic DML

WHERE Id = :inv.Id];
system.assert(invList.size() == 1);

}
}

You can also specify an ID with newSObject to create an sObject that references an existing record that you can update later.
For example:

SObject s = Database.query(
'SELECT Id FROM Invoice_Statement__c LIMIT 1')[0].
getSObjectType().newSObject([SELECT Id
FROM Invoice_Statement__c LIMIT 1][0].Id);

See Schema.sObjectType on page 304.

Setting and Retrieving Field Values
Use the get and put methods on an object to set or retrieve values for fields using either the API name of the field expressed
as a String, or the field's token. In the following example, the API name of the field Status__c is used:

SObject s = [SELECT Status__c FROM Invoice_Statement__c LIMIT 1];
Object o = s.get('Status__c');
s.put('Status__c', 'abc');

The following example uses the Status__c field's token instead:

Schema.DescribeFieldResult f = Schema.sObjectType.Invoice_Statement__c.fields.Status__c;
Sobject s = Database.query('SELECT Status__c FROM Invoice_Statement__c LIMIT 1');
s.put(f.getsObjectField(), '12345');

The Object scalar data type can be used as a generic data type to set or retrieve field values on an sObject. This is equivalent
to the anyType field type. Note that the Object data type is different from the sObject data type, which can be used as a generic
type for any sObject.

Note: Apex classes and triggers saved (compiled) using API version 15.0 and higher produce a runtime error if you
assign a String value that is too long for the field.

Setting and Retrieving Foreign Keys
Apex supports populating foreign keys by name (or external ID) in the same way as the API. To set or retrieve the scalar ID
value of a foreign key, use the get or put methods.

To set or retrieve the record associated with a foreign key, use the getSObject and putSObject methods. Note that these
methods must be used with the sObject data type, not Object. For example:

SObject c =
Database.query('SELECT Id, Value__c, Merchandise__r.Name FROM Line_Item__c LIMIT 1');

SObject a = c.getSObject('Merchandise__r');

There is no need to specify the external ID for a parent sObject value while working with child sObjects. If you provide an
ID in the parent sObject, it is ignored by the DML operation. Apex assumes the foreign key is populated through a relationship
SOQL query, which always returns a parent object with a populated ID. If you have an ID, use it with the child object.

164

Dynamic Apex Dynamic DML

http://www.salesforce.com/us/developer/docs/dbcom_objects/index_CSH.htm#field_types.htm

For example, suppose that custom object C1 has a foreign key c2__c that links to a child custom object C2. You want to
create a C1 object and have it associated with a C2 record named 'xxx' (assigned to the value c2__r). You do not need the
ID of the 'xxx' record, as it is populated through the relationship of parent to child. For example:

insert new C1__c(name = 'x', c2__r = new C2__c(name = 'xxx'));

If you had assigned a value to the ID for c2__r, it would be ignored. If you do have the ID, assign it to the object (c2__c),
not the record.

You can also access foreign keys using dynamic Apex. The following example shows how to get the values from a subquery in
a parent-to-child relationship using dynamic Apex:

String queryString = 'SELECT Id, Description__c, ' +
'(SELECT Value__c FROM Line_Items__r LIMIT 1) ' +
'FROM Invoice_Statement__c';

SObject[] queryParentObject = Database.query(queryString);

for (SObject parentRecord : queryParentObject){
Object ParentFieldValue = parentRecord.get('Description__c');
// Prevent a null relationship from being accessed
SObject[] childRecordsFromParent =

parentRecord.getSObjects('Line_Items__r');
if (childRecordsFromParent != null) {

for (SObject childRecord : childRecordsFromParent){
Object ChildFieldValue1 = childRecord.get('Value__c');
System.debug('Invoice Description: ' + ParentFieldValue +
'. Line Item Value: '+ ChildFieldValue1);

}
}

}

165

Dynamic Apex Dynamic DML

Chapter 7

Batch Apex

A developer can now employ batch Apex to build complex, long-running processes
on Database.com. For example, a developer could build an archiving solution

In this chapter ...

• Using Batch Apex that runs on a nightly basis, looking for records past a certain date and adding
• Understanding Apex Managed

Sharing
them to an archive. Or a developer could build a data cleansing operation that
goes through all the dataon a nightly basis and updates them if necessary, based
on custom criteria.

Batch Apex is exposed as an interface that must be implemented by the developer.
Batch jobs can be programmatically invoked at runtime using Apex.

You can only have five queued or active batch jobs at one time. You can evaluate
your current count by viewing the Scheduled Jobs page in Database.com or
programmatically using SOAP API to query the AsyncapexJob object.

Caution: Use extreme care if you are planning to invoke a batch job
from a trigger. You must be able to guarantee that the trigger will not
add more batch jobs than the five that are allowed. In particular, consider
API bulk updates, import wizards, mass record changes through the user
interface, and all cases where more than one record can be updated at a
time.

Batch jobs can also be programmatically scheduled to run at specific times using
the Apex scheduler, or scheduled using the Schedule Apex page in the
Database.com user interface. For more information on the Schedule Apex page,
see “Scheduling Apex” in the Database.com online help.

The batch Apex interface is also used for Apex managed sharing recalculations.

For more information on batch jobs, continue to Using Batch Apex on page 167.

For more information on Apex managed sharing, see Understanding Apex
Managed Sharing on page 175.

166

Using Batch Apex
To use batch Apex, you must write an Apex class that implements the Database.com-provided interface Database.Batchable,
and then invoke the class programmatically.

To monitor or stop the execution of the batch Apex job, click Monitoring > Apex Jobs. For more information, see Monitoring
the Apex Job Queue in the Database.com online help.

Implementing the Database.Batchable Interface
The Database.Batchable interface contains three methods that must be implemented:

• start method

global (Database.QueryLocator | Iterable<sObject>) start(Database.BatchableContext bc)
{}

The start method is called at the beginning of a batch Apex job. Use the start method to collect the records or objects
to be passed to the interface method execute. This method returns either a Database.QueryLocator object or an
iterable that contains the records or objects being passed into the job.

Use the Database.QueryLocator object when you are using a simple query (SELECT) to generate the scope of objects
used in the batch job. If you use a querylocator object, the governor limit for the total number of records retrieved by SOQL
queries is bypassed. For example, a batch Apex job for the Merchandise__c object can return a QueryLocator for all
merchandise records (up to 50 million records) in an organization. Another example is a sharing recalculation for the
Invoice_Statement__c object that returns a QueryLocator for all invoice statement records in an organization.

Use the iterable when you need to create a complex scope for the batch job. You can also use the iterable to create your
own custom process for iterating through the list.

Important: If you use an iterable, the governor limit for the total number of records retrieved by SOQL queries
is still enforced.

• execute method:

global void execute(Database.BatchableContext BC, list<P>){}

The execute method is called for each batch of records passed to the method. Use this method to do all required processing
for each chunk of data.

This method takes the following:

◊ A reference to the Database.BatchableContext object.
◊ A list of sObjects, such as List<sObject>, or a list of parameterized types. If you are using a

Database.QueryLocator, the returned list should be used.

Batches of records are not guaranteed to execute in the order they are received from the start method.

• finish method

global void finish(Database.BatchableContext BC){}

The finish method is called after all batches are processed. Use this method to send confirmation emails or execute
post-processing operations.

167

Batch Apex Using Batch Apex

Each execution of a batch Apex job is considered a discrete transaction. For example, a batch Apex job that contains 1,000
records and is executed without the optional scope parameter from Database.executeBatch is considered five transactions
of 200 records each. The Apex governor limits are reset for each transaction. If the first transaction succeeds but the second
fails, the database updates made in the first transaction are not rolled back.

Using Database.BatchableContext
All of the methods in the Database.Batchable interface require a reference to a Database.BatchableContext object.
Use this object to track the progress of the batch job.

The following is the instance method with the Database.BatchableContext object:

DescriptionReturnsArgumentsName

Returns the ID of the AsyncApexJob object associated
with this batch job as a string. Use this method to track

IDgetJobID

the progress of records in the batch job. You can also
use this ID with the System.abortJob method.

The following example uses the Database.BatchableContext to query the AsyncApexJob associated with the batch
job.

global void finish(Database.BatchableContext BC){
// Get the ID of the AsyncApexJob representing this batch job
// from Database.BatchableContext.
// Query the AsyncApexJob object to retrieve the current job's information.
AsyncApexJob a = [SELECT Id, Status, NumberOfErrors, JobItemsProcessed,

TotalJobItems
FROM AsyncApexJob WHERE Id =
:BC.getJobId()];

Integer i = a.TotalJobItems;
Integer j = a.NumberOfErrors;

}

Using Database.QueryLocator to Define Scope
The start method can return either a Database.QueryLocator object that contains the records to be used in the batch
job or an iterable.

The following example uses a Database.QueryLocator:

global class SearchAndReplace implements Database.Batchable<sObject>{

global final String Query;
global final String Entity;
global final String Field;
global final String Value;

global SearchAndReplace(String q, String e, String f, String v){

Query=q; Entity=e; Field=f;Value=v;
}

global Database.QueryLocator start(Database.BatchableContext BC){
return Database.getQueryLocator(query);

}

global void execute(Database.BatchableContext BC, List<sObject> scope){
for(sobject s : scope){
s.put(Field,Value);

168

Batch Apex Using Batch Apex

http://www.salesforce.com/us/developer/docs/dbcom_objects/index_CSH.htm#sforce_api_objects_asyncapexjob.htm

}
update scope;
}

global void finish(Database.BatchableContext BC){
}

}

Using an Iterable in Batch Apex to Define Scope
The start method can return either a Database.QueryLocator object that contains the records to be used in the batch
job, or an iterable. Use an iterable to step through the returned items more easily.

global class batchClass implements Database.batchable{
global Iterable start(Database.BatchableContext info){

return new CustomInvoiceIterable();
}
global void execute(Database.BatchableContext info,

List<Invoice_Statement__c> scope){
List<Invoice_Statement__c> invsToUpdate =

new List<Invoice_Statement__c>();
for(Invoice_Statement__c i : scope){

i.Name = 'true';
i.NumberOfEmployees = 70;
invsToUpdate.add(i);

}
update invsToUpdate;

}
global void finish(Database.BatchableContext info){
}

}

Using the Database.executeBatch Method
You can use the Database.executeBatch method to programmatically begin a batch job.

Important: When you call Database.executeBatch, Database.com only adds the process to the queue at the
scheduled time. Actual execution may be delayed based on service availability.

The Database.executeBatch method takes two parameters:

• The class that implements Database.Batchable.
• The Database.executeBatch method takes an optional parameter scope. This parameter specifies the number of

records that should be passed into the execute method. Use this parameter when you have many operations for each
record being passed in and are running into governor limits. By limiting the number of records, you are thereby limiting
the operations per transaction. This value must be greater than zero. If the start method returns a QueryLocator, the
optional scope parameter of Database.executeBatch can have a maximum value of 2,000. If set to a higher value,
Database.com chunks the records returned by the QueryLocator into smaller batches of up to 2,000 records. If the start
method returns an iterable, the scope parameter value has no upper limit; however, if you use a very high number, you may
run into other limits.

The Database.executeBatch method returns the ID of the AsyncApexJob object, which can then be used to track the
progress of the job. For example:

ID batchprocessid = Database.executeBatch(reassign);

AsyncApexJob aaj = [SELECT Id, Status, JobItemsProcessed, TotalJobItems, NumberOfErrors

FROM AsyncApexJob WHERE ID =: batchprocessid];

169

Batch Apex Using Batch Apex

For more information about the AsyncApexJob object, see AsyncApexJob in the Object Reference for Database.com.

You can also use this ID with the System.abortJob method.

Batch Apex Examples
The following example uses a Database.QueryLocator:

global class UpdateInvoiceFields implements Database.Batchable<sObject>{
global final String Query;
global final String Entity;
global final String Field;
global final String Value;

global UpdateInvoiceFields(String q, String e, String f, String v){
Query=q; Entity=e; Field=f;Value=v;

}

global Database.QueryLocator start(Database.BatchableContext BC){
return Database.getQueryLocator(query);

}

global void execute(Database.BatchableContext BC,
List<sObject> scope){

for(Sobject s : scope){s.put(Field,Value);
} update scope;

}

global void finish(Database.BatchableContext BC){

}

}

The following code can be used to call the above class:

Id batchInstanceId = Database.executeBatch(new UpdateInvoiceFields(q,e,f,v), 5);

The following class uses batch Apex to reassign all invoices owned by a specific user to a different user.

global class OwnerReassignment implements Database.Batchable<sObject>{
String query;
String email;
Id toUserId;
Id fromUserId;

global Database.querylocator start(Database.BatchableContext BC){
return Database.getQueryLocator(query);}

global void execute(Database.BatchableContext BC, List<sObject> scope){
List<Invoice_Statement__c> invs = new List<Invoice_Statement__c>();

for(sObject s : scope){
Invoice_Statement__c a = (Invoice_Statement__c)s;
if(a.OwnerId==fromUserId){

a.OwnerId=toUserId;
invs.add(a);

}
}

update invs;

}

170

Batch Apex Using Batch Apex

http://www.salesforce.com/us/developer/docs/dbcom_objects/index_CSH.htm#sforce_api_objects_asyncapexjob.htm

global void finish(Database.BatchableContext BC){

}
}

Use the following to execute the OwnerReassignment class in the previous example:

OwnerReassignment reassign = new OwnerReassignment();
reassign.query = 'SELECT Id, Name, Ownerid ' +

'FROM Invoice_Statement__c ' +
'WHERE ownerid=\'' + u.id + '\'';

reassign.email='admin@acme.com';
reassign.fromUserId = u;
reassign.toUserId = u2;
ID batchprocessid = Database.executeBatch(reassign);

The following is an example of a batch Apex class for deleting records.

global class BatchDelete implements Database.Batchable<sObject> {
public String query;

global Database.QueryLocator start(Database.BatchableContext BC){
return Database.getQueryLocator(query);

}

global void execute(Database.BatchableContext BC, List<sObject> scope){
delete scope;
DataBase.emptyRecycleBin(scope);

}

global void finish(Database.BatchableContext BC){
}

}

This code calls the BatchDelete batch Apex class to delete old invoice statement records. The specified query selects invoice
statements that are older than a specified date. Next, the sample invokes the batch job.

BatchDelete BDel = new BatchDelete();
Datetime d = Datetime.now();
d = d.addDays(-1);
// Query for selecting the invoices to delete
BDel.query = 'SELECT Id FROM Invoice_Statement__c ' +

'WHERE CreatedDate < '+d.format('yyyy-MM-dd')+'T'+
d.format('HH:mm')+':00.000Z';

// Invoke the batch job.
ID batchprocessid = Database.executeBatch(BDel);
System.debug('Returned batch process ID: ' + batchProcessId);

Using Callouts in Batch Apex
To use a callout in batch Apex, you must specify Database.AllowsCallouts in the class definition. For example:

global class SearchAndReplace implements Database.Batchable<sObject>,
Database.AllowsCallouts{

}

Callouts include HTTP requests as well as methods defined with the webService keyword.

171

Batch Apex Using Batch Apex

Using State in Batch Apex
Each execution of a batch Apex job is considered a discrete transaction. For example, a batch Apex job that contains 1,000
records and is executed without the optional scope parameter is considered five transactions of 200 records each.

If you specify Database.Stateful in the class definition, you can maintain state across these transactions. When using
Database.Stateful, only instance member variables retain their values between transactions. Static member variables don’t
and are reset between transactions. Maintaining state is useful for counting or summarizing records as they're processed. For
example, suppose your job processed invoice statement records. You could define a method in execute to aggregate totals
of the invoice amounts as they were processed.

If you don't specify Database.Stateful, all static and instance member variables are set back to their original values.

The following example summarizes the Invoice_Value__c invoice statement field as the records are processed:

global class SummarizeInvoiceTotal implements
Database.Batchable<sObject>, Database.Stateful{

global final String Query;
global integer Summary;

global SummarizeInvoiceTotal(String q){
Query=q;
Summary = 0;

}

global Database.QueryLocator start(Database.BatchableContext BC){
return Database.getQueryLocator(query);

}

global void execute(
Database.BatchableContext BC,
List<sObject> scope){

for(sObject s : scope){
Summary = Integer.valueOf(s.get('Invoice_Value__c'))+Summary;

}
}

global void finish(Database.BatchableContext BC){
}

}

In addition, you can specify a variable to access the initial state of the class. You can use this variable to share the initial state
with all instances of the Database.Batchable methods. For example:

// Implement the interface using a list
// of Invoice statement sObjects.
// Note that the initialState variable is declared as final

global class MyBatchable implements Database.Batchable<sObject> {
private final String initialState;
String query;

global MyBatchable(String intialState) {
this.initialState = initialState;

}

global Database.QueryLocator start(Database.BatchableContext BC) {
// Access initialState here

return Database.getQueryLocator(query);
}

global void execute(Database.BatchableContext BC,

172

Batch Apex Using Batch Apex

List<sObject> batch) {
// Access initialState here

}

global void finish(Database.BatchableContext BC) {
// Access initialState here

}
}

Note that initialState is the initial state of the class. You cannot use it to pass information between instances of the class
during execution of the batch job. For example, if you changed the value of initialState in execute, the second chunk
of processed records would not be able to access the new value: only the initial value would be accessible.

Testing Batch Apex
When testing your batch Apex, you can test only one execution of the execute method. You can use the scope parameter
of the executeBatch method to limit the number of records passed into the execute method to ensure that you aren't
running into governor limits.

The executeBatch method starts an asynchronous process. This means that when you test batch Apex, you must make
certain that the batch job is finished before testing against the results. Use the Test methods startTest and stopTest
around the executeBatch method to ensure it finishes before continuing your test. All asynchronous calls made after the
startTest method are collected by the system. When stopTest is executed, all asynchronous processes are run synchronously.
If you don’t include the executeBatch method within the startTest and stopTest methods, the batch job executes at
the end of your test method for Apex saved using Salesforce.com API version 25.0 and later, but not in earlier versions.

Starting with Apex saved using Salesforce.com API version 22.0, exceptions that occur during the execution of a batch Apex
job that is invoked by a test method are now passed to the calling test method, and as a result, causes the test method to fail.
If you want to handle exceptions in the test method, enclose the code in try and catch statements. You must place the
catch block after the stopTest method. Note however that with Apex saved using Salesforce.com API version 21.0 and
earlier, such exceptions don't get passed to the test method and don't cause test methods to fail.

Note: Asynchronous calls, such as @future or executeBatch, called in a startTest, stopTest block, do not
count against your limits for the number of queued jobs.

The example below tests the OwnerReassignment class.

public static testMethod void testBatch() {
user u = [SELECT ID, UserName FROM User

WHERE username='testuser1@acme.com'];
user u2 = [SELECT ID, UserName FROM User

WHERE username='testuser2@acme.com'];
// Create 200 test accounts - this simulates one execute.
// Important - the Apex test framework only allows you to
// test one execute.

List <Invoice_Statement__c> invs =
new List<Invoice_Statement__c>();

for(Integer i = 0; i<200; i++){
Invoice_Statement__c a =

new Invoice_Statement__c(
Description__c ='Invoice '+'i',

Ownerid = u.ID);
invs.add(a);

}

insert invs;

173

Batch Apex Using Batch Apex

Test.StartTest();
OwnerReassignment reassign = new OwnerReassignment();
reassign.query='SELECT Id, Name, Ownerid ' +

'FROM Invoice_Statement__c ' +
'WHERE OwnerId=\'' + u.Id + '\'' +
' LIMIT 200';

reassign.email='admin@acme.com';
reassign.fromUserId = u.Id;
reassign.toUserId = u2.Id;
ID batchprocessid = Database.executeBatch(reassign);
Test.StopTest();

System.AssertEquals(
database.countquery('SELECT COUNT()'

+' FROM Invoice_Statement__c WHERE OwnerId=\'' + u2.Id + '\''),
200);

}
}

Batch Apex Governor Limits
Keep in mind the following governor limits for batch Apex:

• Up to five queued or active batch jobs are allowed for Apex.
• A user can have up to 50 query cursors open at a time. For example, if 50 cursors are open and a client application still

logged in as the same user attempts to open a new one, the oldest of the 50 cursors is released. Note that this limit is
different for the batch Apex start method, which can have up to five query cursors open at a time per user. The other
batch Apex methods have the higher limit of 50 cursors.

Cursor limits for different Database.com features are tracked separately. For example, you can have 50 Apex query cursors
and 50 batch cursors open at the same time.

• A maximum of 50 million records can be returned in the Database.QueryLocator object. If more than 50 million
records are returned, the batch job is immediately terminated and marked as Failed.

• If the start method returns a QueryLocator, the optional scope parameter of Database.executeBatch can have a
maximum value of 2,000. If set to a higher value, Database.com chunks the records returned by the QueryLocator into
smaller batches of up to 2,000 records. If the start method returns an iterable, the scope parameter value has no upper
limit; however, if you use a very high number, you may run into other limits.

• If no size is specified with the optional scope parameter of Database.executeBatch, Database.com chunks the records
returned by the start method into batches of 200, and then passes each batch to the execute method. Apex governor
limits are reset for each execution of execute.

• The start, execute, and finish methods can implement up to 10 callouts each.
• Batch executions are limited to 10 callouts per method execution.
• The maximum number of batch executions is 250,000 per 24 hours.
• Only one batch Apex job's start method can run at a time in an organization. Batch jobs that haven’t started yet remain

in the queue until they're started. Note that this limit doesn’t cause any batch job to fail and execute methods of batch
Apex jobs still run in parallel if more than one job is running.

Batch Apex Best Practices
• Use extreme care if you are planning to invoke a batch job from a trigger. You must be able to guarantee that the trigger

will not add more batch jobs than the five that are allowed. In particular, consider API bulk updates, import wizards, mass
record changes through the user interface, and all cases where more than one record can be updated at a time.

• When you call Database.executeBatch, Database.com only places the job in the queue at the scheduled time. Actual
execution may be delayed based on service availability.

174

Batch Apex Using Batch Apex

• When testing your batch Apex, you can test only one execution of the execute method. You can use the scope parameter
of the executeBatch method to limit the number of records passed into the execute method to ensure that you aren't
running into governor limits.

• The executeBatch method starts an asynchronous process. This means that when you test batch Apex, you must make
certain that the batch job is finished before testing against the results. Use the Test methods startTest and stopTest
around the executeBatch method to ensure it finishes before continuing your test.

• Use Database.Stateful with the class definition if you want to share instance member variables or data across job
transactions. Otherwise, all member variables are reset to their initial state at the start of each transaction.

• Methods declared as future aren't allowed in classes that implement the Database.Batchable interface.
• Methods declared as future can't be called from a batch Apex class.
• You cannot call the Database.executeBatch method from within any batch Apex method.
• In the event of a catastrophic failure such as a service outage, any operations in progress are marked as Failed. You should

run the batch job again to correct any errors.
• When a batch Apex job is run, email notifications are sent either to the user who submitted the batch job, the email is sent

to the recipient listed in the Apex Exception Notification Recipient field.
• Each method execution uses the standard governor limits anonymous block or WSDL method.
• Each batch Apex invocation creates an AsyncApexJob record. Use the ID of this record to construct a SOQL query to

retrieve the job’s status, number of errors, progress, and submitter. For more information about the AsyncApexJob object,
see AsyncApexJob in the Object Reference for Database.com.

• For each 10,000 AsyncApexJob records, Apex creates one additional AsyncApexJob record of type BatchApexWorker
for internal use. When querying for all AsyncApexJob records, we recommend that you filter out records of type
BatchApexWorker using the JobType field. Otherwise, the query will return one more record for every 10,000
AsyncApexJob records. For more information about the AsyncApexJob object, see AsyncApexJob in the Object Reference
for Database.com.

• All methods in the class must be defined as global.
• For a sharing recalculation, we recommend that the execute method delete and then re-create all Apex managed sharing

for the records in the batch. This ensures the sharing is accurate and complete.

See Also:
Exception Statements
Understanding Execution Governors and Limits
Understanding Sharing

Understanding Apex Managed Sharing
Sharing is the act of granting a user or group of users permission to perform a set of actions on a record or set of records.
Sharing access can be granted using the Database.com user interface and Force.com, or programmatically using Apex.

This section provides an overview of sharing using Apex:

• Understanding Sharing

• Sharing a Record Using Apex

• Recalculating Apex Managed Sharing

For more information on sharing, see “Setting Your Organization-Wide Sharing Defaults” in the Database.com online help.

175

Batch Apex Understanding Apex Managed Sharing

http://www.salesforce.com/us/developer/docs/dbcom_objects/index_CSH.htm#sforce_api_objects_asyncapexjob.htm
http://www.salesforce.com/us/developer/docs/dbcom_objects/index_CSH.htm#sforce_api_objects_asyncapexjob.htm

Understanding Sharing

Sharing enables record-level access control for all custom objects. Administrators first set an object’s organization-wide default
sharing access level, and then grant additional access based on record ownership, the role hierarchy, sharing rules, and manual
sharing. Developers can then use Apex managed sharing to grant additional access programmatically with Apex. Most sharing
for a record is maintained in a related sharing object, similar to an access control list (ACL) found in other platforms.

Types of Sharing
Database.com has the following types of sharing:

Force.com Managed Sharing
Force.com managed sharing involves sharing access granted by Force.com based on record ownership, the role hierarchy,
and sharing rules:

Record Ownership
Each record is owned by a user or optionally a queue. The record owner is automatically granted Full Access, allowing
them to view, edit, transfer, share, and delete the record.

Role Hierarchy
The role hierarchy enables users above another user in the hierarchy to have the same level of access to records
owned by or shared with users below. Consequently, users above a record owner in the role hierarchy are also
implicitly granted Full Access to the record, though this behavior can be disabled for specific custom objects. The
role hierarchy is not maintained with sharing records. Instead, role hierarchy access is derived at runtime. For more
information, see “Controlling Access Using Hierarchies” in the Database.com online help.

Sharing Rules
Sharing rules are used by administrators to automatically grant users within a given group or role access to records
owned by a specific group of users.

Sharing rules can be based on record ownership or other criteria. You can't use Apex to create criteria-based sharing
rules. Also, criteria-based sharing cannot be tested using Apex.

All implicit sharing added by Force.com managed sharing cannot be altered directly using the Database.com user interface,
SOAP API, or Apex.

User Managed Sharing, also known as Manual Sharing
User managed sharing allows the record owner or any user with Full Access to a record to share the record with a user
or group of users. This is generally done by an end-user, for a single record. Only the record owner and users above the
owner in the role hierarchy are granted Full Access to the record. It is not possible to grant other users Full Access. Users
with the “Modify All” object-level permission for the given object or the “Modify All Data” permission can also manually
share a record. User managed sharing is removed when the record owner changes or when the access granted in the
sharing does not grant additional access beyond the object's organization-wide sharing default access level.

Apex Managed Sharing
Apex managed sharing provides developers with the ability to support an application’s particular sharing requirements
programmatically through Apex or the SOAP API. This type of sharing is similar to Force.com managed sharing. Only
users with “Modify All Data” permission can add or change Apex managed sharing on a record. Apex managed sharing
is maintained across record owner changes.

176

Batch Apex Understanding Sharing

Note: Apex sharing reasons and Apex managed sharing recalculation are only available for custom objects.

The Sharing Reason Field
In the Database.com user interface, the Reason field on a custom object specifies the type of sharing used for a record. This
field is called rowCause in Apex or the Force.com API.

Each of the following list items is a type of sharing used for records. The tables show Reason field value, and the related
rowCause value.

• Force.com Managed Sharing

rowCause Value (Used in Apex or the Force.com API)Reason Field Value

ImplicitParentAssociated record owner or sharing

OwnerOwner

RuleSharing Rule

• User Managed Sharing

rowCause Value (Used in Apex or the Force.com API)Reason Field Value

ManualManual Sharing

• Apex Managed Sharing

rowCause Value (Used in Apex or the Force.com API)Reason Field Value

Defined by developerDefined by developer

The displayed reason for Apex managed sharing is defined by the developer.

Access Levels
When determining a user’s access to a record, the most permissive level of access is used. Most share objects support the
following access levels:

DescriptionAPI NameAccess Level

Only the record owner and users above the record owner in the role
hierarchy can view and edit the record.

NonePrivate

The specified user or group can view the record only.ReadRead Only

The specified user or group can view and edit the record.EditRead/Write

177

Batch Apex Understanding Sharing

DescriptionAPI NameAccess Level

The specified user or group can view, edit, transfer, share, and delete the
record.

AllFull Access

Note: This access level can only be granted with Force.com
managed sharing.

Sharing a Record Using Apex

To access sharing programmatically, you must use the share object associated with the custom object for which you want to
share. In addition, all custom object sharing objects are named as follows, where MyCustomObject is the name of the custom
object:

MyCustomObject__Share

Objects on the detail side of a master-detail relationship do not have an associated sharing object. The detail record’s access
is determined by the master’s sharing object and the relationship’s sharing setting. For more information, see “Custom Object
Security” in the Database.com online help.

A share object includes records supporting all three types of sharing: Force.com managed sharing, user managed sharing, and
Apex managed sharing. Sharing granted to users implicitly through organization-wide defaults, the role hierarchy, and
permissions such as the “View All” and “Modify All” permissions for the given object, “View All Data,” and “Modify All Data”
are not tracked with this object.

Every share object has the following properties:

DescriptionProperty Name

The level of access that the specified user or group has been granted for a share sObject. The
name of the property is AccessLevel appended to the object name. For example, the property
name for LeadShare object is . Valid values are:

objectNameAccessLevel

• Edit

• Read

• All

Note: The All access level can only be used by Force.com managed sharing.

This field must be set to an access level that is higher than the organization’s default access
level for the parent object. For more information, see Access Levels on page 177.

The ID of the object. This field cannot be updated.ParentID

The reason why the user or group is being granted access. The reason determines the type of
sharing, which controls who can alter the sharing record. This field cannot be updated.

RowCause

The user or group IDs to which you are granting access. A group can be a public group, role,
or territory. This field cannot be updated.

UserOrGroupId

178

Batch Apex Sharing a Record Using Apex

You can share a standard or custom object with users or groups. For more information about the types of users and groups
you can share an object with, see User and Group in the Object Reference for Database.com.

Creating User Managed Sharing Using Apex
It is possible to manually share a record to a user or a group using Apex or the SOAP API. If the owner of the record changes,
the sharing is automatically deleted. The following example class contains a method that shares the job specified by the job
ID with the specified user or group ID with read access. It also includes a test method that validates this method. Before you
save this example class, create a custom object called Job.

public class JobSharing {

static boolean manualShareRead(Id recordId, Id userOrGroupId){
// Create new sharing object for the custom object Job.
Job__Share jobShr = new Job__Share();

// Set the ID of record being shared.
jobShr.ParentId = recordId;

// Set the ID of user or group being granted access.
jobShr.UserOrGroupId = userOrGroupId;

// Set the access level.
jobShr.AccessLevel = 'Read';

// Set rowCause to 'manual' for manual sharing.
// This line can be omitted as 'manual' is the default value for sharing objects.
jobShr.RowCause = Schema.Job__Share.RowCause.Manual;

// Insert the sharing record and capture the save result.
// The false parameter allows for partial processing if multiple records passed
// into the operation.
Database.SaveResult sr = Database.insert(jobShr,false);

// Process the save results.
if(sr.isSuccess()){

// Indicates success
return true;

}
else {

// Get first save result error.
Database.Error err = sr.getErrors()[0];

// Check if the error is related to trival access level.
// Access levels equal or more permissive than the object's default
// access level are not allowed.

// These sharing records are not required and thus an insert exception is acceptable.

if(err.getStatusCode() == StatusCode.FIELD_FILTER_VALIDATION_EXCEPTION &&
err.getMessage().contains('AccessLevel')){

// Indicates success.
return true;

}
else{

// Indicates failure.
return false;

}
}

}

// Test for the manualShareRead method
static testMethod void testManualShareRead(){

// Select users for the test.
List<User> users = [SELECT Id FROM User WHERE IsActive = true LIMIT 2];

179

Batch Apex Sharing a Record Using Apex

http://www.salesforce.com/us/developer/docs/dbcom_objects/index_Left.htm#StartTopic=Content/sforce_api_objects_user.htm
http://www.salesforce.com/us/developer/docs/dbcom_objects/index_Left.htm#StartTopic=Content/sforce_api_objects_group.htm
http://www.salesforce.com/us/developer/docs/object_reference/index.htm

Id User1Id = users[0].Id;
Id User2Id = users[1].Id;

// Create new job.
Job__c j = new Job__c();
j.Name = 'Test Job';
j.OwnerId = user1Id;
insert j;

// Insert manual share for user who is not record owner.
System.assertEquals(manualShareRead(j.Id, user2Id), true);

// Query job sharing records.
List<Job__Share> jShrs = [SELECT Id, UserOrGroupId, AccessLevel,

RowCause FROM job__share WHERE ParentId = :j.Id AND UserOrGroupId= :user2Id];

// Test for only one manual share on job.
System.assertEquals(jShrs.size(), 1, 'Set the object\'s sharing model to Private.');

// Test attributes of manual share.
System.assertEquals(jShrs[0].AccessLevel, 'Read');
System.assertEquals(jShrs[0].RowCause, 'Manual');
System.assertEquals(jShrs[0].UserOrGroupId, user2Id);

// Test invalid job Id.
delete j;

// Insert manual share for deleted job id.
System.assertEquals(manualShareRead(j.Id, user2Id), false);

}

}

Important: The object’s organization-wide default access level must not be set to the most permissive access level.
For custom objects, this is Public Read/Write. For more information, see Access Levels on page 177.

Creating Apex Managed Sharing
Apex managed sharing enables developers to programmatically manipulate sharing to support their application’s behavior
through Apex or the SOAP API. This type of sharing is similar to Force.com managed sharing. Only users with “Modify All
Data” permission can add or change Apex managed sharing on a record. Apex managed sharing is maintained across record
owner changes.

Apex managed sharing must use an Apex sharing reason. Apex sharing reasons are a way for developers to track why they shared
a record with a user or group of users. Using multiple Apex sharing reasons simplifies the coding required to make updates
and deletions of sharing records. They also enable developers to share with the same user or group multiple times using different
reasons.

Apex sharing reasons are defined on an object's detail page. Each Apex sharing reason has a label and a name:

• The label displays in the Reason column when viewing the sharing for a record in the user interface. This allows users
and administrators to understand the source of the sharing. The label is also enabled for translation through the Translation
Workbench.

• The name is used when referencing the reason in the API and Apex.

All Apex sharing reason names have the following format:

MyReasonName__c

180

Batch Apex Sharing a Record Using Apex

Apex sharing reasons can be referenced programmatically as follows:

Schema.CustomObject__Share.rowCause.SharingReason__c

For example, an Apex sharing reason called Recruiter for an object called Job can be referenced as follows:

Schema.Job__Share.rowCause.Recruiter__c

For more information, see Schema Methods on page 291.

To create an Apex sharing reason:

1. Click Create > Objects.
2. Select the custom object.
3. Click New in the Apex Sharing Reasons related list.
4. Enter a label for the Apex sharing reason. The label displays in the Reason column when viewing the sharing for a record

in the user interface.
5. Enter a name for the Apex sharing reason. The name is used when referencing the reason in the API and Apex. This name

can contain only underscores and alphanumeric characters, and must be unique in your organization. It must begin with
a letter, not include spaces, not end with an underscore, and not contain two consecutive underscores.

6. Click Save.

Note: Apex sharing reasons and Apex managed sharing recalculation are only available for custom objects.

Apex Managed Sharing Example
For this example, suppose that you are building a recruiting application and have an object called Job. You want to validate
that the recruiter and hiring manager listed on the job have access to the record. The following trigger grants the recruiter and
hiring manager access when the job record is created. This example requires a custom object called Job with two lookup fields
that are associated with User records and are called Hiring_Manager and Recruiter. Also, the Job custom object should have
two sharing reasons added called Hiring_Manager and Recruiter.

trigger JobApexSharing on Job__c (after insert) {

if(trigger.isInsert){
// Create a new list of sharing objects for Job
List<Job__Share> jobShrs = new List<Job__Share>();

// Declare variables for recruiting and hiring manager sharing
Job__Share recruiterShr;
Job__Share hmShr;

for(Job__c job : trigger.new){
// Instantiate the sharing objects
recruiterShr = new Job__Share();
hmShr = new Job__Share();

// Set the ID of record being shared
recruiterShr.ParentId = job.Id;
hmShr.ParentId = job.Id;

// Set the ID of user or group being granted access
recruiterShr.UserOrGroupId = job.Recruiter__c;
hmShr.UserOrGroupId = job.Hiring_Manager__c;

// Set the access level
recruiterShr.AccessLevel = 'edit';

181

Batch Apex Sharing a Record Using Apex

hmShr.AccessLevel = 'read';

// Set the Apex sharing reason for hiring manager and recruiter
recruiterShr.RowCause = Schema.Job__Share.RowCause.Recruiter__c;
hmShr.RowCause = Schema.Job__Share.RowCause.Hiring_Manager__c;

// Add objects to list for insert
jobShrs.add(recruiterShr);
jobShrs.add(hmShr);

}

// Insert sharing records and capture save result
// The false parameter allows for partial processing if multiple records are passed

// into the operation
Database.SaveResult[] lsr = Database.insert(jobShrs,false);

// Create counter
Integer i=0;

// Process the save results
for(Database.SaveResult sr : lsr){

if(!sr.isSuccess()){
// Get the first save result error
Database.Error err = sr.getErrors()[0];

// Check if the error is related to a trivial access level
// Access levels equal or more permissive than the object's default
// access level are not allowed.
// These sharing records are not required and thus an insert exception is
// acceptable.
if(!(err.getStatusCode() == StatusCode.FIELD_FILTER_VALIDATION_EXCEPTION

&& err.getMessage().contains('AccessLevel'))){

// Throw an error when the error is not related to trivial access level.

trigger.newMap.get(jobShrs[i].ParentId).
addError(
'Unable to grant sharing access due to following exception: '
+ err.getMessage());

}
}
i++;

}
}

}

Under certain circumstances, inserting a share row results in an update of an existing share row. Consider these examples:

• If a manual share access level is set to Read and you insert a new one that’s set to Write, the original share rows are updated
to Write, indicating the higher level of access.

• If users can access an account because they can access its child records (contact, case, opportunity, and so on), and an
account sharing rule is created, the row cause of the parent implicit share is replaced by the sharing rule row cause, indicating
the higher level of access.

Important: The object’s organization-wide default access level must not be set to the most permissive access level.
For custom objects, this is Public Read/Write. For more information, see Access Levels on page 177.

182

Batch Apex Sharing a Record Using Apex

Recalculating Apex Managed Sharing

Database.com automatically recalculates sharing for all records on an object when its organization-wide sharing default access
level is changed. The recalculation adds Force.com managed sharing when appropriate. In addition, all types of sharing are
removed if the access they grant is considered redundant. For example, manual sharing which grants Read Only access to a
user is deleted when the object’s sharing model is changed from Private to Public Read Only.

To recalculate Apex managed sharing, you must write an Apex class that implements a Database.com-provided interface to
do the recalculation. You must then associate the class with the custom object, on the custom object's detail page, in the Apex
Sharing Recalculation related list.

Note: Apex sharing reasons and Apex managed sharing recalculation are only available for custom objects.

You can execute this class from the custom object detail page where the Apex sharing reason is specified. An administrator
might need to recalculate the Apex managed sharing for an object if a locking issue prevented Apex code from granting access
to a user as defined by the application’s logic. You can also use the Database.executeBatch method to programmatically
invoke an Apex managed sharing recalculation.

Note: Every time a custom object's organization-wide sharing default access level is updated, any Apex recalculation
classes defined for associated custom object are also executed.

To monitor or stop the execution of the Apex recalculation, click Monitoring > Apex Jobs. For more information, see
“Monitoring the Apex Job Queue” in the Database.com online help.

Creating an Apex Class for Recalculating Sharing
To recalculate Apex managed sharing, you must write an Apex class to do the recalculation. This class must implement the
Database.com-provided interface Database.Batchable.

The Database.Batchable interface is used for all batch Apex processes, including recalculating Apex managed sharing.
You can implement this interface more than once in your organization. For more information on the methods that must be
implemented, see Using Batch Apex on page 167.

Before creating an Apex managed sharing recalculation class, also consider the best practices.

Important: The object’s organization-wide default access level must not be set to the most permissive access level.
For custom objects, this is Public Read/Write. For more information, see Access Levels on page 177.

Apex Managed Sharing Recalculation Example
For this example, suppose that you are building a recruiting application and have an object called Job. You want to validate
that the recruiter and hiring manager listed on the job have access to the record. The following Apex class performs this
validation. This example requires a custom object called Job with two lookup fields that are associated with User records and
are called Hiring_Manager and Recruiter. Also, the Job custom object should have two sharing reasons added called
Hiring_Manager and Recruiter. Before you run this sample, replace the email address with a valid email address that is used
to send error notifications and job completion notifications to.

global class JobSharingRecalc implements Database.Batchable<sObject> {

// String to hold email address that emails will be sent to.
// Replace its value with a valid email address.
static String emailAddress = 'admin@yourcompany.com';

183

Batch Apex Recalculating Apex Managed Sharing

// The start method is called at the beginning of a sharing recalculation.
// This method returns a SOQL query locator containing the records to be recalculated.

// This method must be global.
global Database.QueryLocator start(Database.BatchableContext BC){

return Database.getQueryLocator([SELECT Id, Hiring_Manager__c, Recruiter__c
FROM Job__c]);

}

// The executeBatch method is called for each chunk of records returned from start.
// This method must be global.
global void execute(Database.BatchableContext BC, List<sObject> scope){

// Create a map for the chunk of records passed into method.
Map<ID, Job__c> jobMap = new Map<ID, Job__c>((List<Job__c>)scope);

// Create a list of Job__Share objects to be inserted.
List<Job__Share> newJobShrs = new List<Job__Share>();

// Locate all existing sharing records for the Job records in the batch.
// Only records using an Apex sharing reason for this app should be returned.
List<Job__Share> oldJobShrs = [SELECT Id FROM Job__Share WHERE Id IN

:jobMap.keySet() AND
(RowCause = :Schema.Job__Share.rowCause.Recruiter__c OR
RowCause = :Schema.Job__Share.rowCause.Hiring_Manager__c)];

// Construct new sharing records for the hiring manager and recruiter
// on each Job record.
for(Job__c job : jobMap.values()){

Job__Share jobHMShr = new Job__Share();
Job__Share jobRecShr = new Job__Share();

// Set the ID of user (hiring manager) on the Job record being granted access.
jobHMShr.UserOrGroupId = job.Hiring_Manager__c;

// The hiring manager on the job should always have 'Read Only' access.
jobHMShr.AccessLevel = 'Read';

// The ID of the record being shared
jobHMShr.ParentId = job.Id;

// Set the rowCause to the Apex sharing reason for hiring manager.
// This establishes the sharing record as Apex managed sharing.
jobHMShr.RowCause = Schema.Job__Share.RowCause.Hiring_Manager__c;

// Add sharing record to list for insertion.
newJobShrs.add(jobHMShr);

// Set the ID of user (recruiter) on the Job record being granted access.
jobRecShr.UserOrGroupId = job.Recruiter__c;

// The recruiter on the job should always have 'Read/Write' access.
jobRecShr.AccessLevel = 'Edit';

// The ID of the record being shared
jobRecShr.ParentId = job.Id;

// Set the rowCause to the Apex sharing reason for recruiter.
// This establishes the sharing record as Apex managed sharing.
jobRecShr.RowCause = Schema.Job__Share.RowCause.Recruiter__c;

// Add the sharing record to the list for insertion.
newJobShrs.add(jobRecShr);

}

try {
// Delete the existing sharing records.

184

Batch Apex Recalculating Apex Managed Sharing

// This allows new sharing records to be written from scratch.
Delete oldJobShrs;

// Insert the new sharing records and capture the save result.
// The false parameter allows for partial processing if multiple records are
// passed into operation.
Database.SaveResult[] lsr = Database.insert(newJobShrs,false);

// Process the save results for insert.
for(Database.SaveResult sr : lsr){

if(!sr.isSuccess()){
// Get the first save result error.
Database.Error err = sr.getErrors()[0];

// Check if the error is related to trivial access level.
// Access levels equal or more permissive than the object's default
// access level are not allowed.
// These sharing records are not required and thus an insert exception
// is acceptable.
if(!(err.getStatusCode() == StatusCode.FIELD_FILTER_VALIDATION_EXCEPTION

&& err.getMessage().contains('AccessLevel'))){
// Error is not related to trivial access level.
// Send an email to the Apex job's submitter.

Messaging.SingleEmailMessage mail = new Messaging.SingleEmailMessage();

String[] toAddresses = new String[] {emailAddress};
mail.setToAddresses(toAddresses);
mail.setSubject('Apex Sharing Recalculation Exception');
mail.setPlainTextBody(
'The Apex sharing recalculation threw the following exception: ' +

err.getMessage());
Messaging.sendEmail(new Messaging.SingleEmailMessage[] { mail });

}
}

}
} catch(DmlException e) {

// Send an email to the Apex job's submitter on failure.
Messaging.SingleEmailMessage mail = new Messaging.SingleEmailMessage();
String[] toAddresses = new String[] {emailAddress};
mail.setToAddresses(toAddresses);
mail.setSubject('Apex Sharing Recalculation Exception');
mail.setPlainTextBody(
'The Apex sharing recalculation threw the following exception: ' +

e.getMessage());
Messaging.sendEmail(new Messaging.SingleEmailMessage[] { mail });

}
}

// The finish method is called at the end of a sharing recalculation.
// This method must be global.
global void finish(Database.BatchableContext BC){

// Send an email to the Apex job's submitter notifying of job completion.
Messaging.SingleEmailMessage mail = new Messaging.SingleEmailMessage();
String[] toAddresses = new String[] {emailAddress};
mail.setToAddresses(toAddresses);
mail.setSubject('Apex Sharing Recalculation Completed.');
mail.setPlainTextBody

('The Apex sharing recalculation finished processing');
Messaging.sendEmail(new Messaging.SingleEmailMessage[] { mail });

}

}

185

Batch Apex Recalculating Apex Managed Sharing

Testing Apex Managed Sharing Recalculations
This example inserts five Job records and invokes the batch job that is implemented in the batch class of the previous example.
This example requires a custom object called Job with two lookup fields that are associated with User records and are called
Hiring_Manager and Recruiter. Also, the Job custom object should have two sharing reasons added called Hiring_Manager
and Recruiter. Before you run this test, set the organization-wide default sharing for Job to Private. Note that since email
messages aren’t sent from tests, and because the batch class is invoked by a test method, the email notifications won’t be sent
in this case.

@isTest
private class JobSharingTester {

// Test for the JobSharingRecalc class
static testMethod void testApexSharing(){

// Instantiate the class implementing the Database.Batchable interface.
JobSharingRecalc recalc = new JobSharingRecalc();

// Select users for the test.
List<User> users = [SELECT Id FROM User WHERE IsActive = true LIMIT 2];
ID User1Id = users[0].Id;
ID User2Id = users[1].Id;

// Insert some test job records.
List<Job__c> testJobs = new List<Job__c>();
for (Integer i=0;i<5;i++) {
Job__c j = new Job__c();

j.Name = 'Test Job ' + i;
j.Recruiter__c = User1Id;
j.Hiring_Manager__c = User2Id;
testJobs.add(j);

}
insert testJobs;

Test.startTest();

// Invoke the Batch class.
String jobId = Database.executeBatch(recalc);

Test.stopTest();

// Get the Apex job and verify there are no errors.
AsyncApexJob aaj = [Select JobType, TotalJobItems, JobItemsProcessed, Status,

CompletedDate, CreatedDate, NumberOfErrors
from AsyncApexJob where Id = :jobId];

System.assertEquals(0, aaj.NumberOfErrors);

// This query returns jobs and related sharing records that were inserted
// by the batch job's execute method.
List<Job__c> jobs = [SELECT Id, Hiring_Manager__c, Recruiter__c,

(SELECT Id, ParentId, UserOrGroupId, AccessLevel, RowCause FROM Shares
WHERE (RowCause = :Schema.Job__Share.rowCause.Recruiter__c OR
RowCause = :Schema.Job__Share.rowCause.Hiring_Manager__c))
FROM Job__c];

// Validate that Apex managed sharing exists on jobs.
for(Job__c job : jobs){

// Two Apex managed sharing records should exist for each job
// when using the Private org-wide default.
System.assert(job.Shares.size() == 2);

for(Job__Share jobShr : job.Shares){
// Test the sharing record for hiring manager on job.
if(jobShr.RowCause == Schema.Job__Share.RowCause.Hiring_Manager__c){

System.assertEquals(jobShr.UserOrGroupId,job.Hiring_Manager__c);
System.assertEquals(jobShr.AccessLevel,'Read');

186

Batch Apex Recalculating Apex Managed Sharing

}
// Test the sharing record for recruiter on job.
else if(jobShr.RowCause == Schema.Job__Share.RowCause.Recruiter__c){

System.assertEquals(jobShr.UserOrGroupId,job.Recruiter__c);
System.assertEquals(jobShr.AccessLevel,'Edit');

}
}

}
}

}

Associating an Apex Class Used for Recalculation
An Apex class used for recalculation must be associated with a custom object.

To associate an Apex managed sharing recalculation class with a custom object:

1. Click Create > Objects.
2. Select the custom object.
3. Click New in the Apex Sharing Recalculations related list.
4. Choose the Apex class that recalculates the Apex sharing for this object. The class you choose must implement the

Database.Batchable interface. You cannot associate the same Apex class multiple times with the same custom object.
5. Click Save.

187

Batch Apex Recalculating Apex Managed Sharing

Chapter 8

Debugging Apex

Apex provides debugging support. You can debug your Apex code using the
Developer Console and debug logs. To further aid debugging, Apex sends emails

In this chapter ...

• Understanding the Debug Log to developers for unhandled exceptions. Furthermore, Apex enforces a certain
• Handling Uncaught Exceptions set of governor limits for your running code to ensure shared resources aren’t

monopolized in a multi-tenant environment. Last but not least, you can select• Understanding Execution Governors
and Limits to have emails sent to end-users who are running code that surpasses a certain

percentage of any governor limit.• Using Governor Limit Email
Warnings This chapter covers the following:

• Understanding the Debug Log
• Handling Uncaught Exceptions
• Understanding Execution Governors and Limits
• Using Governor Limit Email Warnings

188

Understanding the Debug Log
A debug log records database operations, system processes, and errors that occur when executing a transaction or while running
unit tests. The system generates a debug log for a user every time that user executes a transaction that is included in the filter
criteria.

You can retain and manage the debug logs for specific users.

To view saved debug logs, click Monitoring > Debug Logs.

The following are the limits for debug logs:

• Once a user is added, that user can record up to 20 debug logs. After a user reaches this limit, debug logs stop being recorded
for that user. Click Reset on the Monitoring Debug logs page to reset the number of logs for that user back to 20. Any
existing logs are not overwritten.

• Each debug log can only be 2 MB. Debug logs that are larger than 2 MB in size are truncated.

• Each organization can retain up to 50 MB of debug logs. Once your organization has reached 50 MB of debug logs, the
oldest debug logs start being overwritten.

Inspecting the Debug Log Sections
After you generate a debug log, the type and amount of information listed depends on the filter values you set for the user.
However, the format for a debug log is always the same.

A debug log has the following sections:

Header
The header contains the following information:

• The version of the API used during the transaction.
• The log category and level used to generate the log. For example:

The following is an example of a header:

25.0
APEX_CODE,DEBUG;APEX_PROFILING,INFO;CALLOUT,INFO;DB,INFO;SYSTEM,DEBUG;VALIDATION,INFO;
WORKFLOW,INFO

In this example, the API version is 25.0, and the following debug log categories and levels have been set:

DEBUGApex Code

INFOApex Profiling

INFOCallout

INFODatabase

DEBUGSystem

INFOValidation

INFOWorkflow

189

Debugging Apex Understanding the Debug Log

Execution Units
An execution unit is equivalent to a transaction. It contains everything that occurred within the transaction. The execution
is delimited by EXECUTION_STARTED and EXECUTION_FINISHED.

Code Units
A code unit is a discrete unit of work within a transaction. For example, a trigger is one unit of code, as is a webService
method, or a validation rule.

Note: A class is not a discrete unit of code.

Units of code are indicated by CODE_UNIT_STARTED and CODE_UNIT_FINISHED. Units of work can embed other
units of work. For example:

EXECUTION_STARTED
CODE_UNIT_STARTED|[EXTERNAL]execute_anonymous_apex
CODE_UNIT_STARTED|[EXTERNAL]MyTrigger on Merchandise trigger event BeforeInsert for
[new]
CODE_UNIT_FINISHED <-- The trigger ends
CODE_UNIT_FINISHED <-- The executeAnonymous ends
EXECUTION_FINISHED

Units of code include, but are not limited to, the following:

• Triggers
• Workflow invocations and time-based workflow
• Validation rules
• @future method invocations
• Web service invocations
• executeAnonymous calls
• Execution of the batch Apex start and finish methods, as well as each execution of the execute method
• Execution of the Apex System.Schedule execute method

Log Lines
Included inside the units of code. These indicate what code or rules are being executed, or messages being specifically
written to the debug log. For example:

Figure 4: Debug Log Line Example

Log lines are made up of a set of fields, delimited by a pipe (|). The format is:

190

Debugging Apex Understanding the Debug Log

• timestamp: consists of the time when the event occurred and a value between parentheses. The time is in the user's
time zone and in the format HH:mm:ss.SSS. The value represents the time elapsed in nanoseconds since the start
of the request. The elapsed time value is excluded from logs reviewed in the Developer Console.

• event identifier: consists of the specific event that triggered the debug log being written to, such as SAVEPOINT_RESET
or VALIDATION_RULE, and any additional information logged with that event, such as the method name or the line
and character number where the code was executed.

Additional Log Data
In addition, the log contains the following information:

• Cumulative resource usage—Logged at the end of many code units, such as triggers, executeAnonymous, batch
Apex message processing, @future methods, Apex test methods, Apex web service methods.

• Cumulative profiling information—Logged once at the end of the transaction. Contains information about the most
expensive queries (that used the most resources), DML invocations, and so on.

The following is an example debug log:

23.0
APEX_CODE,DEBUG;APEX_PROFILING,INFO;CALLOUT,INFO;DB,INFO;SYSTEM,DEBUG;VALIDATION,INFO;VISUALFORCE,INFO;
WORKFLOW,INFO
11:47:46.030 (30064000)|EXECUTION_STARTED
11:47:46.030 (30159000)|CODE_UNIT_STARTED|[EXTERNAL]|TRIGGERS
11:47:46.030 (30271000)|CODE_UNIT_STARTED|[EXTERNAL]|01qD00000004JvP|myTrigger on Merchandise
trigger event BeforeUpdate for [001D000000IzMaE]
11:47:46.038 (38296000)|SYSTEM_METHOD_ENTRY|[2]|System.debug(ANY)
11:47:46.038 (38450000)|USER_DEBUG|[2]|DEBUG|Hello World!
11:47:46.038 (38520000)|SYSTEM_METHOD_EXIT|[2]|System.debug(ANY)
11:47:46.546 (38587000)|CUMULATIVE_LIMIT_USAGE
11:47:46.546|LIMIT_USAGE_FOR_NS|(default)|
Number of SOQL queries: 0 out of 100
Number of query rows: 0 out of 50000
Number of SOSL queries: 0 out of 20
Number of DML statements: 0 out of 150
Number of DML rows: 0 out of 10000
Number of script statements: 1 out of 200000
Maximum heap size: 0 out of 6000000
Number of callouts: 0 out of 10
Number of Email Invocations: 0 out of 10
Number of fields describes: 0 out of 100
Number of record type describes: 0 out of 100
Number of child relationships describes: 0 out of 100
Number of picklist describes: 0 out of 100
Number of future calls: 0 out of 10

11:47:46.546|CUMULATIVE_LIMIT_USAGE_END

11:47:46.038 (38715000)|CODE_UNIT_FINISHED|myTrigger on Merchandise trigger event BeforeUpdate
for [001D000000IzMaE]
11:47:47.154 (1154831000)|CODE_UNIT_FINISHED|TRIGGERS
11:47:47.154 (1154881000)|EXECUTION_FINISHED

Setting Debug Log Filters for Apex Classes and Triggers
Debug log filtering provides a mechanism for fine-tuning the log verbosity at the trigger and class level. This is especially
helpful when debugging Apex logic. For example, to evaluate the output of a complex process, you can raise the log verbosity
for a given class while turning off logging for other classes or triggers within a single request.

191

Debugging Apex Understanding the Debug Log

When you override the debug log levels for a class or trigger, these debug levels also apply to the class methods that your class
or trigger calls and the triggers that get executed as a result. All class methods and triggers in the execution path inherit the
debug log settings from their caller, unless they have these settings overridden.

The following diagram illustrates overriding debug log levels at the class and trigger level. For this scenario, suppose Class1
is causing some issues that you would like to take a closer look at. To this end, the debug log levels of Class1 are raised to
the finest granularity. Class3 doesn't override these log levels, and therefore inherits the granular log filters of Class1.
However, UtilityClass has already been tested and is known to work properly, so it has its log filters turned off. Similarly,
Class2 isn't in the code path that causes a problem, therefore it has its logging minimized to log only errors for the Apex
Code category. Trigger2 inherits these log settings from Class2.

Figure 5: Fine-tuning debug logging for classes and triggers

The following is a pseudo-code example that the diagram is based on.

1. Trigger1 calls a method of Class1 and another method of Class2. For example:

trigger Trigger1 on Merchandise__c (before insert) {
Class1.someMethod();
Class2.anotherMethod();

}

2. Class1 calls a method of Class3, which in turn calls a method of a utility class. For example:

public class Class1 {
public static void someMethod() {

Class3.thirdMethod();
}

}

public class Class3 {
public static void thirdMethod() {

UtilityClass.doSomething();
}

}

3. Class2 causes a trigger, Trigger2, to be executed. For example:

public class Class2 {
public static void anotherMethod() {

// Some code that causes Trigger2 to be fired.
}

}

192

Debugging Apex Understanding the Debug Log

To set log filters:

1. From a class or trigger detail page, click Log Filters.
2. Click Override Log Filters.

The log filters are set to the default log levels.

3. Choose the log level desired for each log category.

To learn more about debug log categories, debug log levels, and debug log events, see Setting Debug Log Filters.

See Also:
Using the Developer Console
Debugging Apex API Calls

Using the Developer Console

The Developer Console is a collection of tools you can use to analyze and troubleshoot applications in your Database.com
organization. It’s a popup window composed of a set of related tools that allow you to access your source code and review how
it executes. It can also be used to monitor database events, workflows, callouts, validation logic, cumulative resources used
versus system limits, and other events that are recorded in debug logs. It’s a context-sensitive execution viewer, showing the
source of an operation, what triggered that operation, and what occurred afterward.

Figure 6: The Developer Console:

To learn about the Developer Console tools, see ““Navigating within the Developer Console”” in the online help in the
Database.com online help.

To learn about the different sections of the Developer Console System Log, see “The System Log View” in the Database.com
online help.

To learn more about some typical ways you might use the Developer Console, for example, tracking DML in your transaction
or monitoring performance, see “Examples of Using the Developer Console” in the Database.com online help.

193

Debugging Apex Using the Developer Console

When using the Developer Console or monitoring a debug log, you can specify the level of information that gets included in
the log.

Log category

The type of information logged, such as information from Apex or workflow rules.

Log level

The amount of information logged.

Event type

The combination of log category and log level that specify which events get logged. Each event can log additional
information, such as the line and character number where the event started, fields associated with the event, duration of
the event in milliseconds, and so on.

Debug Log Categories
You can specify the following log categories. The amount of information logged for each category depends on the log level:

DescriptionLog Category

Includes information about database activity, including every data manipulation
language (DML) statement or inline SOQL or SOSL query.

Database

Includes information for workflow rules, such as the rule name, the actions taken, and
so on.

Workflow

Includes information about validation rules, such as the name of the rule, whether the
rule evaluated true or false, and so on.

Validation

Includes the request-response XML that the server is sending and receiving from an
external Web service. This is useful when debugging issues related to using Force.com
Web services API calls.

Callout

Includes information about Apex code and can include information such as log
messages generated by DML statements, inline SOQL or SOSL queries, the start

Apex Code

and completion of any triggers, and the start and completion of any test method, and
so on.

Includes cumulative profiling information, such as the limits for your namespace, the
number of emails sent, and so on.

Apex Profiling

Includes information about calls to all system methods such as the System.debug
method.

System

Debug Log Levels
You can specify the following log levels. The levels are listed from lowest to highest. Specific events are logged based on the
combination of category and levels. Most events start being logged at the INFO level. The level is cumulative, that is, if you
select FINE, the log will also include all events logged at DEBUG, INFO, WARN and ERROR levels.

Note: Not all levels are available for all categories: only the levels that correspond to one or more events.

• ERROR
• WARN

194

Debugging Apex Using the Developer Console

• INFO
• DEBUG
• FINE
• FINER
• FINEST

Debug Event Types
The following is an example of what is written to the debug log. The event is USER_DEBUG. The format is timestamp |
event identifier:

• timestamp: consists of the time when the event occurred and a value between parentheses. The time is in the user's time
zone and in the format HH:mm:ss.SSS. The value represents the time elapsed in nanoseconds since the start of the request.
The elapsed time value is excluded from logs reviewed in the Developer Console.

• event identifier: consists of the specific event that triggered the debug log being written to, such as SAVEPOINT_RESET or
VALIDATION_RULE, and any additional information logged with that event, such as the method name or the line and
character number where the code was executed.

The following is an example of a debug log line.

Figure 7: Debug Log Line Example

In this example, the event identifier is made up of the following:

• Event name:

USER_DEBUG

• Line number of the event in the code:

[2]

• Logging level the System.Debug method was set to:

DEBUG

• User-supplied string for the System.Debug method:

Hello world!

The following example of a log line is triggered by this code snippet.

195

Debugging Apex Using the Developer Console

Figure 8: Debug Log Line Code Snippet

The following log line is recorded when the test reaches line 5 in the code:

15:51:01.071 (55856000)|DML_BEGIN|[5]|Op:Insert|Type:Invoice_Statement__c|Rows:1

In this example, the event identifier is made up of the following:

• Event name:

DML_BEGIN

• Line number of the event in the code:

[5]

• DML operation type—Insert:

Op:Insert

• Object name:

Type:Invoice_Statement__c

• Number of rows passed into the DML operation:

Rows:1

The following table lists the event types that are logged, what fields or other information get logged with each event, as well
as what combination of log level and category cause an event to be logged.

Level LoggedCategory LoggedFields or Information Logged With EventEvent Name

FINESTApex CodeNumber of bytes allocatedBULK_HEAP_ALLOCATE

INFO and aboveCalloutLine number, request headersCALLOUT_REQUEST

INFO and aboveCalloutLine number, response bodyCALLOUT_RESPONSE

ERROR and aboveApex CodeNoneCODE_UNIT_FINISHED

ERROR and aboveApex CodeLine number, code unit name, such as
MyTrigger on Invoice_Statement__c

CODE_UNIT_STARTED

trigger event BeforeInsert for
[new]

196

Debugging Apex Using the Developer Console

Level LoggedCategory LoggedFields or Information Logged With EventEvent Name

DEBUG and aboveApex CodeLine number, Apex class ID, the sring
<init>() with the types of parameters, if
any, between the parentheses

CONSTRUCTOR_ENTRY

DEBUG and aboveApex CodeLine number, the string <init>() with the
types of parameters, if any, between the
parentheses

CONSTRUCTOR_EXIT

INFO and aboveApex ProfilingNoneCUMULATIVE_LIMIT_USAGE

INFO and aboveApex ProfilingNoneCUMULATIVE_LIMIT_USAGE_END

FINE and aboveApex ProfilingNoneCUMULATIVE_PROFILING

FINE and aboveApex ProfilingNoneCUMULATIVE_PROFILING_BEGIN

FINE and aboveApex ProfilingNoneCUMULATIVE_PROFILING_END

INFO and aboveApex CodeLine number, operation (such as Insert,
Update, and so on), record name or type,
number of rows passed into DML operation

DML_BEGIN

INFO and aboveApex CodeLine numberDML_END

INFO and aboveApex CodeLine numberEMAIL_QUEUE

INFO and aboveApex CodeLine number, exception type, messageEXCEPTION_THROWN

ERROR and aboveApex CodeNoneEXECUTION_FINISHED

ERROR and aboveApex CodeNoneEXECUTION_STARTED

ERROR and aboveApex CodeException type, message, stack traceFATAL_ERROR

FINER and aboveApex CodeLine number, number of bytesHEAP_ALLOCATE

FINER and aboveApex CodeLine number, number of bytes deallocatedHEAP_DEALLOCATE

FINESTDBLine numberIDEAS_QUERY_EXECUTE

FINESTApex ProfilingNamespace, following limits:

Number of SOQL queries

LIMIT_USAGE_FOR_NS

Number of query rows

Number of SOSL queries

Number of DML statements

Number of DML rows

Number of code statements

Maximum heap size

Number of callouts

Number of Email Invocations

Number of fields describes

197

Debugging Apex Using the Developer Console

Level LoggedCategory LoggedFields or Information Logged With EventEvent Name

Number of record type describes

Number of child relationships

describes

Number of picklist describes

Number of future calls

Number of find similar calls

Number of System.runAs()

invocations

DEBUG and aboveApex CodeLine number, the Force.com ID of the class,
method signature

METHOD_ENTRY

DEBUG and aboveApex CodeLine number, the Force.com ID of the class,
method signature.

For constructors, the following information
is logged: Line number, class name.

METHOD_EXIT

INFO and aboveSystemLine number, the Force.com ID of the class
or trigger that has its log filters set and that

POP_TRACE_FLAGS

is going into scope, the name of this class or
trigger, the log filter settings that are now in
effect after leaving this scope

INFO and aboveSystemLine number, the Force.com ID of the class
or trigger that has its log filters set and that

PUSH_TRACE_FLAGS

is going out of scope, the name of this class
or trigger, the log filter settings that are now
in effect after entering this scope

INFO and aboveDBLine number, number of queryMore
iterations

QUERY_MORE_ITERATIONS

INFO and aboveDBLine number, Savepoint nameSAVEPOINT_ROLLBACK

INFO and aboveDBLine number, Savepoint nameSAVEPOINT_SET

INFO and aboveWorkflowNumber of cases, load time, processing time,
number of case milestones to
insert/update/delete, new trigger

SLA_END

INFO and aboveWorkflowMilestone IDSLA_EVAL_MILESTONE

INFO and aboveWorkflowNoneSLA_NULL_START_DATE

INFO and aboveWorkflowCase IDSLA_PROCESS_CASE

INFO and aboveDBLine number, number of aggregations, query
source

SOQL_EXECUTE_BEGIN

INFO and aboveDBLine number, number of rows, duration in
milliseconds

SOQL_EXECUTE_END

198

Debugging Apex Using the Developer Console

Level LoggedCategory LoggedFields or Information Logged With EventEvent Name

INFO and aboveDBLine number, query sourceSOSL_EXECUTE_BEGIN

INFO and aboveDBLine number, number of rows, duration in
milliseconds

SOSL_EXECUTE_END

FINE and aboveApex ProfilingFrame number, variable list of the form:
Variable number | Value. For example:

var1:50

var2:'Hello World'

STACK_FRAME_VARIABLE_LIST

FINER and aboveApex CodeLine numberSTATEMENT_EXECUTE

FINE and aboveApex ProfilingVariable list of the form: Variable number
| Value. For example:

var1:50

var2:'Hello World'

STATIC_VARIABLE_LIST

DEBUGSystemLine number, the string <init>() with the
types of parameters, if any, between the
parentheses

SYSTEM_CONSTRUCTOR_ENTRY

DEBUGSystemLine number, the string <init>() with the
types of parameters, if any, between the
parentheses

SYSTEM_CONSTRUCTOR_EXIT

DEBUGSystemLine number, method signatureSYSTEM_METHOD_ENTRY

DEBUGSystemLine number, method signatureSYSTEM_METHOD_EXIT

INFO and aboveSystemMode nameSYSTEM_MODE_ENTER

INFO and aboveSystemMode nameSYSTEM_MODE_EXIT

INFO and aboveApex ProfilingNoneTESTING_LIMITS

FINE and aboveApex ProfilingNumber of emails sentTOTAL_EMAIL_RECIPIENTS_QUEUED

DEBUG and above
by default. If the

Apex CodeLine number, logging level, user-supplied
string

USER_DEBUG

user sets the log
level for the
System.Debug
method, the event is
logged at that level
instead.

INFO and aboveValidationError messageVALIDATION_ERROR

INFO and aboveValidationNoneVALIDATION_FAIL

INFO and aboveValidationFormula source, valuesVALIDATION_FORMULA

INFO and aboveValidationNoneVALIDATION_PASS

199

Debugging Apex Using the Developer Console

Level LoggedCategory LoggedFields or Information Logged With EventEvent Name

INFO and aboveValidationRule nameVALIDATION_RULE

FINESTApex CodeLine number, variable name, a string
representation of the variable's value, the
variable's address

VARIABLE_ASSIGNMENT

FINESTApex CodeLine number, variable name, type, a value
that indicates if the variable can be referenced,
a value that indicates if the variable is static

VARIABLE_SCOPE_BEGIN

FINESTApex CodeNoneVARIABLE_SCOPE_END

INFO and aboveApex CodeElement name, method name, return typeVF_APEX_CALL

INFO and aboveApex CodeMessage textVF_PAGE_MESSAGE

INFO and aboveWorkflowAction descriptionWF_ACTION

INFO and aboveWorkflowTask subject, action ID, rule, owner, due dateWF_ACTION_TASK

INFO and aboveWorkflowSummer of actions performedWF_ACTIONS_END

INFO and aboveWorkflowTransition type, EntityName: NameField
Id, process node name

WF_APPROVAL

INFO and aboveWorkflowEntityName: NameField IdWF_APPROVAL_REMOVE

INFO and aboveWorkflowEntityName: NameField IdWF_APPROVAL_SUBMIT

INFO and aboveWorkflowOwner, assignee template IDWF_ASSIGN

INFO and aboveWorkflowEntityName: NameField Id, rule name,
rule ID, trigger type (if rule respects trigger
types)

WF_CRITERIA_BEGIN

INFO and aboveWorkflowBoolean value indicating success (true or false)WF_CRITERIA_END

INFO and aboveWorkflowAction ID, ruleWF_EMAIL_ALERT

INFO and aboveWorkflowEmail template ID, recipients, CC emailsWF_EMAIL_SENT

INFO and aboveWorkflowSummary of actions enqueuedWF_ENQUEUE_ACTIONS

INFO and aboveWorkflowCase ID, business hoursWF_ESCALATION_ACTION

INFO and aboveWorkflowNoneWF_ESCALATION_RULE

INFO and aboveWorkflowProcess name, email template ID, Boolean
value indicating result (true or false)

WF_EVAL_ENTRY_CRITERIA

INFO and aboveWorkflowEntityName: NameField Id, object or
field name

WF_FIELD_UPDATE

INFO and aboveWorkflowFormula source, valuesWF_FORMULA

INFO and aboveWorkflowNoneWF_HARD_REJECT

INFO and aboveWorkflowOwner, next owner type, fieldWF_NEXT_APPROVER

INFO and aboveWorkflowNoneWF_NO_PROCESS_FOUND

200

Debugging Apex Using the Developer Console

Level LoggedCategory LoggedFields or Information Logged With EventEvent Name

INFO and aboveWorkflowEntityName: NameField Id, action ID,
rule

WF_OUTBOUND_MSG

INFO and aboveWorkflowProcess nameWF_PROCESS_NODE

INFO and aboveWorkflowEntityName: NameField Id, ownerWF_REASSIGN_RECORD

INFO and aboveWorkflowNotifier name, notifier email, notifier
template ID

WF_RESPONSE_NOTIFY

INFO and aboveWorkflowInteger, indicating orderWF_RULE_ENTRY_ORDER

INFO and aboveWorkflowRule typeWF_RULE_EVAL_BEGIN

INFO and aboveWorkflowNoneWF_RULE_EVAL_END

INFO and aboveWorkflowValueWF_RULE_EVAL_VALUE

INFO and aboveWorkflowFilter criteriaWF_RULE_FILTER

INFO and aboveWorkflowEntityName: NameField IdWF_RULE_INVOCATION

INFO and aboveWorkflowNoneWF_RULE_NOT_EVALUATED

INFO and aboveWorkflowProcess nameWF_SOFT_REJECT

INFO and aboveWorkflowNode typeWF_SPOOL_ACTION_BEGIN

INFO and aboveWorkflowEntityName: NameField Id, time action,
time action container, evaluation Datetime

WF_TIME_TRIGGER

INFO and aboveWorkflowNoneWF_TIME_TRIGGERS_BEGIN

See Also:
Understanding the Debug Log

Debugging Apex API Calls

All API calls that invoke Apex support a debug facility that allows access to detailed information about the execution of the
code, including any calls to System.debug(). In addition to the Developer Console, a SOAP input header called
DebuggingHeader allows you to set the logging granularity according to the levels outlined in the following table.

DescriptionTypeElement Name

Specify the type of information returned in the debug log. Valid values are:stringLogCategory

• Db

• Workflow

• Validation

• Callout

• Apex_code

• Apex_profiling

201

Debugging Apex Debugging Apex API Calls

DescriptionTypeElement Name

• All

Specifies the amount of information returned in the debug log. Only the
Apex_code LogCategory uses the log category levels.

Valid log levels are (listed from lowest to highest):

stringLogCategoryLevel

• ERROR

• WARN

• INFO

• DEBUG

• FINE

• FINER

• FINEST

In addition, the following log levels are still supported as part of the DebuggingHeader for backwards compatibility.

DescriptionLog Level

Does not include any log messages.NONE

Includes lower level messages, as well as messages generated by calls to the
System.debug method.

DEBUGONLY

Includes log messages generated by calls to the System.debug method, as well as every
data manipulation language (DML) statement or inline SOQL or SOSL query.

DB

Includes log messages generated by calls to the System.debug method, every DML
statement or inline SOQL or SOSL query, and the entrance and exit of every user-defined

PROFILE

method. In addition, the end of the debug log contains overall profiling information for
the portions of the request that used the most resources, in terms of SOQL and SOSL
statements, DML operations, and Apex method invocations. These three sections list
the locations in the code that consumed the most time, in descending order of total
cumulative time, along with the number of times they were executed.

Includes the request-response XML that the server is sending and receiving from an
external Web service. This is useful when debugging issues related to using Force.com
Web services API calls.

CALLOUT

Includes all messages generated by the PROFILE level as well as the following:DETAIL

• Variable declaration statements

• Start of loop executions

• All loop controls, such as break and continue

• Thrown exceptions *

• Static and class initialization code *

• Any changes in the with sharing context

202

Debugging Apex Debugging Apex API Calls

The corresponding output header, DebuggingInfo, contains the resulting debug log. For more information, see
DebuggingHeader on page 460.

See Also:
Understanding the Debug Log

Handling Uncaught Exceptions
If some Apex code has a bug or does not catch a code-level exception:

• The end user sees a simple explanation of the problem in the application interface. This error message includes the Apex
stack trace.

• The developer specified in the LastModifiedBy field receives the error via email with the Apex stack trace and the
customer’s organization and user ID. No other customer data is returned with the report. Note that for Apex code that
runs synchronously, some error emails may get suppressed for duplicate exception errors. For Apex code that runs
asynchronously—batch Apex, scheduled Apex, or future methods (methods annotated with @future)—error emails for
duplicate exceptions don’t get suppressed.

Understanding Execution Governors and Limits
Because Apex runs in a multitenant environment, the Apex runtime engine strictly enforces a number of limits to ensure that
runaway Apex does not monopolize shared resources. These limits, or governors, track and enforce the statistics outlined in
the following table. If some Apex code ever exceeds a limit, the associated governor issues a runtime exception that cannot be
handled.

LimitDescription

100Total number of SOQL queries issued1

200Total number of SOQL queries issued for Batch Apex and future methods1

50,000Total number of records retrieved by SOQL queries

10,000Total number of records retrieved by Database.getQueryLocator

20Total number of SOSL queries issued

200Total number of records retrieved by a single SOSL query

150Total number of DML statements issued2

10,000Total number of records processed as a result of DML statements or
database.emptyRecycleBin

200,000Total number of executed code statements

1,000,000Total number of executed code statements for Batch Apex and future methods

6 MBTotal heap size3

203

Debugging Apex Handling Uncaught Exceptions

LimitDescription

12 MBTotal heap size for Batch Apex and future methods

16Total stack depth for any Apex invocation that recursively fires triggers due to insert,
update, or delete statements4

200For loop list batch size

10Total number of callouts (HTTP requests or Web services calls) in a request

120 secondsMaximum timeout for all callouts (HTTP requests or Web services calls) in a request

10 secondsDefault timeout of callouts (HTTP requests or Web services calls) in a request

10Total number of methods with the future annotation allowed per Apex invocation

3 MBMaximum size of callout request or response (HTTP request or Web services call)5

100Total number of describes allowed6

25Total number of classes that can be scheduled concurrently

The greater of 500 or 10
multiplied by the number of
test classes in the organization

Total number of test classes that can be queued per a 24–hour period7

1 In a SOQL query with parent-child relationship sub-queries, each parent-child relationship counts as an additional query.
These types of queries have a limit of three times the number for top-level queries. The row counts from these relationship
queries contribute to the row counts of the overall code execution. In addition to static SOQL statements, calls to the following
methods count against the number of SOQL statements issued in a request.

• Database.countQuery

• Database.getQueryLocator

• Database.query

2 Calls to the following methods count against the number of DML queries issued in a request.

• Approval.process

• Database.convertLead

• Database.emptyRecycleBin

• Database.rollback

• Database.setSavePoint

• delete and Database.delete

• insert and Database.insert

• merge

• undelete and Database.undelete

• update and Database.update

• upsert and Database.upsert

• System.runAs

3 Email services heap size is 36 MB.

204

Debugging Apex Understanding Execution Governors and Limits

4 Recursive Apex that does not fire any triggers with insert, update, or delete statements exists in a single invocation,
with a single stack. Conversely, recursive Apex that fires a trigger spawns the trigger in a new Apex invocation, separate from
the invocation of the code that caused it to fire. Because spawning a new invocation of Apex is a more expensive operation
than a recursive call in a single invocation, there are tighter restrictions on the stack depth of these types of recursive calls.
5The HTTP request and response sizes count towards the total heap size.
6 Describes include the following methods and objects.

• ChildRelationship objects

• RecordTypeInfo objects

• PicklistEntry objects

• fields calls

7 This limit applies when you start tests asynchronously by selecting test classes for execution through the Apex Test Execution
page or by inserting ApexTestQueueItem objects using SOAP API.

Limits apply individually to each testMethod.

Use the Limits methods to determine the code execution limits for your code while it is running. For example, you can use
the getDMLStatements method to determine the number of DML statements that have already been called by your program,
or the getLimitDMLStatements method to determine the total number of DML statements available to your code.

For best performance, SOQL queries must be selective, particularly for queries inside of triggers. To avoid long execution
times, non-selective SOQL queries may be terminated by the system. Developers will receive an error message when a
non-selective query in a trigger executes against an object that contains more than 100,000 records. To avoid this error, ensure
that the query is selective. See More Efficient SOQL Queries.

For Apex saved using Salesforce.com API version 20.0 or earlier, if an API call causes a trigger to fire, the batch of 200 records
to process is further split into batches of 100 records. For Apex saved using Salesforce.com API version 21.0 and later, no
further splits of API batches occur. Note that static variable values are reset between batches, but governor limits are not. Do
not use static variables to track state information between batches.

In addition to the execution governor limits, Apex has the following limits.

• The maximum number of characters for a class is 1 million.

• The maximum number of characters for a trigger is 1 million.

• The maximum amount of code used by all Apex code in an organization is 3 MB.

• There is a limit on the method size. Large methods that exceed the allowed limit cause an exception to be thrown during
the execution of your code. Like in Java, the method size limit in Apex is 65,535 bytecode instructions in compiled form.

• If a SOQL query runs more than 120 seconds, the request can be canceled by Database.com.

• Each Apex request is limited to 10 minutes of execution.

• A callout request to a given URL is limited to a maximum of 20 simultaneous requests.

• The maximum number of records that an event report returns for a user who is not a system administrator is 20,000, for
system administrators, 100,000.

• Each organization is allowed 10 synchronous concurrent requests for long-running requests that last longer than 5 seconds.
If additional requests are made while the 10 long-running requests are still running, they are denied.

• A user can have up to 50 query cursors open at a time. For example, if 50 cursors are open and a client application still
logged in as the same user attempts to open a new one, the oldest of the 50 cursors is released. Note that this limit is
different for the batch Apex start method, which can have up to five query cursors open at a time per user. The other
batch Apex methods have the higher limit of 50 cursors.

205

Debugging Apex Understanding Execution Governors and Limits

Cursor limits for different Database.com features are tracked separately. For example, you can have 50 Apex query cursors
and 50 batch cursors open at the same time.

• Any deployment of Apex is limited to 5,000 code units of classes and triggers.

Batch Apex Governor Limits
Keep in mind the following governor limits for batch Apex:

• Up to five queued or active batch jobs are allowed for Apex.
• A user can have up to 50 query cursors open at a time. For example, if 50 cursors are open and a client application still

logged in as the same user attempts to open a new one, the oldest of the 50 cursors is released. Note that this limit is
different for the batch Apex start method, which can have up to five query cursors open at a time per user. The other
batch Apex methods have the higher limit of 50 cursors.

Cursor limits for different Database.com features are tracked separately. For example, you can have 50 Apex query cursors
and 50 batch cursors open at the same time.

• A maximum of 50 million records can be returned in the Database.QueryLocator object. If more than 50 million
records are returned, the batch job is immediately terminated and marked as Failed.

• If the start method returns a QueryLocator, the optional scope parameter of Database.executeBatch can have a
maximum value of 2,000. If set to a higher value, Database.com chunks the records returned by the QueryLocator into
smaller batches of up to 2,000 records. If the start method returns an iterable, the scope parameter value has no upper
limit; however, if you use a very high number, you may run into other limits.

• If no size is specified with the optional scope parameter of Database.executeBatch, Database.com chunks the records
returned by the start method into batches of 200, and then passes each batch to the execute method. Apex governor
limits are reset for each execution of execute.

• The start, execute, and finish methods can implement up to 10 callouts each.
• Batch executions are limited to 10 callouts per method execution.
• The maximum number of batch executions is 250,000 per 24 hours.
• Only one batch Apex job's start method can run at a time in an organization. Batch jobs that haven’t started yet remain

in the queue until they're started. Note that this limit doesn’t cause any batch job to fail and execute methods of batch
Apex jobs still run in parallel if more than one job is running.

See Also:
What are the Limitations of Apex?
Future Annotation

Using Governor Limit Email Warnings
When an end-user invokes Apex code that surpasses more than 50% of any governor limit, you can specify a user in your
organization to receive an email notification of the event with additional details. To enable email warnings:

1. Log in to Database.com as an administrator user.
2. Click Manage Users > Users.
3. Click Edit next to the name of the user who should receive the email notifications.
4. Select the Send Apex Warning Emails option.
5. Click Save.

206

Debugging Apex Using Governor Limit Email Warnings

Chapter 9

Exposing Apex Methods as SOAP Web Services

You can expose your Apex methods as SOAP Web services so that external
applications can access your code and your application. To expose your Apex
methods, use WebService Methods.

In this chapter ...

• WebService Methods

Tip:

• Apex SOAP Web services allow an external application to invoke
Apex methods through SOAP Web services. Apex callouts enable
Apex to invoke external Web or HTTP services.

• Apex REST API exposes your Apex classes and methods as REST
Web services. See Exposing Apex Classes as REST Web Services.

207

WebService Methods
Apex class methods can be exposed as custom SOAP Web service calls. This allows an external application to invoke an Apex
Web service to perform an action in Database.com. Use the webService keyword to define these methods. For example:

global class MyWebService {
webService static Id createInvoiceStatement(String description) {

Invoice_Statement__c inv = new Invoice_Statement__c(Description__c = description);
insert inv;
return inv.Id;

}
}

A developer of an external application can integrate with an Apex class containing webService methods by generating a
WSDL for the class. To generate a WSDL from an Apex class detail page:

1. In the application navigate to Develop > Apex Classes.
2. Click the name of a class that contains webService methods.
3. Click Generate WSDL.

Exposing Data with WebService Methods

Invoking a custom webService method always uses system context. Consequently, the current user's credentials are not used,
and any user who has access to these methods can use their full power, regardless of permissions, field-level security, or sharing
rules. Developers who expose methods with the webService keyword should therefore take care that they are not inadvertently
exposing any sensitive data.

Caution: Apex class methods that are exposed through the API with the webService keyword don't enforce object
permissions and field-level security by default. We recommend that you make use of the appropriate object or field
describe result methods to check the current user’s access level on the objects and fields that the webService method
is accessing. See Schema.DescribeSObjectResult and Schema.DescribeFieldResult.

Also, sharing rules (record-level access) are enforced only when declaring a class with the with sharing keyword.
This requirement applies to all Apex classes, including to classes that contain webService methods. To enforce sharing
rules for webService methods, declare the class that contains these methods with the with sharing keyword. See
Using the with sharing or without sharing Keywords.

Considerations for Using the WebService Keyword

When using the webService keyword, keep the following considerations in mind:

• You cannot use the webService keyword when defining a class. However, you can use it to define top-level, outer class
methods, and methods of an inner class.

• You cannot use the webService keyword to define an interface, or to define an interface's methods and variables.

• System-defined enums cannot be used in Web service methods.

• You cannot use the webService keyword in a trigger because you cannot define a method in a trigger.

• All classes that contain methods defined with the webService keyword must be declared as global. If a method or
inner class is declared as global, the outer, top-level class must also be defined as global.

208

Exposing Apex Methods as SOAP Web Services WebService Methods

• Methods defined with the webService keyword are inherently global. These methods can be used by any Apex code that
has access to the class. You can consider the webService keyword as a type of access modifier that enables more access
than global.

• You must define any method that uses the webService keyword as static.

• Because there are no SOAP analogs for certain Apex elements, methods defined with the webService keyword cannot
take the following elements as parameters. While these elements can be used within the method, they also cannot be
marked as return values.

◊ Maps

◊ Sets

◊ Pattern objects

◊ Matcher objects

◊ Exception objects

• Apex classes and triggers saved (compiled) using API version 15.0 and higher produce a runtime error if you assign a String
value that is too long for the field.

The following example shows a class with Web service member variables as well as a Web service method:

global class WarehouseService {

global class InvoiceInfo {
webService String Description;

}

webService static Invoice_Statement__c createInvoice(InvoiceInfo info) {
Invoice_Statement__c inv = new Invoice_Statement__c();
inv.Description__c = info.Description;
insert inv;
return inv;

}

testMethod static void testInvoiceCreate() {
InvoiceInfo info = new InvoiceInfo();
info.Description = 'My Web invoice';
Invoice_Statement__c inv = WarehouseService.createInvoice(info);
System.assert(inv != null);

}
}

You can invoke this Web service using AJAX. For more information, see Apex in AJAX on page 96.

Overloading Web Service Methods

SOAP and WSDL do not provide good support for overloading methods. Consequently, Apex does not allow two methods
marked with the webService keyword to have the same name. Web service methods that have the same name in the same
class generate a compile-time error.

209

Exposing Apex Methods as SOAP Web Services Overloading Web Service Methods

Chapter 10

Exposing Apex Classes as REST Web Services

You can expose your Apex classes and methods so that external applications can
access your code and your application through the REST architecture. This

In this chapter ...

• Introduction to Apex REST section provides an overview of how to expose your Apex classes as REST Web
• Apex REST Annotations services. You'll learn about the class and method annotations and see code samples

that show you how to implement this functionality.• Apex REST Methods
• Exposing Data with Apex REST

Web Service Methods
• Apex REST Code Samples

210

Introduction to Apex REST
You can expose your Apex class and methods so that external applications can access your code and your application through
the REST architecture. This is done by defining your Apex class with the @RestResource annotation to expose it as a REST
resource. Similarly, add annotations to your methods to expose them through REST. For more information, see Apex REST
Annotations on page 211

Governor Limits
Calls to Apex REST classes count against the organization's API governor limits. All standard Apex governor limits apply to
Apex REST classes. For example, the maximum request or response size is 3 MB. For more information, see Understanding
Execution Governors and Limits.

Authentication
Apex REST supports these authentication mechanisms:

• OAuth 2.0
• Session ID

See Step Two: Set Up Authorization in the REST API Developer's Guide.

Apex REST Annotations
Six new annotations have been added that enable you to expose an Apex class as a RESTful Web service.

• @RestResource(urlMapping='/yourUrl')

• @HttpDelete

• @HttpGet

• @HttpPatch

• @HttpPost

• @HttpPut

See Also:
Apex REST Basic Code Sample

Apex REST Methods
Apex REST supports two formats for representations of resources: JSON and XML. JSON representations are passed by
default in the body of a request or response, and the format is indicated by the Content-Type property in the HTTP header.
You can retrieve the body as a Blob from the HttpRequest object if there are no parameters to the Apex method. If parameters
are defined in the Apex method, then an attempt is made to deserialize the request body into those parameters. If the Apex
method has a non-void return type, the resource representation is serialized into the response body. Only the following return
and parameter types are allowed:

211

Exposing Apex Classes as REST Web Services Introduction to Apex REST

http://www.salesforce.com/us/developer/docs/api_rest/index_Left.htm#StartTopic=Content/quickstart_oauth.htm

• Apex primitives (excluding sObject and Blob).

• sObjects

• Lists or maps of Apex primitives or sObjects (only maps with String keys are supported)

• User-defined types that contain member variables of the types listed above.

Methods annotated with @HttpGet or @HttpDelete should have no parameters. This is because GET and DELETE
requests have no body, so there's nothing to deserialize.

A single Apex class annotated with @RestResource can't have multiple methods annotated with the same HTTP request
method. For example, the same class can't have two methods annotated with @HttpGet.

Note: Apex REST currently doesn't support requests of Content-Type multipart/form-data.

Apex REST Method Considerations
Here are a few points to consider when you define Apex REST methods.

• RestRequest and RestResponse objects are available by default in your Apex methods through the static RestContext
object. This example shows how to access these objects through RestContext:

RestRequest req = RestContext.request;
RestResponse res = RestContext.response;

• If the Apex method has no parameters, then Apex REST copies the HTTP request body into the
RestRequest.requestBody property. If the method has parameters, then Apex REST attempts to deserialize the data
into those parameters and the data won't be deserialized into the RestRequest.requestBody property.

• Apex REST uses similar serialization logic for the response. An Apex method with a non-void return type will have the
return value serialized into RestResponse.responseBody.

User-Defined Types
You can use user-defined types for parameters in your Apex REST methods. Apex REST will deserialize request data into
public, private, or global class member variables of the user-defined type, unless the variable is declared as static or
transient. For example, an Apex REST method that contains a user-defined type parameter might look like:

@RestResource(urlMapping='/user_defined_type_example/*')
global with sharing class MyOwnTypeRestResource {

@HttpPost
global static MyUserDefinedClass echoMyType(MyUserDefinedClass ic) {

return ic;
}

global class MyUserDefinedClass {

global String string1;
global String string2 { get; set; }
private String privateString;
global transient String transientString;
global static String staticString;

}

}

212

Exposing Apex Classes as REST Web Services Apex REST Methods

Valid JSON and XML request data for this method would look like:

{
"ic" : {

"string1" : "value for string1",
"string2" : "value for string2",
"privateString" : "value for privateString"

}
}

<request>
<ic>

<string1>value for string1</string1>
<string2>value for string2</string2>
<privateString>value for privateString</privateString>

</ic>
</request>

If a value for staticString or transientString were provided in the example request data above, an HTTP 400 status
code response would be generated. Please note that the public, private, or global class member variables must be types
allowed by Apex REST:

• Apex primitives (excluding sObject and Blob).
• sObjects
• Lists or maps of Apex primitives or sObjects (only maps with String keys are supported)

When creating user-defined types that are used as Apex REST method parameters, avoid introducing any class member
variable definitions that result in cycles at run time in your user-defined types. Here's a simple example:

@RestResource(urlMapping='/CycleExample/*')
global with sharing class ApexRESTCycleExample {

@HttpGet
global static MyUserDef1 doCycleTest() {

MyUserDef1 def1 = new MyUserDef1();
MyUserDef2 def2 = new MyUserDef2();
def1.userDef2 = def2;
def2.userDef1 = def1;
return def1;

}

global class MyUserDef1 {
MyUserDef2 userDef2;

}

global class MyUserDef2 {
MyUserDef1 userDef1;

}

}

The code in the previous example compiles, but at run time when a request is made, Apex REST will detect a cycle between
instances of def1 and def2, and will generate an HTTP 400 status code error response.

Request Data Considerations
Some additional things to keep in mind for the request data for your Apex REST methods:

213

Exposing Apex Classes as REST Web Services Apex REST Methods

• The name of the Apex parameters matter, although the order doesn’t. For example, valid requests in both XML and JSON
look like the following:

@HttpPost
global static void myPostMethod(String s1, Integer i1, Boolean b1, String s2)

{
"s1" : "my first string",
"i1" : 123,
"s2" : "my second string",
"b1" : false

}

<request>
<s1>my first string</s1>
<i1>123</i1>
<s2>my second string</s2>
<b1>false</b1>

</request>

• Some parameter and return types can't be used with XML as the Content-Type for the request or as the accepted format
for the response, and hence, methods with these parameter or return types can't be used with XML. Maps or collections
of collections, for example, List<List<String>> aren't supported. However, you can use these types with JSON. If
the parameter list includes a type that's invalid for XML and XML is sent, an HTTP 415 status code is returned. If the
return type is a type that's invalid for XML and XML is the requested response format, an HTTP 406 status code is
returned.

• For request data in either JSON or XML, valid values for Boolean parameters are: “true”, “false” (both of these are treated
as case-insensitive), 1 and 0 (the numeric values, not strings of “1” or “0”). Any other value for Boolean parameters will
result in an error.

• If the JSON or XML request data contains multiple parameters of the same name, this will result in an HTTP 400 status
code error response. For example, if your method specified an input parameter named ”x“, this JSON request data used to
call your method would result in an error:

{
"x" : "value1",
"x" : "value2"

}

Similarly, for user-defined types, if the request data includes data for the same user-defined type member variable multiple
times, this will result in an error. For example, given this Apex REST method and user-defined type:

@RestResource(urlMapping='/DuplicateParamsExample/*')
global with sharing class ApexRESTDuplicateParamsExample {

@HttpPost
global static MyUserDef1 doDuplicateParamsTest(MyUserDef1 def) {

return def;
}

global class MyUserDef1 {
Integer i;

}

}

214

Exposing Apex Classes as REST Web Services Apex REST Methods

The following JSON request data would also result in an error:

{
"def" : {

"i" : 1,
"i" : 2

}
}

• If you need to specify a null value for one of your parameters in your request data, you can either omit the parameter entirely
or specify a null value. In JSON, you can specify null as the value. In XML, you must use the
http://www.w3.org/2001/XMLSchema-instance namespace with a nil value.

• For XML request data, you have to specify an XML namespace that references any Apex namespace your method uses.
So, for example, if you define an Apex REST method such as:

@RestResource(urlMapping='/namespaceExample/*')
global class MyNamespaceTest {

@HttpPost
global static MyUDT echoTest(MyUDT def, String extraString) {

return def;
}

global class MyUDT {
Integer count;

}
}

You can use the following XML request data:

<request>
<def xmlns:MyUDT="http://soap.sforce.com/schemas/class/MyNamespaceTest">
<MyUDT:count>23</MyUDT:count>

</def>
<extraString>test</extraString>

</request>

For more information on XML namespaces and Apex, see XML Namespaces

Response Status Codes
The status code of a response is set automatically. This table lists some HTTP status codes and what they mean in the context
of the HTTP request method. For the full list of response status codes, see
RestResponse Methods.

DescriptionResponse Status
Code

Request Method

The request was successful.200GET

The request was successful and the return type is non-void.200PATCH

The request was successful and the return type is void.204PATCH

An unhandled user exception occurred.400DELETE, GET, PATCH, POST,
PUT

You don't have access to the specified Apex class.403DELETE, GET, PATCH, POST,
PUT

215

Exposing Apex Classes as REST Web Services Apex REST Methods

DescriptionResponse Status
Code

Request Method

The URL is unmapped in an existing @RestResource
annotation.

404DELETE, GET, PATCH, POST,
PUT

The URL extension is unsupported.404DELETE, GET, PATCH, POST,
PUT

The Apex class with the specified namespace couldn't be
found.

404DELETE, GET, PATCH, POST,
PUT

The request method doesn't have a corresponding Apex
method.

405DELETE, GET, PATCH, POST,
PUT

The Content-Type property in the header was set to a value
other than JSON or XML.

406DELETE, GET, PATCH, POST,
PUT

The header specified in the HTTP request is not supported.406DELETE, GET, PATCH, POST,
PUT

The XML return type specified for format is unsupported.406GET, PATCH, POST, PUT

The XML parameter type is unsupported.415DELETE, GET, PATCH, POST,
PUT

The Content-Header Type specified in the HTTP request
header is unsupported.

415DELETE, GET, PATCH, POST,
PUT

An unhandled Apex exception occurred.500DELETE, GET, PATCH, POST,
PUT

Exposing Data with Apex REST Web Service Methods
Invoking a custom Apex REST Web service method always uses system context. Consequently, the current user's credentials
are not used, and any user who has access to these methods can use their full power, regardless of permissions, field-level
security, or sharing rules. Developers who expose methods using the Apex REST annotations should therefore take care that
they are not inadvertently exposing any sensitive data.

Caution: Apex class methods that are exposed through the Apex REST API don't enforce object permissions and
field-level security by default. We recommend that you make use of the appropriate object or field describe result
methods to check the current user’s access level on the objects and fields that the Apex REST API method is accessing.
See Schema.DescribeSObjectResult and Schema.DescribeFieldResult.

Also, sharing rules (record-level access) are enforced only when declaring a class with the with sharing keyword.
This requirement applies to all Apex classes, including to classes that are exposed through Apex REST API. To enforce
sharing rules for Apex REST API methods, declare the class that contains these methods with the with sharing
keyword. See Using the with sharing or without sharing Keywords.

216

Exposing Apex Classes as REST Web Services Exposing Data with Apex REST Web Service Methods

Apex REST Code Samples
This code sample shows you how to expose Apex classes and methods through the REST architecture and how to call those
resources from a client.

• Apex REST Basic Code Sample: Provides an example of an Apex REST class with three methods that you can call to
delete a record, get a record, and update a record.

Apex REST Basic Code Sample

This sample shows you how to implement a simple REST API in Apex that handles three different HTTP request methods.
For more information about authenticating with cURL, see the Quick Start section of the REST API Developer's Guide.

1. Create an Apex class in your instance, by clicking Develop > Apex Classes > New and add this code to your new class:

@RestResource(urlMapping='/Invoice_Statement__c/*')
global with sharing class MyRestResource {

@HttpDelete
global static void doDelete() {

RestRequest req = RestContext.request;
RestResponse res = RestContext.response;
String invId = req.requestURI.substring(

req.requestURI.lastIndexOf('/')+1);
Invoice_Statement__c inv =

[SELECT Id FROM Invoice_Statement__c
WHERE Id = :invId];

delete inv;
}

@HttpGet
global static Invoice_Statement__c doGet() {

RestRequest req = RestContext.request;
RestResponse res = RestContext.response;
String invId = req.requestURI.substring(

req.requestURI.lastIndexOf('/')+1);
Invoice_Statement__c result =

[SELECT Id, Description__c
FROM Invoice_Statement__c
WHERE Id = :invId];

return result;
}

@HttpPost
global static String doPost(String status,

String description) {
Invoice_Statement__c inv = new Invoice_Statement__c();
inv.Status__c = status;
inv.Description__c = description;
insert inv;
return inv.Id;

}
}

2. To call the doGet method from a client, open a command-line window and execute the following cURL command to
retrieve an invoice statement by ID:

217

Exposing Apex Classes as REST Web Services Apex REST Code Samples

http://www.salesforce.com/us/developer/docs/api_rest/index_Left.htm#StartTopic=Content/quickstart.htm

curl -H "Authorization: Bearer sessionId"
"https://instance.salesforce.com/services/apexrest/Invoice_Statement__c/invoiceId"

• Replace sessionId with the <sessionId> element that you noted in the login response.
• Replace instance with your <serverUrl> element.
• Replace invoiceId with the ID of an invoice statement which exists in your organization.

After calling the doGet method, Database.com returns a JSON response with data such as the following:

{
"attributes" :
{
"type" : "Invoice_Statement__c",
"url" : "/services/data/v22.0/sobjects/Invoice_Statement__c/invoiceId"

},
"Id" : "invoiceId",
"Description__c" : "Invoice 1"

}

Note: The cURL examples in this section don't use a namespaced Apex class so you won't see the namespace in
the URL.

3. Create a file called invoice.txt to contain the data for the invoice statement you will create in the next step.

{
"description" : "My invoice",
"status" : "Open"

}

4. Using a command-line window, execute the following cURL command to create a new invoice statement:

curl -H "Authorization: Bearer sessionId" -H "Content-Type: application/json" -d
@invoice.txt "https://instance.salesforce.com/services/apexrest/Invoice_Statement__c/"

After calling the doPost method, Database.com returns a response with data such as the following:

"invoiceId"

The invoiceId is the ID of the invoice statement you just created with the POST request.

5. Using a command-line window, execute the following cURL command to delete an invoice statement by specifying the
ID:

curl —X DELETE —H "Authorization: Bearer sessionId"
"https://instance.salesforce.com/services/apexrest/Invoice_Statement__c/invoiceId"

See Also:
Apex REST Annotations

218

Exposing Apex Classes as REST Web Services Apex REST Basic Code Sample

Apex REST Code Sample Using RestRequest

The following sample shows you how to add an attachment to a case by using the RestRequest object. For more information
about authenticating with cURL, see the Quick Start section of the REST API Developer's Guide. In this code, the binary file
data is stored in the RestRequest object, and the Apex service class accesses the binary data in the RestRequest object .

1. Create an Apex class in your instance, by clicking Develop > Apex Classes. Click New and add the following code to your
new class:

@RestResource(urlMapping='/CaseManagement/v1/*')
global with sharing class CaseMgmtService
{

@HttpPost
global static String attachPic(){

RestRequest req = RestContext.request;
RestResponse res = Restcontext.response;
Id caseId = req.requestURI.substring(req.requestURI.lastIndexOf('/')+1);
Blob picture = req.requestBody;
Attachment a = new Attachment (ParentId = caseId,

Body = picture,
ContentType = 'image/jpg',
Name = 'VehiclePicture');

insert a;
return a.Id;

}
}

2. Open a command-line window and execute the following cURL command to upload the attachment to a case:

curl -H "Authorization: Bearer sessionId" -H "X-PrettyPrint: 1" -H "Content-Type:
image/jpeg" --data-binary @file
"https://instance.salesforce.com/services/apexrest/CaseManagement/v1/caseId"

• Replace sessionId with the <sessionId> element that you noted in the login response.
• Replace instance with your <serverUrl> element.
• Replace caseId with the ID of the case you want to add the attachment to.
• Replace file with the path and file name of the file you want to attach.

Your command should look something like this (with the sessionId replaced with your session ID):

curl -H "Authorization: Bearer sessionId"
-H "X-PrettyPrint: 1" -H "Content-Type: image/jpeg" --data-binary
@c:\test\vehiclephoto1.jpg
"https://na1-blitz02.soma.salesforce.com/services/apexrest/CaseManagement/v1/500D0000003aCts"

Note: The cURL examples in this section don't use a namespaced Apex class so you won't see the namespace in
the URL.

The Apex class returns a JSON response that contains the attachment ID such as the following:

"00PD0000001y7BfMAI"

219

Exposing Apex Classes as REST Web Services Apex REST Code Sample Using RestRequest

http://www.salesforce.com/us/developer/docs/api_rest/index_Left.htm#StartTopic=Content/quickstart.htm

3. To verify that the attachment and the image were added to the case, navigate to Cases and select the All Open Cases
view. Click on the case and then scroll down to the Attachments related list. You should see the attachment you just
created.

220

Exposing Apex Classes as REST Web Services Apex REST Code Sample Using RestRequest

Chapter 11

Invoking Callouts Using Apex

An Apex callout enables you to tightly integrate your Apex with an external
service by making a call to an external Web service or sending a HTTP request

In this chapter ...

• Adding Remote Site Settings from Apex code and then receiving the response. Apex provides integration with
• SOAP Services: Defining a Class

from a WSDL Document
Web services that utilize SOAP and WSDL, or HTTP services (RESTful
services).

• Invoking HTTP Callouts Note: Before any Apex callout can call an external site, that site must
be registered in the Remote Site Settings page, or the callout fails.
Database.com prevents calls to unauthorized network addresses.

• Using Certificates
• Callout Limits

To learn more about the two types of callouts, see:

• SOAP Services: Defining a Class from a WSDL Document on page 222
• Invoking HTTP Callouts on page 231

Tip: Callouts enable Apex to invoke external web or HTTP services.
Apex Web services allow an external application to invoke Apex methods
through Web services.

221

Adding Remote Site Settings
Before any Apex callout can call an external site, that site must be registered in the Remote Site Settings page, or the callout
fails. Database.com prevents calls to unauthorized network addresses.

To add a remote site setting:

1. Click Security Controls > Remote Site Settings.
2. Click New Remote Site.
3. Enter a descriptive term for the Remote Site Name.
4. Enter the URL for the remote site.
5. Optionally, enter a description of the site.
6. Click Save.

SOAP Services: Defining a Class from a WSDL Document
Classes can be automatically generated from a WSDL document that is stored on a local hard drive or network. Creating a
class by consuming a WSDL document allows developers to make callouts to the external Web service in their Apex code.

To generate an Apex class from a WSDL:

1. In the application, click Develop > Apex Classes.
2. Click Generate from WSDL.
3. Click Browse to navigate to a WSDL document on your local hard drive or network, or type in the full path. This WSDL

document is the basis for the Apex class you are creating.

Note:

The WSDL document that you specify might contain a SOAP endpoint location that references an outbound
port.

For security reasons, Database.com restricts the outbound ports you may specify to one of the following:

• 80: This port only accepts HTTP connections.
• 443: This port only accepts HTTPS connections.
• 1024–66535 (inclusive): These ports accept HTTP or HTTPS connections.

4. Click Parse WSDL to verify the WSDL document contents. The application generates a default class name for each
namespace in the WSDL document and reports any errors. Parsing will fail if the WSDL contains schema types or schema
constructs that are not supported by Apex classes, or if the resulting classes exceed 1 million character limit on Apex classes.
For example, the Database.com SOAP API WSDL cannot be parsed.

5. Modify the class names as desired. While you can save more than one WSDL namespace into a single class by using the
same class name for each namespace, Apex classes can be no more than 1 million characters total.

6. Click Generate Apex. The final page of the wizard shows which classes were successfully generated, along with any errors
from other classes. The page also provides a link to view successfully generated code.

The successfully-generated Apex class includes stub and type classes for calling the third-party Web service represented by
the WSDL document. These classes allow you to call the external Web service from Apex.

222

Invoking Callouts Using Apex Adding Remote Site Settings

Note the following about the generated Apex:

• If a WSDL document contains an Apex reserved word, the word is appended with _x when the Apex class is generated.
For example, limit in a WSDL document converts to limit_x in the generated Apex class. See Reserved Keywords.
For details on handling characters in element names in a WSDL that are not supported in Apex variable names, see
Considerations Using WSDLs.

• If an operation in the WSDL has an output message with more than one element, the generated Apex wraps the elements
in an inner class. The Apex method that represents the WSDL operation returns the inner class instead of the individual
elements.

After you have generated a class from the WSDL, you can invoke the external service referenced by the WSDL.

Note: Before you can use the samples in the rest of this topic, you must copy the Apex class docSampleClass from
Understanding the Generated Code and add it to your organization.

Invoking an External Service

To invoke an external service after using its WSDL document to generate an Apex class, create an instance of the stub in your
Apex code and call the methods on it. For example, to invoke the StrikeIron IP address lookup service from Apex, you could
write code similar to the following:

// Create the stub
strikeironIplookup.DNSSoap dns = new strikeironIplookup.DNSSoap();

// Set up the license header
dns.LicenseInfo = new strikeiron.LicenseInfo();
dns.LicenseInfo.RegisteredUser = new strikeiron.RegisteredUser();
dns.LicenseInfo.RegisteredUser.UserID = 'you@company.com';
dns.LicenseInfo.RegisteredUser.Password = 'your-password';

// Make the Web service call
strikeironIplookup.DNSInfo info = dns.DNSLookup('www.myname.com');

HTTP Header Support

You can set the HTTP headers on a Web service callout. For example, you can use this feature to set the value of a cookie in
an authorization header. To set HTTP headers, add inputHttpHeaders_x and outputHttpHeaders_x to the stub.

Note: In API versions 16.0 and earlier, HTTP responses for callouts are always decoded using UTF-8, regardless of
the Content-Type header. In API versions 17.0 and later, HTTP responses are decoded using the encoding specified
in the Content-Type header.

The following samples work with the sample WSDL file in Understanding the Generated Code on page 226:

Sending HTTP Headers on a Web Service Callout

docSample.DocSamplePort stub = new docSample.DocSamplePort();
stub.inputHttpHeaders_x = new Map<String, String>();

//Setting a basic authentication header

stub.inputHttpHeaders_x.put('Authorization', 'Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==');

223

Invoking Callouts Using Apex Invoking an External Service

http://ws.strikeiron.com/relauto/iplookup?WSDL

//Setting a cookie header
stub.inputHttpHeaders_x.put('Cookie', 'name=value');

//Setting a custom HTTP header
stub.inputHttpHeaders_x.put('myHeader', 'myValue');

String input = 'This is the input string';
String output = stub.EchoString(input);

If a value for inputHttpHeaders_x is specified, it overrides the standard headers set.

Accessing HTTP Response Headers from a Web Service Callout Response

docSample.DocSamplePort stub = new docSample.DocSamplePort();
stub.outputHttpHeaders_x = new Map<String, String>();
String input = 'This is the input string';
String output = stub.EchoString(input);

//Getting cookie header
String cookie = stub.outputHttpHeaders_x.get('Set-Cookie');

//Getting custom header
String myHeader = stub.outputHttpHeaders_x.get('My-Header');

The value of outputHttpHeaders_x is null by default. You must set outputHttpHeaders_x before you have access to
the content of headers in the response.

Supported WSDL Features

Apex supports only the document literal wrapped WSDL style and the following primitive and built-in datatypes:

Apex TypeSchema Type

Stringxsd:anyURI

Booleanxsd:boolean

Datexsd:date

Datetimexsd:dateTime

Doublexsd:double

Doublexsd:float

Integerxsd:int

Integerxsd:integer

Stringxsd:language

Longxsd:long

Stringxsd:Name

Stringxsd:NCName

Integerxsd:nonNegativeInteger

Stringxsd:NMTOKEN

224

Invoking Callouts Using Apex Supported WSDL Features

Apex TypeSchema Type

Stringxsd:NMTOKENS

Stringxsd:normalizedString

Stringxsd:NOTATION

Integerxsd:positiveInteger

Stringxsd:QName

Integerxsd:short

Stringxsd:string

Datetimexsd:time

Stringxsd:token

Integerxsd:unsignedInt

Longxsd:unsignedLong

Integerxsd:unsignedShort

Note: The Database.com datatype anyType is not supported in WSDLs used to generate Apex code that is saved
using API version 15.0 and later. For code saved using API version 14.0 and earlier, anyType is mapped to String.

Apex also supports the following schema constructs:

• xsd:all, in Apex code saved using API version 15.0 and later

• xsd:annotation, in Apex code saved using API version 15.0 and later

• xsd:attribute, in Apex code saved using API version 15.0 and later

• xsd:choice, in Apex code saved using API version 15.0 and later

• xsd:element. In Apex code saved using API version 15.0 and later, the ref attribute is also supported with the following
restrictions:

◊ You cannot call a ref in a different namespace.

◊ A global element cannot use ref.

◊ If an element contains ref, it cannot also contain name or type.

• xsd:sequence

The following data types are only supported when used as call ins, that is, when an external Web service calls an Apex Web
service method. These data types are not supported as callouts, that is, when an Apex Web service method calls an external
Web service.

• blob

• decimal

• enum

Apex does not support any other WSDL constructs, types, or services, including:

• RPC/encoded services

225

Invoking Callouts Using Apex Supported WSDL Features

• WSDL files with mulitple portTypes, multiple services, or multiple bindings

• WSDL files that import external schemas. For example, the following WSDL fragment imports an external schema, which
is not supported:

<wsdl:types>
<xsd:schema
elementFormDefault="qualified"
targetNamespace="http://s3.amazonaws.com/doc/2006-03-01/">
<xsd:include schemaLocation="AmazonS3.xsd"/>

</xsd:schema>
</wsdl:types>

However, an import within the same schema is supported. In the following example, the external WSDL is pasted into
the WSDL you are converting:

<wsdl:types>
<xsd:schema
xmlns:tns="http://s3.amazonaws.com/doc/2006-03-01/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified"
targetNamespace="http://s3.amazonaws.com/doc/2006-03-01/">

<xsd:element name="CreateBucket">
<xsd:complexType>
<xsd:sequence>

[...]
</xsd:schema>

</wsdl:types>

• Any schema types not documented in the previous table

• WSDLs that exceed the size limit, including the Database.com WSDLs

• WSDLs that exceed the size limit, including the Database.com WSDLs

• WSDLs that exceed the size limit, including the Database.com WSDLs

Understanding the Generated Code

The following example shows how an Apex class is created from a WSDL document. The Apex class is auto-generated for
you when you import the WSDL. The following code shows a sample WSDL document:

<wsdl:definitions xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:s="http://www.w3.org/2001/XMLSchema"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tns="http://doc.sample.com/docSample"
targetNamespace="http://doc.sample.com/docSample"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<!-- Above, the schema targetNamespace maps to the Apex class name. -->

<!-- Below, the type definitions for the parameters are listed.
Each complexType and simpleType parameteris mapped to an Apex class inside the parent

class for the WSDL. Then, each element in the complexType is mapped to a public field
inside the class. -->

<wsdl:types>
<s:schema elementFormDefault="qualified"
targetNamespace="http://doc.sample.com/docSample">

226

Invoking Callouts Using Apex Understanding the Generated Code

<s:element name="EchoString">
<s:complexType>
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="input" type="s:string" />
</s:sequence>
</s:complexType>
</s:element>
<s:element name="EchoStringResponse">
<s:complexType>
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="EchoStringResult"
type="s:string" />
</s:sequence>
</s:complexType>
</s:element>
</s:schema>
</wsdl:types>

<!--The stub below defines operations. -->

<wsdl:message name="EchoStringSoapIn">
<wsdl:part name="parameters" element="tns:EchoString" />
</wsdl:message>
<wsdl:message name="EchoStringSoapOut">
<wsdl:part name="parameters" element="tns:EchoStringResponse" />
</wsdl:message>
<wsdl:portType name="DocSamplePortType">
<wsdl:operation name="EchoString">
<wsdl:input message="tns:EchoStringSoapIn" />
<wsdl:output message="tns:EchoStringSoapOut" />
</wsdl:operation>
</wsdl:portType>

<!--The code below defines how the types map to SOAP. -->

<wsdl:binding name="DocSampleBinding" type="tns:DocSamplePortType">
<wsdl:operation name="EchoString">
<soap:operation soapAction="urn:dotnet.callouttest.soap.sforce.com/EchoString"
style="document" />
<wsdl:input>
<soap:body use="literal" />
</wsdl:input>
<wsdl:output>
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>
</wsdl:binding>

<!-- Finally, the code below defines the endpoint, which maps to the endpoint in the class
-->

<wsdl:service name="DocSample">
<wsdl:port name="DocSamplePort" binding="tns:DocSampleBinding">
<soap:address location="http://YourServer/YourService" />
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

From this WSDL document, the following Apex class is auto-generated. The class name docSample is the name you specify
when importing the WSDL.

//Generated by wsdl2apex

public class docSample {

227

Invoking Callouts Using Apex Understanding the Generated Code

public class EchoStringResponse_element {

public String EchoStringResult;

private String[] EchoStringResult_type_info = new String[]{
'EchoStringResult',
'http://www.w3.org/2001/XMLSchema',
'string','0','1','false'};

private String[] apex_schema_type_info = new String[]{
'http://doc.sample.com/docSample',
'true'};

private String[] field_order_type_info = new String[]{
'EchoStringResult'};

}

public class DocSamplePort {

public String endpoint_x = 'http://YourServer/YourService';

private String[] ns_map_type_info = new String[]{
'http://doc.sample.com/docSample',
'docSample'};

public String EchoString(String input) {
docSample.EchoString_element request_x =

new docSample.EchoString_element();
docSample.EchoStringResponse_element response_x;
request_x.input = input;
Map<String, docSample.EchoStringResponse_element> response_map_x =

new Map<String, docSample.EchoStringResponse_element>();
response_map_x.put('response_x', response_x);
WebServiceCallout.invoke(
this,
request_x,
response_map_x,
new String[]{endpoint_x,

'urn:dotnet.callouttest.soap.sforce.com/EchoString',
'http://doc.sample.com/docSample',
'EchoString',
'http://doc.sample.com/docSample',
'EchoStringResponse',
'docSample.EchoStringResponse_element'}

);
response_x = response_map_x.get('response_x');
return response_x.EchoStringResult;

}
}

public class EchoString_element {

public String input;
private String[] input_type_info = new String[]{

'input',
'http://www.w3.org/2001/XMLSchema',
'string','0','1','false'};

private String[] apex_schema_type_info = new String[]{
'http://doc.sample.com/docSample',
'true'};

private String[] field_order_type_info = new String[]{'input'};
}

}

Note the following mappings from the original WSDL document:

228

Invoking Callouts Using Apex Understanding the Generated Code

• The WSDL target namespace maps to the Apex class name.

• Each complex type becomes a class. Each element in the type is a public field in the class.

• The WSDL port name maps to the stub class.

• Each operation in the WSDL maps to a public method.

The class generated above can be used to invoke external Web services. The following code shows how to call the echoString
method on the external server:

docSample.DocSamplePort stub = new docSample.DocSamplePort();
String input = 'This is the input string';
String output = stub.EchoString(input);

Test Coverage for the Generated Code

Generated code is saved as an Apex class containing the methods you can invoke for calling the Web service. To deploy or
package this Apex class and other accompanying code, 75% of the code must have test coverage, including the methods in the
generated class. Test methods don’t support Web service callouts. Callouts made from a test result in an exception and cause
the test to be skipped. To run the test method and increase your code coverage, add conditional logic around the code making
a Web service callout, and generate a fake response if it’s called from a test method. The example in this topic shows you how
to do this.

Adding a Test for the Generated EchoString Method
Before adding and executing a test for the generated method, modify the method that makes the Web service callout in the
generated class to perform conditional logic. For our sample WSDL, the method to modify is the
DocSamplePort.EchoString method in the nested DocSamplePort class.

This example shows the modified DocSamplePort.EchoString method in the generated class. An if statement checks
the value of Test.isRunningTest. If it is true, which means the code is called by a running test, it creates a fake response
by setting its response_x.EchoStringResult field to the value to be returned, in this case it is the same as the input
string. If the code isn’t called by a running test, the original code in the generated class is exercised, making a callout. The
modified parts appear in bold.

public class DocSamplePort {
public String endpoint_x = 'http://YourServer/YourService';
public Map<String,String> inputHttpHeaders_x;
public Map<String,String> outputHttpHeaders_x;
public String clientCertName_x;
public String clientCert_x;
public String clientCertPasswd_x;
public Integer timeout_x;
private String[] ns_map_type_info = new String[]{

'http://doc.sample.com/docSample', 'docSample'};

public String EchoString(String input) {
docSample.EchoString_element request_x = new docSample.EchoString_element();
docSample.EchoStringResponse_element response_x;
request_x.input = input;
Map<String, docSample.EchoStringResponse_element> response_map_x =

new Map<String, docSample.EchoStringResponse_element>();
response_map_x.put('response_x', response_x);

if (Test.isRunningTest()) {
response_x = new EchoStringResponse_element();
response_x.EchoStringResult = input;

} else {
WebServiceCallout.invoke(

229

Invoking Callouts Using Apex Test Coverage for the Generated Code

this,
request_x,
response_map_x,
new String[]{endpoint_x,
'urn:dotnet.callouttest.soap.sforce.com/EchoString',
'http://doc.sample.com/docSample',
'EchoString',
'http://doc.sample.com/docSample',
'EchoStringResponse',
'docSample.EchoStringResponse_element'}

);
response_x = response_map_x.get('response_x');

}
return response_x.EchoStringResult;

}
}

This class contains a method that invokes the Web service method, EchoString, in the generated class.

public class DocSampleCall {
public static String callEchoString(String input) {

docSample.DocSamplePort sample = new docSample.DocSamplePort();

// This invokes the EchoString method in the generate class.
// A fake response will be returned for the test
// without making a web service callout.
String output = sample.EchoString(input);

// Some additinal logic

return output;
}

}

This test class contains the test method for the callEchoString method.

@isTest
private class DocSampleTest {

static testmethod void testEchoString() {
String input = 'Hello World!';
String output = DocSampleCall.callEchoString(input);
// Verify fake result
System.assertEquals(input, output);

}
}

Considerations Using WSDLs

Be aware of the following when generating Apex classes from a WSDL.

Mapping Headers

Headers defined in the WSDL document become public fields on the stub in the generated class. This is similar to how the
AJAX Toolkit and .NET works.

Understanding Runtime Events

The following checks are performed when Apex code is making a callout to an external service.

230

Invoking Callouts Using Apex Considerations Using WSDLs

• For information on the timeout limits when making an HTTP request or a Web services call, see Callout Limits on page
234.

• Circular references in Apex classes are not allowed.

• More than one loopback connection to Database.com domains is not allowed.

• To allow an endpoint to be accessed, it should be registered in Security > Remote Site Settings.

• To prevent database connections from being held up, no transactions can be open.

Understanding Unsupported Characters in Variable Names

A WSDL file can include an element name that is not allowed in an Apex variable name. The following rules apply when
generating Apex variable names from a WSDL file:

• If the first character of an element name is not alphabetic, an x character is prepended to the generated Apex variable
name.

• If the last character of an element name is not allowed in an Apex variable name, an x character is appended to the generated
Apex variable name.

• If an element name contains a character that is not allowed in an Apex variable name, the character is replaced with an
underscore (_) character.

• If an element name contains two characters in a row that are not allowed in an Apex variable name, the first character is
replaced with an underscore (_) character and the second one is replaced with an x character. This avoids generating a
variable name with two successive underscores, which is not allowed in Apex.

• Suppose you have an operation that takes two parameters, a_ and a_x. The generated Apex has two variables, both named
a_x. The class will not compile. You must manually edit the Apex and change one of the variable names.

Debugging Classes Generated from WSDL Files

Database.com tests code with SOAP API, .NET, and Axis. If you use other tools, you might encounter issues.

You can use the debugging header to return the XML in request and response SOAP messages to help you diagnose problems.
For more information, see SOAP API and SOAP Headers for Apex on page 443.

Invoking HTTP Callouts
Apex provides several built-in classes to work with HTTP services and create HTTP requests like GET, POST, PUT, and
DELETE.

You can use these HTTP classes to integrate to REST-based services. They also allow you to integrate to SOAP-based web
services as an alternate option to generating Apex code from a WSDL. By using the HTTP classes, instead of starting with
a WSDL, you take on more responsibility for handling the construction of the SOAP message for the request and response.

For more information and samples, see HTTP (RESTful) Services Classes. Also, the Force.com Toolkit for Google Data
APIs makes extensive use of HTTP callouts.

231

Invoking Callouts Using Apex Invoking HTTP Callouts

http://developer.force.com/codeshare/apex/ProjectPage?id=a0630000002ahp1AAA
http://developer.force.com/codeshare/apex/ProjectPage?id=a0630000002ahp1AAA

Using Certificates
You can use two-way SSL authentication by sending a certificate generated in Database.com or signed by a certificate authority
(CA) with your callout. This enhances security as the target of the callout receives the certificate and can use it to authenticate
the request against its keystore.

To enable two-way SSL authentication for a callout:

1. Generate a certificate.
2. Integrate the certificate with your code. See Using Certificates with SOAP Services and Using Certificates with HTTP

Requests.
3. If you are connecting to a third-party and you are using a self-signed certificate, share the Database.com certificate with

them so that they can add the certificate to their keystore. If you are connecting to another application used within your
organization, configure your Web or application server to request a client certificate. This process depends on the type of
Web or application server you use. For an example of how to set up two-way SSL with Apache Tomcat, see
wiki.developerforce.com/index.php/Making_Authenticated_Web_Service_Callouts_Using_Two-Way_SSL.

4. Configure the remote site settings for the callout. Before any Apex callout can call an external site, that site must be
registered in the Remote Site Settings page, or the callout fails.

Generating Certificates

You can use a self-signed certificate generated in Database.com or a certificate signed by a certificate authority (CA). To
generate a certificate for a callout:

1. Go to Security Controls > Certificate and Key Management.
2. Select either Create Self-Signed Certificate or Create CA-Signed Certificate, based on what kind of certificate your

external website accepts. You can't change the type of a certificate after you've created it.
3. Enter a descriptive label for the Database.com certificate. This name is used primarily by administrators when viewing

certificates.
4. Enter the Unique Name. This name is automatically populated based on the certificate label you enter. This name can

contain only underscores and alphanumeric characters, and must be unique in your organization. It must begin with a
letter, not include spaces, not end with an underscore, and not contain two consecutive underscores. Use the Unique
Name when referring to the certificate using the Force.com Web services API or Apex.

5. Select a Key Size for your generated certificate and keys. We recommend that you use the default key size of 2048 for
security reasons. Selecting 2048 generates a certificate using 2048-bit keys and is valid for two years. Selecting 1024
generates a certificate using 1024-bit keys and is valid for one year.

Note: Once you save a Database.com certificate, you can't change the key size.

6. If you're creating a CA-signed certificate, you must also enter the following information. These fields are joined together
to generate a unique certificate.

DescriptionField

The fully qualified domain name of the company requesting
the signed certificate. This is generally of the form:
http://www.mycompany.com.

Common Name

232

Invoking Callouts Using Apex Using Certificates

http://wiki.developerforce.com/index.php/Making_Authenticated_Web_Service_Callouts_Using_Two-Way_SSL

DescriptionField

The email address associated with this certificate.Email Address

Either the legal name of your company, or your legal name.Company

The branch of your company using the certificate, such as
marketing or accounting.

Department

The city where the company resides.City

The state where the company resides.State

A two-letter code indicating the country where the company
resides. For the United States, the value is US.

Country Code

7. Click Save.

After you successfully save a Database.com certificate, the certificate and corresponding keys are automatically generated.

After you create a CA-signed certificate, you must upload the signed certificate before you can use it. See “Uploading Certificate
Authority (CA)-Signed Certificates” in the Database.com online help.

Using Certificates with SOAP Services

After you have generated a certificate in Database.com, you can use it to support two-way authentication for a callout to a
SOAP Web service.

To integrate the certificate with your Apex:

1. Receive the WSDL for the Web service from the third party or generate it from the application you want to connect to.
2. Generate Apex classes from the WSDL for the Web service. See SOAP Services: Defining a Class from a WSDL

Document.
3. The generated Apex classes include a stub for calling the third-party Web service represented by the WSDL document.

Edit the Apex classes, and assign a value to a clientCertName_x variable on an instance of the stub class. The value
must match the Unique Name of the certificate you generated using Security Controls > Certificate and Key Management.

The following example illustrates the last step of the previous procedure and works with the sample WSDL file in Understanding
the Generated Code. This example assumes that you previously generated a certificate with a Unique Name of
DocSampleCert.

docSample.DocSamplePort stub = new docSample.DocSamplePort();
stub.clientCertName_x = 'DocSampleCert';
String input = 'This is the input string';
String output = stub.EchoString(input);

There is a legacy process for using a certificate obtained from a third party for your organization. Encode your client certificate
key in base64, and assign it to the clientCert_x variable on the stub. This is inherently less secure than using a Database.com
certificate because it does not follow security best practices for protecting private keys. When you use a Database.com certificate,
the private key is not shared outside Database.com.

Note: Do not use a client certificate generated from Develop > API > Generate Client Certificate. You must use a
certificate obtained from a third party for your organization if you use the legacy process.

233

Invoking Callouts Using Apex Using Certificates with SOAP Services

The following example illustrates the legacy process and works with the sample WSDL file in Understanding the Generated
Code on page 226.

docSample.DocSamplePort stub = new docSample.DocSamplePort();
stub.clientCert_x =
'MIIGlgIBAzCCBlAGCSqGSIb3DQEHAaCCBkEEggY9MIIGOTCCAe4GCSqGSIb3DQEHAaCCAd8EggHb'+
'MIIB1zCCAdMGCyqGSIb3DQEMCgECoIIBgjCCAX4wKAYKKoZIhvcNAQwBAzAaBBSaUMlXnxjzpfdu'+
'6YFwZgJFMklDWFyvCnQeuZpN2E+Rb4rf9MkJ6FsmPDA9MCEwCQYFKw4DAhoFAAQU4ZKBfaXcN45w'+
'9hYm215CcA4n4d0EFJL8jr68wwKwFsVckbjyBz/zYHO6AgIEAA==';

// Password for the keystore
stub.clientCertPasswd_x = 'passwd';

String input = 'This is the input string';
String output = stub.EchoString(input);

Using Certificates with HTTP Requests

After you have generated a certificate in Database.com, you can use it to support two-way authentication for a callout to an
HTTP request.

To integrate the certificate with your Apex:

1. Generate a certificate. Note the Unique Name of the certificate.
2. In your Apex, use the setClientCertificateName method of the HttpRequest class. The value used for the argument

for this method must match the Unique Name of the certificate that you generated in the previous step.

The following example illustrates the last step of the previous procedure. This example assumes that you previously generated
a certificate with a Unique Name of DocSampleCert.

HttpRequest req = new HttpRequest();
req.setClientCertificateName('DocSampleCert');

Callout Limits
The following limits apply when Apex code makes a callout to an HTTP request or a Web services call. The Web services
call can be a SOAP API call or any external Web services call.

• A single Apex transaction can make a maximum of 10 callouts to an HTTP request or an API call.

• The default timeout is 10 seconds. A custom timeout can be defined for each callout. The minimum is 1 millisecond and
the maximum is 60 seconds. See the following examples for how to set custom timeouts for Web services or HTTP callouts.

• The maximum cumulative timeout for callouts by a single Apex transaction is 120 seconds. This time is additive across all
callouts invoked by the Apex transaction.

234

Invoking Callouts Using Apex Using Certificates with HTTP Requests

Setting Callout Timeouts
The following example sets a custom timeout for Web services callouts. The example works with the sample WSDL file and
the generated DocSamplePort class described in Understanding the Generated Code on page 226. Set the timeout value in
milliseconds by assigning a value to the special timeout_x variable on the stub.

docSample.DocSamplePort stub = new docSample.DocSamplePort();
stub.timeout_x = 2000; // timeout in milliseconds

The following is an example of setting a custom timeout for HTTP callouts:

HttpRequest req = new HttpRequest();
req.setTimeout(2000); // timeout in milliseconds

235

Invoking Callouts Using Apex Callout Limits

Chapter 12

Reference

The Apex reference contains information about the Apex language.In this chapter ...

• Data manipulation language (DML) operations—used to manipulate data
in the database

• Apex Data Manipulation Language
(DML) Operations

• Standard classes and methods—available for primitive data types, collections,
sObjects, and other parts of Apex

• Apex Standard Classes and Methods
• Apex Classes

• Apex classes—prebuilt classes available for your use
• Apex Interfaces

• Apex interfaces—interfaces you can implement

In addition, SOAP API methods and objects are available for Apex. See SOAP
API and SOAP Headers for Apex on page 443 in the Appendices section.

236

Apex Data Manipulation Language (DML) Operations
Use data manipulation language (DML) operations to insert, update, delete, and restore data in a database.

You can execute DML operations using two different forms:

• Apex DML statements, such as:

insert SObject[]

• Apex DML database methods, such as:

Database.SaveResult[] result = Database.Insert(SObject[])

While most DML operations are available in either form, some exist only in one form or the other.

The different DML operation forms enable different types of exception processing:

• Use DML statements if you want any error that occurs during bulk DML processing to be thrown as an Apex exception
that immediately interrupts control flow (by using try. . .catch blocks). This behavior is similar to the way exceptions
are handled in most database procedural languages.

• Use DML database methods if you want to allow partial success of a bulk DML operation—if a record fails, the remainder
of the DML operation can still succeed. Your application can then inspect the rejected records and possibly retry the
operation. When using this form, you can write code that never throws DML exception errors. Instead, your code can use
the appropriate results array to judge success or failure. Note that DML database methods also include a syntax that supports
thrown exceptions, similar to DML statements.

The following Apex DML operations are available:

• delete

• insert

• undelete

• update

• upsert

System Context and Sharing Rules
Most DML operations execute in system context, ignoring the current user's permissions, field-level security, organization-wide
defaults, position in the role hierarchy, and sharing rules. However, when a DML operation is called in a class defined with
the with sharing keywords, the current user's sharing rules are taken into account. For more information, see Using the
with sharing or without sharing Keywords on page 123.

String Field Truncation and API Version
Apex classes and triggers saved (compiled) using API version 15.0 and higher produce a runtime error if you assign a String
value that is too long for the field.

Delete Operation

The delete DML operation deletes one or more existing sObject records from your organization’s data. delete is analogous
to the delete() statement in the SOAP API.

237

Reference Apex Data Manipulation Language (DML) Operations

DML Statement Syntax
delete sObject | Record.ID

Database Method Syntax
• DeleteResult Database.Delete((sObject recordToDelete | RecordID ID), Boolean opt_allOrNone)
• DeleteResult[] Database.Delete((sObject[] recordsToDelete | RecordIDs LIST<>IDs{}), Boolean opt_allOrNone)

The optional opt_allOrNone parameter specifies whether the operation allows partial success. If you specify false for this
parameter and a record fails, the remainder of the DML operation can still succeed. This method returns a result object that
can be used to verify which records succeeded, which failed, and why.

Rules and Guidelines
When deleting sObject records, consider the following rules and guidelines:

• To ensure referential integrity, delete supports cascading deletions. If you delete a parent object, you delete its children
automatically, as long as each child record can be deleted.

For example, if you delete an invoice statement record, Apex automatically deletes any line item records associated with
it. However, if a particular child record is not deletable or is currently being used, then the delete operation on the parent
invoice statement record fails.

• Certain sObjects can't be deleted. To delete an sObject record, the deletable property of the sObject must be set to
true.

• You can pass a maximum of 10,000 sObject records to a single delete method.

DeleteResult Object
An array of Database.DeleteResult objects is returned with the delete database method. Each element in the DeleteResult
array corresponds to the sObject array passed as the sObject[] parameter in the delete database method, that is, the first
element in the DeleteResult array matches the first element passed in the sObject array, the second element corresponds with
the second element, and so on. If only one sObject is passed in, the DeleteResults array contains a single element.

A Database.DeleteResult object has the following methods:

DescriptionTypeName

If an error occurred, an array of one or more database error objects
providing the error code and description. For more information,
see Database Error Object Methods on page 321.

Database.Error
[]

getErrors

The ID of the sObject you were trying to delete. If this field
contains a value, the object was successfully deleted. If this field
is empty, the operation was not successful for that object.

IDgetId

A Boolean value that is set to true if the DML operation was
successful for this object, false otherwise

BooleanisSuccess

DML Statement Example
The following example deletes all merchandise items that are named 'Pencil':

Merchandise__c[] pencils = [SELECT Id, Name FROM Merchandise__c
WHERE Name = 'Pencil'];

try {
delete pencils;

238

Reference Delete Operation

} catch (DmlException e) {
// Process exception here

}

Note: For more information on processing DmlExceptions, see Bulk DML Exception Handling on page 252.

Database Method Example
The following example deletes all merchandise items named 'Pencil':

Merchandise__c[] pencils = [SELECT Id, Name
FROM Merchandise__c WHERE Name = 'Pencil'];

Database.DeleteResult[] DR_Dels = Database.delete(pencils);

Insert Operation

The insert DML operation adds one or more sObjects to your organization’s data. insert is analogous to the INSERT
statement in SQL.

DML Statement Syntax
insert sObject

insert sObject[]

Database Method Syntax
• SaveResult Database.insert(sObject recordToInsert, Boolean opt_allOrNone | database.DMLOptions

opt_DMLOptions)
• SaveResult[] Database.insert(sObject[] recordsToInsert, Boolean opt_allOrNone | database.DMLOptions

opt_DMLOptions)

The optional opt_allOrNone parameter specifies whether the operation allows partial success. If you specify false for this
parameter and a record fails, the remainder of the DML operation can still succeed. This method returns a result object that
can be used to verify which records succeeded, which failed, and why.

For example:

Database.SaveResult[] MySaveResult = Database.Insert(MyInvoices, false);

The optional opt_DMLOptions parameter specifies additional data for the transaction, such as rollback behavior when errors
occur during record insertions.

For example:

Database.DMLOptions dmo = new database.DMLOptions();
// Roll back all records if one ore more
// causes errors during insertion.
dmo.optAllOrNone = true;

Invoice_Statement__c[] invoices = new Invoice_Statement__c[2];
invoices[0] = new Invoice_Statement__c(Description__c='Invoice 1');
invoices[1] = new Invoice_Statement__c(Description__c='Invoice 2');

Database.insert(invoices, dmo);

239

Reference Insert Operation

For more information, see Database DMLOptions Properties on page 320.

Rules and Guidelines
When inserting sObject records, consider the following rules and guidelines:

• Certain sObjects cannot be created. To create an sObject record, the createable property of the sObject must be set to
true.

• You must supply a non-null value for all required fields.
• You can pass a maximum of 10,000 sObject records to a single insert method.
• The insert statement automatically sets the ID value of all new sObject records. Inserting a record that already has an

ID—and therefore already exists in your organization's data—produces an error. See Lists on page 37 for information.
• The insert statement can only set the foreign key ID of related sObject records. Fields on related records cannot be

updated with insert. For example, if inserting a new line item, you can specify the line item's related invoice statement's
record by setting the value of the Invoice_Statement__c field. However, you cannot change the invoice's description
without updating the invoice itself with a separate DML call.

• This operation checks each batch of records for duplicate ID values. If there are duplicates, the first five are processed. For
the sixth and all additional duplicate IDs, the SaveResult for those entries is marked with an error similar to the following:
Maximum number of duplicate updates in one batch (5 allowed). Attempt to update
Id more than once in this API call: number_of_attempts.

SaveResult Object
An array of SaveResult objects is returned with the insert and update database methods. Each element in the SaveResult
array corresponds to the sObject array passed as the sObject[] parameter in the database method, that is, the first element
in the SaveResult array matches the first element passed in the sObject array, the second element corresponds with the second
element, and so on. If only one sObject is passed in, the SaveResults array contains a single element.

A SaveResult object has the following methods:

DescriptionTypeName

If an error occurred, an array of one or
more database error objects providing the

Database.Error []getErrors

error code and description. For more
information, see Database Error Object
Methods on page 321.

The ID of the sObject you were trying
to insert or update. If this field contains

IDgetId

a value, the object was successfully
inserted or updated. If this field is empty,
the operation was not successful for that
object.

A Boolean that is set to true if the DML
operation was successful for this object,
false otherwise.

BooleanisSuccess

DML Statement Example
The following example inserts an invoice statement:

Invoice_Statement__c invoice = new Invoice_Statement__c(
Description__c = 'Invoice 1');

240

Reference Insert Operation

try {
insert invoice;

} catch (DmlException e) {
// Process exception here
}

Note: For more information on processing DmlExceptions, see Bulk DML Exception Handling on page 252.

Database Method Example
The following example inserts an invoice statement:

Invoice_Statement__c inv1 = new Invoice_Statement__c(
Description__c = 'Invoice 1');

Database.SaveResult[] lsr = Database.insert(
new Invoice_Statement__c[]{

inv1,
new Invoice_Statement__c(Description__c = 'Invoice 2')},

false);

// Iterate through the Save Results
for(Database.SaveResult sr:lsr){

if(!sr.isSuccess())
Database.Error err = sr.getErrors()[0];

}

Creating Parent and Child Records in a Single Statement Using Foreign Keys
You can use external ID fields as foreign keys to create parent and child records of different sObject types in a single step
instead of creating the parent record first, querying its ID, and then creating the child record. To do this:

• Create the child sObject and populate its required fields, and optionally other fields.
• Create the parent reference sObject used only for setting the parent foreign key reference on the child sObject. This sObject

has only the external ID field defined and no other fields set.
• Set the foreign key field of the child sObject to the parent reference sObject you just created.
• Create another parent sObject to be passed to the insert statement. This sObject must have the required fields (and

optionally other fields) set in addition to the external ID field.
• Call insert by passing it an array of sObjects to create. The parent sObject must precede the child sObject in the array,

that is, the array index of the parent must be lower than the child’s index.

You can create related records that are up to 10 levels deep. Also, the related records created in a single call must have different
sObject types. For more information, see Creating Records for Different Object Types in the SOAP API Developer's Guide.

The following example shows how to create an invoice line item with a parent invoice statement using a single insert
statement. First, the example queries an existing merchandise item to be used for the new line item. Next, it creates a line item
sObject and populates some of its fields, then creates two invoice statement objects. The first is only for the foreign key
relationship, and the second is for the invoice statement creation and has more fields set. Both invoice statements have the
external ID field, MyExtID__c, set. Next, the sample calls Database.insert by passing it an array of sObjects. The first
element in the array is the parent sObject and the second is the line item sObject. The Database.insert statement creates
the line item with its parent invoice statement in a single step. Finally, the sample checks the results and writes the IDs of the
created records to the debug log, or the first error if record creation fails. This sample requires an external ID text field on
Invoice_Statement called MyExtID.

public class ParentChildInvoiceSample {
public static void InsertParentChildInvoice() {

// Get an existing merchandise item

241

Reference Insert Operation

http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_calls_create.htm#MixedSaveSection

Merchandise__c m = [SELECT Name FROM Merchandise__c LIMIT 1];
System.assert(m != null);

// Create an invoice line item.
Line_Item__c invLI = new Line_Item__c(

Merchandise__c = m.Id,
Unit_Price__c=4,
Units_Sold__c=1);

// Create the parent reference.
// Used only for foreign key reference
// and doesn't contain any other fields.
Invoice_Statement__c invoiceReference = new Invoice_Statement__c(

MyExtID__c='SAP111111');
// Set the parent reference.
invLI.Invoice_Statement__r = invoiceReference;

// Create the invoice statement object to insert.
// Same as above but has additional fields.
// Used for the insert.
Invoice_Statement__c parentInvoice = new Invoice_Statement__c(

Description__c='InvoiceAndStatementInsert',
MyExtID__c='SAP111111');

// Create the invoice and the line item.
Database.SaveResult[] results = Database.insert(new SObject[] {

parentInvoice, invLI });

// Check results.
for (Integer i = 0; i < results.size(); i++) {

if (results[i].isSuccess()) {
System.debug('Successfully created ID: '

+ results[i].getId());
} else {
System.debug('Error: could not create sobject '

+ 'for array element ' + i + '.');
System.debug(' The error reported was: '

+ results[i].getErrors()[0].getMessage() + '\n');
}

}
}

}

Undelete Operation

The undelete DML operation restores one or more existing sObject records, such as individual invoice statements. undelete
is analogous to the UNDELETE statement in SQL.

DML Statement Syntax
undelete sObject | Record.ID

undelete sObject[] | LIST<>ID[]

Database Method Syntax
• UndeleteResult Database.Undelete((sObject recordToUndelete | RecordID ID), Boolean opt_allOrNone)
• UndeleteResult[] Database.Undelete((sObject[] recordsToUndelete | RecordIDs LIST<>IDs{}), Boolean

opt_allOrNone)

242

Reference Undelete Operation

The optional opt_allOrNone parameter specifies whether the operation allows partial success. If you specify false for this
parameter and a record fails, the remainder of the DML operation can still succeed. This method returns a result object that
can be used to verify which records succeeded, which failed, and why.

Rules and Guidelines
When undeleting sObject records, consider the following rules and guidelines:

• To ensure referential integrity, undelete restores the record associations for the following types of relationships:

◊ All custom lookup relationships
◊ Tags

Note: Database.com only restores lookup relationships that have not been replaced.

• Certain sObjects can't be undeleted. To verify if an sObject record can be undeleted, check that the undeletable property
of the sObject is set to true.

• You can pass a maximum of 10,000 sObject records to a single undelete method.
• You can undelete records that were deleted as the result of a merge, but the child objects will have been re-parented, which

cannot be undone.
• Use the ALL ROWS parameters with a SOQL query to identify deleted records, including records deleted as a result of a

merge. See Querying All Records with a SOQL Statement on page 73.

UndeleteResult Object
An array of Database.UndeleteResult objects is returned with the undelete database method. Each element in the
UndeleteResult array corresponds to the sObject array passed as the sObject[] parameter in the undelete database method,
that is, the first element in the UndeleteResult array matches the first element passed in the sObject array, the second element
corresponds with the second element, and so on. If only one sObject is passed in, the UndeleteResults array contains a single
element.

An undeleteResult object has the following methods:

DescriptionTypeName

If an error occurred, an array of one or
more database error objects providing the

Database.Error []getErrors

error code and description. For more
information, see Database Error Object
Methods on page 321.

The ID of the sObject you were trying
to undelete. If this field contains a value,

IDgetId

the object was successfully undeleted. If
this field is empty, the operation was not
successful for that object.

A Boolean value that is set to true if the
DML operation was successful for this
object, false otherwise

BooleanisSuccess

243

Reference Undelete Operation

DML Statement Example
The following example undeletes an invoice statement. The ALL ROWS keyword queries all rows for both top level and aggregate
relationships, including deleted records and archived activities.

Invoice_Statement__c[] savedInvoices =
[SELECT Id
FROM Invoice_Statement__c
WHERE Description__c = 'My invoice' ALL ROWS];

try {
undelete savedAccts;

} catch (DmlException e) {
// Process exception here

}

Note: For more information on processing DmlExceptions, see Bulk DML Exception Handling on page 252.

Database Method Example
The following example undeletes an invoice statement. The ALL ROWS keyword queries all rows for both top level and aggregate
relationships, including deleted records and archived activities.

public class DmlTest2 {
public void undeleteExample() {

Invoice_Statement__c[] SavedInvoices =
[SELECT Id
FROM Invoice_Statement__c
WHERE Description__c = 'My invoice' ALL ROWS];

Database.UndeleteResult[] UDR_Dels = Database.undelete(SavedInvoices);
for(integer i =0; i< 10; i++)

if(UDR_Dels[i].getErrors().size()>0){
// Process any errors here

}
}

}

Update Operation

The update DML operation modifies one or more existing sObject records, such as individual invoice statements, in your
organization’s data. update is analogous to the UPDATE statement in SQL.

DML Statement Syntax
update sObject

update sObject[]

Database Method Syntax
• UpdateResult Update(sObject recordToUpdate, Boolean opt_allOrNone | database.DMLOptions opt_DMLOptions)
• UpdateResult[] Update(sObject[] recordsToUpdate[], Boolean opt_allOrNone | database.DMLOptions

opt_DMLOptions)

The optional opt_allOrNone parameter specifies whether the operation allows partial success. If you specify false for this
parameter and a record fails, the remainder of the DML operation can still succeed. This method returns a result object that
can be used to verify which records succeeded, which failed, and why.

244

Reference Update Operation

The optional opt_DMLOptions parameter specifies additional data for the transaction, such as rollback behavior when errors
occur during record insertions.

For more information, see Database DMLOptions Properties on page 320.

Rules and Guidelines
When updating sObject records, consider the following rules and guidelines:

• Certain sObjects cannot be updated. To update an sObject record, the updateable property of the sObject must be set
to true.

• When updating required fields you must supply a non-null value.
• Unlike the SOAP API, Apex allows you to change field values to null without updating the fieldsToNull array on

the sObject record. The API requires an update to this array due to the inconsistent handling of null values by many
SOAP providers. Because Apex runs solely on Database.com, this workaround is unnecessary.

• The ID of an updated sObject record cannot be modified, but related record IDs can.
• This operation checks each batch of records for duplicate ID values. If there are duplicates, the first five are processed. For

the sixth and all additional duplicate IDs, the SaveResult for those entries is marked with an error similar to the following:
Maximum number of duplicate updates in one batch (5 allowed). Attempt to update
Id more than once in this API call: number_of_attempts.

• The update statement automatically modifies the values of certain fields such as LastModifiedDate,
LastModifiedById, and SystemModstamp. You cannot explicitly specify these values in your Apex.

• You can pass a maximum of 10,000 sObject records to a single update method.
• A single update statement can only modify one type of sObject at a time. For example, if updating an invoice statement

field through an existing line item that has also been modified, two update statements are required:

// Use a SOQL query to access data for a line item
Line_Item__c li = [SELECT Merchandise__r.Description__c, Name

FROM Line_Item__c
WHERE Name = 'Item1' LIMIT 1];

// Now we can change fields for both the line item and its
// associated merchandise record
li.Merchandise__r.Description__c = 'Hot product';
li.Name = 'New line item';

// To update the database, the two types of records must be
// updated separately
update li; // This only updates the line item's description
update li.Merchandise__r; // This updates the merchandise description

SaveResult Object
An array of SaveResult objects is returned with the insert and update database methods. Each element in the SaveResult
array corresponds to the sObject array passed as the sObject[] parameter in the database method, that is, the first element
in the SaveResult array matches the first element passed in the sObject array, the second element corresponds with the second
element, and so on. If only one sObject is passed in, the SaveResults array contains a single element.

A SaveResult object has the following methods:

DescriptionTypeName

If an error occurred, an array of one or
more database error objects providing the

Database.Error []getErrors

error code and description. For more

245

Reference Update Operation

DescriptionTypeName

information, see Database Error Object
Methods on page 321.

The ID of the sObject you were trying
to insert or update. If this field contains

IDgetId

a value, the object was successfully
inserted or updated. If this field is empty,
the operation was not successful for that
object.

A Boolean that is set to true if the DML
operation was successful for this object,
false otherwise.

BooleanisSuccess

DML Statement Example
The following example updates the Description__c field on a single invoice statement:

Invoice_Statement__c inv = new Invoice_Statement__c(
Description__c='Invoice 1');

insert inv;

Invoice_Statement__c myInvoice = [SELECT Id, Description__c
FROM Invoice_Statement__c
WHERE Id = :inv.Id];

myInvoice.Description__c = 'New description';

try {
update myInvoice;

} catch (DmlException e) {
// Process exception here

}

Note: For more information on processing DmlExceptions, see Bulk DML Exception Handling on page 252.

Database Method Example
The following example updates the Description__c field on a single invoice statement:

Invoice_Statement__c inv = new Invoice_Statement__c(
Description__c='Invoice 1');

insert inv;

Invoice_Statement__c myInvoice = [SELECT Id, Description__c
FROM Invoice_Statement__c
WHERE Id = :inv.Id];

myInvoice.Description__c = 'New description';

Database.SaveResult SR = database.update(myInvoice);
for(Database.Error err: SR.getErrors())
{

// process any errors here
}

246

Reference Update Operation

Upsert Operation

The upsert DML operation creates new sObject records and updates existing sObject records within a single statement,
using an optional custom field to determine the presence of existing objects.

DML Statement Syntax
upsert sObject opt_external_id

upsert sObject[] opt_external_id

opt_external_id is an optional variable that specifies the custom field that should be used to match records that already
exist in your organization's data. This custom field must be created with the External Id attribute selected. Additionally,
if the field does not have the Unique attribute selected, the context user must have the “View All” object-level permission for
the target object or the “View All Data” permission so that upsert does not accidentally insert a duplicate record.

If opt_external_id is not specified, the sObject record's ID field is used by default.

Note: Custom field matching is case-insensitive only if the custom field has the Unique and Treat "ABC" and "abc"
as duplicate values (case insensitive) attributes selected as part of the field definition. If this is the case, “ABC123”
is matched with “abc123.” For more information, see “Creating Custom Fields” in the online help.

Database Method Syntax
• UpsertResult Database.Upsert(sObject recordToUpsert, Schema.SObjectField External_ID_Field, Boolean

opt_allOrNone)
• UpsertResult[] Database.Upsert(sObject[] recordsToUpsert, Schema.SObjectField External_ID_Field, Boolean

opt_allOrNone)

The optional External_ID_Field parameter is an optional variable that specifies the custom field that should be used to
match records that already exist in your organization's data. This custom field must be created with the External Id attribute
selected. Additionally, if the field does not have the Unique attribute selected, the context user must have the “View All”
object-level permission for the target object or the “View All Data” permission so that upsert does not accidentally insert a
duplicate record.

The External_ID_Field is of type Schema.SObjectField, that is, a field token. Find the token for the field by using the
fields special method. For example, Schema.SObjectField f = Invoice_Statement__c.Fields.MyExternalId.

If External_ID_Field is not specified, the sObject record's ID field is used by default.

Note: Custom field matching is case-insensitive only if the custom field has the Unique and Treat "ABC" and "abc"
as duplicate values (case insensitive) attributes selected as part of the field definition. If this is the case, “ABC123”
is matched with “abc123.” For more information, see “Creating Custom Fields” in the online help.

The optional opt_allOrNone parameter specifies whether the operation allows partial success. If you specify false for this
parameter and a record fails, the remainder of the DML operation can still succeed. This method returns a result object that
can be used to verify which records succeeded, which failed, and why.

How Upsert Chooses to Insert or Update
Upsert uses the sObject record's primary key (or the external ID, if specified) to determine whether it should create a new
object record or update an existing one:

• If the key is not matched, then a new object record is created.
• If the key is matched once, then the existing object record is updated.
• If the key is matched multiple times, then an error is generated and the object record is neither inserted or updated.

247

Reference Upsert Operation

Rules and Guidelines
When upserting sObject records, consider the following rules and guidelines:

• Certain sObjects cannot be inserted or updated. To insert an sObject record, the createable property of the sObject
must be set to true. To update an sObject record, the updateable property of the sObject must be set to true.

• You must supply a non-null value for all required fields on any record that will be inserted.
• The ID of an sObject record cannot be modified, but related record IDs can. This action is interpreted as an update.
• The upsert statement automatically modifies the values of certain fields such as LastModifiedDate,

LastModifiedById, and SystemModstamp. You cannot explicitly specify these values in your Apex.
• Each upsert statement consists of two operations, one for inserting records and one for updating records. Each of these

operations is subject to the runtime limits for insert and update, respectively. For example, if you upsert more than
10,000 records and all of them are being updated, you receive an error. (See Understanding Execution Governors and
Limits on page 203)

• The upsert statement can only set the ID of related sObject records. Fields on related records cannot be modified with
upsert. For example, if updating an existing line item, you can specify the line item's related invoice statement record by
setting the value of the Invoice_Statement__c field. However, you cannot change the invoice statement's description
without updating the invoice statement itself with a separate DML statement.

• You can use foreign keys to upsert sObject records if they have been set as reference fields. For more information, see Field
Types in the Object Reference for Database.com.

UpsertResult Object
An array of Database.UpsertResult objects is returned with the upsert database method. Each element in the UpsertResult
array corresponds to the sObject array passed as the sObject[] parameter in the upsert database method, that is, the first
element in the UpsertResult array matches the first element passed in the sObject array, the second element corresponds with
the second element, and so on. If only one sObject is passed in, the UpsertResults array contains a single element.

An UpsertResult object has the following methods:

DescriptionTypeName

If an error occurred, an array of one or
more database error objects providing the

Database.Error []getErrors

error code and description. For more
information, see Database Error Object
Methods on page 321.

The ID of the sObject you were trying
to update or insert. If this field contains

IDgetId

a value, the object was successfully
updated or inserted. If this field is empty,
the operation was not successful for that
object.

A Boolean value that is set to true if the
record was created, false if the record was
updated.

BooleanisCreated

A Boolean value that is set to true if the
DML operation was successful for this
object, false otherwise.

BooleanisSuccess

248

Reference Upsert Operation

http://www.salesforce.com/us/developer/docs/dbcom_objects/index_CSH.htm#field_types.htm
http://www.salesforce.com/us/developer/docs/dbcom_objects/index_CSH.htm#field_types.htm

DML Statement Examples
The following example updates the price for all existing merchandise items whose price is equal to 10, and also inserts a new
merchandise item in a single upsert statement:

Merchandise__c[] mList =
[SELECT Id, Price__c
FROM Merchandise__c
WHERE Price__c = 10];

for (Merchandise__c a : mList) {
a.Price__c = 9;

}

Merchandise__c m = new Merchandise__c(
Name='Pencil',
Description__c='High quality pencils',
Price__c=1.25,
Total_Inventory__c=100);

mList.add(m);

try {
upsert mList;

} catch (DmlException e) {
// Process exception here

}

Note: For more information on processing DmlExceptions, see Bulk DML Exception Handling on page 252.

Use of upsert with an external ID can reduce the number of DML statements in your code, and help you to avoid hitting
governor limits (see Understanding Execution Governors and Limits on page 203). This next example uses upsert and an
external ID field MyExtId__c on the Merchandise custom object. It creates two merchandise items with different external
ID values, and then upserts them. If any merchandise record exists in the database with the same value for the external ID
field, upsert updates it. Otherwise, upsert creates a new merchandise record.

Note: Before running this sample, create a custom text field on the Merchandise object named MyExtId__c and
mark it as an external ID. For information on custom fields, see the Database.com online help.

public void upsertExample() {
List<Merchandise__c> mList = new List<Merchandise__c>();

Merchandise__c m1 = new Merchandise__c(
Name='Erasers',
Description__c='White erasers',
Price__c=1.75,
Total_Inventory__c=99,
MyExtId__c='11111111');
mList.add(m1);

Merchandise__c m2 = new Merchandise__c(
Name='Scissors',
Description__c='Sharp scissors',
Price__c=3,
Total_Inventory__c=200,
MyExtId__c='22222222');
mList.add(m2);

try {
upsert mList MyExtId__c;

} catch (DmlException e) {
System.debug(e.getMessage());

249

Reference Upsert Operation

}
}

Database Method Example
The following is an example that uses the Database upsert method to upsert two merchandise records. This example allows
for partial processing of records. The second merchandise sObject is missing the required Description field, which should
cause a failure when upserted. The example upserts the list of merchandise items, which results in the creation or update of
the first merchandise, and a failure for the second merchandise. It checks the results and writes the ID of the first merchandise
record to the console and the error message for the second merchandise. Before running this sample, create a custom text field
on the Merchandise object named MyExtId__c and mark it as an external ID. For information on custom fields, see the
Database.com online help.

public class DatabaseMethodExample {
public void upsertDatabaseMethodExample() {

List<Merchandise__c> mList = new List<Merchandise__c>();

Merchandise__c m1 = new Merchandise__c(
Name='Erasers',
Description__c='White erasers',
Price__c=1.75,
Total_Inventory__c=99,
MyExtId__c='10001');
mList.add(m1);

// This sObject is missing the required Name field.
// It should cause a failure.
Merchandise__c m2 = new Merchandise__c(
Name='Scissors',
//Description__c='Sharp scissors',
Price__c=3,
Total_Inventory__c=200,
MyExtId__c='10002');
mList.add(m2);

Database.UpsertResult[] results =
Database.upsert(mList, Schema.Merchandise__c.MyExtId__c, false);

for (Database.UpsertResult res : results) {
if (res.isSuccess()) {

if (res.isCreated()) {
System.debug('Created record ID ' + res.getId() + '.');

} else {
System.debug('Updated record ID ' + res.getId() + '.');

}
}
else {

if (res.getErrors().size() > 0) {
System.debug(res.getErrors()[0].getMessage());

}
}

}
}

}

sObjects That Do Not Support DML Operations

DML operations are not supported with the following sObjects in Apex:

• CurrencyType

• DatedConversionRate

250

Reference sObjects That Do Not Support DML Operations

• Profile

sObjects That Cannot Be Used Together in DML Operations

Some sObjects require that you perform DML operations on only one type per transaction. For example, you cannot insert
an invoice statement, then insert a user or a group member in a single transaction. The following sObjects cannot be used
together in a transaction:

• FieldPermissions

• Group

You can only insert and update a group in a transaction with other sObjects. Other DML operations are not allowed.

• GroupMember

You can only insert and update a group member in a transaction with other sObjects in Apex code that is saved using
Salesforce.com API version 14.0 and earlier.

• ObjectPermissions

• PermissionSet

• PermissionSetAssignment

• QueueSObject

• SetupEntityAccess

• User

You can insert a user in a transaction with other sObjects in Apex code that is saved using Salesforce.com API version
14.0 and earlier.

You can insert a user in a transaction with other sObjects in Apex code that is saved using Salesforce.com API version
15.0 and later if UserRoleId is specified as null.

You can update a user in a transaction with other sObjects in Apex code that is saved using Salesforce.com API version
14.0 and earlier

• UserRole

• Custom settings in Apex code that is saved using Salesforce.com API version 17.0 and earlier.

For these sObjects, there are no restrictions on delete DML operations.

You can perform DML operations on more than one type of sObject in a single class using the following process:

1. Create a method that performs a DML operation on one type of sObject.
2. Create a second method that uses the future annotation to manipulate a second sObject type.

Mixed DML Operations Are Allowed in Test Methods in System.RunAs() Blocks
Test methods allow for performing mixed DML operations between the sObjects listed earlier and other sObjects if the code
that performs the DML operations is enclosed within System.runAs method blocks. This enables you, for example, to
create a user with a role and other sObjects in the same test.

The following example shows how to enclose mixed DML operations within System.runAs blocks to avoid the mixed DML
error. The first block runs in the current user’s context. It creates a test user and a test invoice statement. The second block

251

Reference sObjects That Cannot Be Used Together in DML Operations

runs in the test user’s context and updates the account. Replace the user role value in the query with an existing user role in
your organization before running this example.

@isTest
private class MixedDML {

static testMethod void MixedDMLExample() {
User u;
Invoice_Statement__c inv;
User thisUser = [SELECT Id FROM User WHERE Id = :UserInfo.getUserId()];
// Insert invoice statement as current user
System.runAs (thisUser) {

Profile p = [SELECT Id FROM Profile WHERE Name='Standard User'];
UserRole r = [SELECT Id FROM UserRole WHERE Name='SalesRep'];
u = new User(alias = 'jsmtih', email='jsmith@acme.com',

emailencodingkey='UTF-8', lastname='Smith',
languagelocalekey='en_US',
localesidkey='en_US', profileid = p.Id, userroleid = r.Id,
timezonesidkey='America/Los_Angeles',
username='jsmith@acme.com');

insert u;
inv = new Invoice_Statement__c();
insert inv;

}
// Update invoice statement as the new user
System.runAs(u) {

inv.Description__c = 'Invoice 1';
update inv;

}
}

}

Bulk DML Exception Handling

Exceptions that arise from a bulk DML call (including any recursive DML operations in triggers that are fired as a direct
result of the call) are handled differently depending on where the original call came from:

• When errors occur because of a bulk DML call that originates directly from the Apex DML statements, or if the
all_or_none parameter of a database DML method was specified as true, the runtime engine follows the “all or nothing”
rule: during a single operation, all records must be updated successfully or the entire operation rolls back to the point
immediately preceding the DML statement.

• When errors occur because of a bulk DML call that originates from the SOAP API, the runtime engine attempts at least
a partial save:

1. During the first attempt, the runtime engine processes all records. Any record that generates an error due to issues such
as validation rules or unique index violations is set aside.

2. If there were errors during the first attempt, the runtime engine makes a second attempt which includes only those
records that did not generate errors. All records that didn't generate an error during the first attempt are processed,
and if any record generates an error (perhaps because of race conditions) it is also set aside.

3. If there were additional errors during the second attempt, the runtime engine makes a third and final attempt which
includes only those records that did not generate errors during the first and second attempts. If any record generates
an error, the entire operation fails with the error message, “Too many batch retries in the presence of Apex triggers
and partial failures.”

Note: During the second and third attempts, governor limits are reset to their original state before the first attempt.
See Understanding Execution Governors and Limits on page 203.

252

Reference Bulk DML Exception Handling

Apex Standard Classes and Methods
Apex provides standard classes that contain both static and instance methods for expressions of primitive data types, as well
as more complex objects.

Standard static methods are similar to Java and are always of the form:

Class.method(args)

Standard static methods for primitive data types do not have an implicit parameter, and are invoked with no object context.
For example, the following expression rounds the value of 1.75 to the nearest Integer without using any other values.

Math.roundToLong(1.75);

All instance methods occur on expressions of a particular data type, such as a list, set, or string. For example:

String s = 'Hello, world';

Integer i = s.length();

Note: If a method is called with an object expression that evaluates to null, the Apex runtime engine throws a null
pointer exception.

The Apex standard classes are grouped into the following categories:

• Primitives

• Collections

• Enums

• sObjects

• System

• Exceptions

Apex Primitive Methods

Many primitive data types in Apex have methods that can be used to do additional manipulation of the data. The primitives
that have methods are:

• Blob

• Boolean

• Date

• Datetime

• Decimal

• Double

• Long

• String

• Time

253

Reference Apex Standard Classes and Methods

Blob Methods

The following is the system static method for Blob.

DescriptionReturn TypeArgumentsName

Creates a binary object out of the given string, encoding
it as a PDF file.

BlobString StoPdf

Casts the specified String S to a Blob. For example:

String myString = 'StringToBlob';
Blob myBlob = Blob.valueof(myString);

BlobString SvalueOf

The following are the instance methods for Blob.

DescriptionReturn TypeArgumentsName

Returns the number of characters in the blob. For
example:

String myString = 'StringToBlob';
Blob myBlob = Blob.valueof(myString);
Integer size = myBlob.size();

Integersize

Casts the blob into a String.StringtoString

For more information on Blobs, see Primitive Data Types on page 30.

Boolean Methods

The following are the static methods for Boolean.

DescriptionReturn TypeArgumentsName

Casts x, a history tracking table field of type anyType,
to a Boolean. For more information on the anyType data

BooleananyType xvalueOf

type, see Field Types in the Object Reference for
Database.com.

For more information on Boolean, see Primitive Data Types on page 30.

Date Methods

The following are the system static methods for Date.

254

Reference Apex Primitive Methods

http://www.salesforce.com/us/developer/docs/dbcom_objects/index_CSH.htm#field_types.htm

DescriptionReturn TypeArgumentsName

Returns the number of days in the month for the
specified year and month (1=Jan) The following

IntegerInteger year

Integer month

daysInMonth

example finds the number of days in the month of
February in the year 1960:

Integer numberDays =
date.daysInMonth(1960, 2);

Returns true if the specified year is a leap yearBooleanInteger yearisLeapYear

Constructs a Date from Integer representations of the
year, month (1=Jan), and day. The following example
creates the date February 17th, 1960:

Date myDate =
date.newinstance(1960, 2, 17);

DateInteger year

Integer month

Integer date

newInstance

Constructs a Date from a String. The format of the
String depends on the local date format. The following
example works in some locales:

date mydate = date.parse('12/27/2009');

DateString Dateparse

Returns the current date in the current user's time zoneDatetoday

Returns a Date that contains the value of the specified
String. The String should use the standard date format

DateString svalueOf

“yyyy-MM-dd HH:mm:ss” in the local time zone. For
example:

string year = '2008';
string month = '10';
string day = '5';
string hour = '12';
string minute = '20';
string second = '20';
string stringDate = year + '-' + month
+ '-' + day + ' ' + hour + ':' +
minute + ':' + second;

Date myDate = date.valueOf(stringDate);

Casts x, a history tracking table field of type anyType,
to a Date. For more information on the anyType data

DateanyType xvalueOf

type, see Field Types in the Object Reference for
Database.com.

The following are the instance methods for Date.

255

Reference Apex Primitive Methods

http://www.salesforce.com/us/developer/docs/dbcom_objects/index_CSH.htm#field_types.htm

DescriptionReturn TypeArgumentsName

Adds the specified number of addlDays to a Date. For
example:

date myDate =
date.newInstance(1960, 2, 17);

date newDate = mydate.addDays(2);

DateInteger addlDaysaddDays

Adds the specified number of addlMonths to a DateDateInteger addlMonthsaddMonths

Adds the specified number of addlYears to a DateDateInteger addlYearsaddYears

Returns the day-of-month component of a Date. For
example, February 5, 1999 would be day 5.

Integerday

Returns the day-of-year component of a Date. For
example, February 5, 1999 would be day 36.

IntegerdayOfYear

Returns the number of days between the Date that called
the method and the compDate. If the Date that calls

IntegerDate compDatedaysBetween

the method occurs after the compDate, the return value
is negative. For example:

date startDate =
date.newInstance(2008, 1, 1);

date dueDate =
date.newInstance(2008, 1, 30);

integer numberDaysDue =
startDate.daysBetween(dueDate);

Returns the Date as a string using the locale of the
context user

Stringformat

Returns true if the Date that called the method is the
same as the compDate. For example:

date myDate = date.today();
date dueDate =

BooleanDate compDateisSameDay

date.newInstance(2008, 1, 30);
boolean dueNow =
myDate.isSameDay(dueDate);

Returns the month component of a Date (1=Jan)Integermonth

Returns the number of months between the Date that
called the method and the compDate, ignoring the

IntegerDate compDatemonthsBetween

difference in dates. For example, March 1 and March
30 of the same year have 0 months between them.

Returns the first of the month for the Date that called
the method. For example, July 14, 1999 returns July 1,
1999.

DatetoStartOfMonth

256

Reference Apex Primitive Methods

DescriptionReturn TypeArgumentsName

Returns the start of the week for the Date that called
the method, depending on the context user's locale. For

DatetoStartOfWeek

example, the start of a week is Sunday in the United
States locale, and Monday in European locales. For
example:

date myDate = date.today();
date weekStart = myDate.toStartofWeek();

Returns the year component of a DateIntegeryear

For more information on Dates, see Primitive Data Types on page 30.

Datetime Methods

The following are the system static methods for Datetime.

DescriptionReturn TypeArgumentsName

Constructs a DateTime and initializes it to represent
the specified number of milliseconds since January 1,
1970, 00:00:00 GMT

DatetimeLong lnewInstance

Constructs a DateTime from the specified date and
time in the local time zone.

DatetimeDate Date

Time Time

newInstance

Constructs a Datetime from Integer representations of
the year, month (1=Jan), and day at midnight in the
local time zone. For example:

datetime myDate =
datetime.newInstance(2008, 12, 1);

DatetimeInteger year

Integer month

Integer day

newInstance

Constructs a Datetime from Integer representations of
the year, month (1=Jan), day, hour, minute, and
second in the local time zone. For example:

Datetime myDate =
datetime.newInstance(2008, 12, 1, 12,
30, 2);

DatetimeInteger year

Integer month

Integer day

Integer hour

Integer minute

Integer second

newInstance

Constructs a DateTime from the specified date and
time in the GMT time zone.

DatetimeDate date

Time time

newInstanceGmt

257

Reference Apex Primitive Methods

DescriptionReturn TypeArgumentsName

Constructs a Datetime from Integer representations of
the year, month (1=Jan), and day at midnight in the
GMT time zone

DatetimeInteger year

Integer month

Integer date

newInstanceGmt

Constructs a Datetime from Integer representations of
the year, month (1=Jan), day, hour, minute, and
second in the GMT time zone

DatetimeInteger year

Integer month

Integer date

newInstanceGmt

Integer hour

Integer minute

Integer second

Returns the current Datetime based on a GMT calendar.
For example:

datetime myDateTime = datetime.now();

Datetimenow

The format of the returned datetime is: 'MM/DD/YYYY
HH:MM PERIOD'

Constructs a Datetime from the String datetime in
the local time zone and in the format of the user locale.

This example uses parse to create a Datetime from a
date passed in as a string and that is formatted for the

DatetimeString datetimeparse

English (United States) locale. You may need to change
the format of the date string if you have a different locale.

Datetime dt = DateTime.parse(
'10/14/2011 11:46 AM');

String myDtString = dt.format();
system.assertEquals(

myDtString,
'10/14/2011 11:46 AM');

Returns a Datetime that contains the value of the
specified String. The String should use the standard date

DatetimeString svalueOf

format “yyyy-MM-dd HH:mm:ss” in the local time
zone. For example:

string year = '2008';
string month = '10';
string day = '5';
string hour = '12';
string minute = '20';
string second = '20';
string stringDate = year + '-' + month
+ '-' + day + ' ' + hour + ':' +
minute + ':' + second;

258

Reference Apex Primitive Methods

DescriptionReturn TypeArgumentsName

Datetime myDate =
datetime.valueOf(stringDate);

Casts x, a history tracking table field of type anyType,
to a Datetime. For more information on the anyType

DatetimeanyType xvalueOf

data type, see Field Types in the Object Reference for
Database.com.

Returns a Datetime that contains the value of the
specified String. The String should use the standard date

DatetimeString svalueOfGmt

format “yyyy-MM-dd HH:mm:ss” in the GMT time
zone

The following are the instance methods for Datetime.

DescriptionReturn
Type

ArgumentsName

Adds the specified number of addlDays to a Datetime. For
example:

datetime myDate =
datetime.newInstance

DatetimeInteger addlDaysaddDays

(1960, 2, 17);
datetime newDate = mydate.addDays(2);

Adds the specified number of addlHours to a DatetimeDatetimeInteger addlHoursaddHours

Adds the specified number of addlMinutes to a DatetimeDatetimeInteger addlMinutesaddMinutes

Adds the specified number of addlMonths to a DatetimeDatetimeInteger addlMonthsaddMonths

Adds the specified number of addlSeconds to a DatetimeDatetimeInteger addlSecondsaddSeconds

Adds the specified number of addlYears to a DatetimeDatetimeInteger addlYearsaddYears

Returns the Date component of a Datetime in the local time
zone of the context user.

Datedate

Return the Date component of a Datetime in the GMT time
zone

DatedateGMT

Returns the day-of-month component of a Datetime in the
local time zone of the context user. For example, February 5,
1999 08:30:12 would be day 5.

Integerday

Returns the day-of-month component of a Datetime in the
GMT time zone. For example, February 5, 1999 08:30:12
would be day 5.

IntegerdayGmt

259

Reference Apex Primitive Methods

http://www.salesforce.com/us/developer/docs/dbcom_objects/index_CSH.htm#field_types.htm

DescriptionReturn
Type

ArgumentsName

Returns the day-of-year component of a Datetime in the local
time zone of the context user. For example, February 5, 2008
08:30:12 would be day 36.

Datetime myDate =
datetime.newInstance

IntegerdayOfYear

(2008, 2, 5, 8, 30, 12);
system.assertEquals

(myDate.dayOfYear(), 36);

Returns the day-of-year component of a Datetime in the
GMT time zone. For example, February 5, 1999 08:30:12
would be day 36.

IntegerdayOfYearGmt

Returns a Datetime as a formatted string using the locale and
the local time zone of the context user. If the time zone cannot
be determined, GMT is used.

If the date to format is in the GMT time zone, this method
converts it to the local time zone and returns the converted
date as a string.

Stringformat

Returns a Datetime as a string using the supplied Java simple
date format and the local time zone of the context user. If the
time zone cannot be determined, GMT is used. For example:

Datetime myDT = Datetime.now();
String myDate = myDT.format('h:mm a');

StringString dateFormatformat

If the date to format is in the GMT time zone, this method
converts it to the local time zone and returns the converted
date as a string in the specified format.

For more information on the Java simple date format, see
Java SimpleDateFormat.

Returns a Datetime as a string using the supplied Java simple
date format and time zone. If the supplied time zone is not in
the correct format, GMT is used.

This example uses format to convert the date and time to
the PST time zone and to format it using the specified format
string.

Datetime GMTDate =
Datetime.newInstanceGmt(2011,6,1,12,1,5);

StringString dateFormat

String timezone

format

String strConvertedDate =
GMTDate.format('dd/MM/yyyy hh:mm:ss a',
'PST');

260

Reference Apex Primitive Methods

http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html

DescriptionReturn
Type

ArgumentsName

For more information on the Java simple date format, see
Java SimpleDateFormat.

Returns a Datetime as a string using the supplied Java simple
date format and the GMT time zone.

This method converts the current date to the GMT time zone
and returns the converted date as a string.

StringStringdateFormatformatGmt

For more information on the Java simple date format, see
Java SimpleDateFormat.

Returns a Datetime using the local time zone of the context
user, including seconds and time zone.

If the date to format is in the GMT time zone, this method
converts it to the local time zone and returns the converted

StringformatLong

date as a string in the long date format, which includes seconds
and the time zone.

Returns the number of milliseconds since January 1, 1970,
00:00:00 GMT represented by this DateTime object

LonggetTime

Returns the hour component of a Datetime in the local time
zone of the context user

Integerhour

Returns the hour component of a Datetime in the GMT time
zone

IntegerhourGmt

Returns true if the Datetime that called the method is the
same as the compDt in the local time zone of the context user.
For example:

datetime myDate = datetime.now();
datetime dueDate =

BooleanDatetime compDtisSameDay

datetime.newInstance(2008, 1, 30);
boolean dueNow = myDate.isSameDay(dueDate);

Return the millisecond component of a Datetime in the local
time zone of the context user.

Integermillisecond

Return the millisecond component of a Datetime in the GMT
time zone.

IntegermillisecondGmt

Returns the minute component of a Datetime in the local time
zone of the context user

Integerminute

Returns the minute component of a Datetime in the GMT
time zone

IntegerminuteGmt

Returns the month component of a Datetime in the local time
zone of the context user (1=Jan)

Integermonth

261

Reference Apex Primitive Methods

http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html

DescriptionReturn
Type

ArgumentsName

Returns the month component of a Datetime in the GMT
time zone (1=Jan)

IntegermonthGmt

Returns the second component of a Datetime in the local time
zone of the context user

Integersecond

Returns the second component of a Datetime in the GMT
time zone

IntegersecondGmt

Returns the time component of a Datetime in the local time
zone of the context user

Timetime

Returns the time component of a Datetime in the GMT time
zone

TimetimeGmt

Returns the year component of a Datetime in the local time
zone of the context user

Integeryear

Returns the year component of a Datetime in the GMT time
zone

IntegeryearGmt

For more information about the Datetime, see Primitive Data Types on page 30.

Decimal Methods

The following are the system static methods for Decimal.

DescriptionReturn TypeArgumentsName

Returns a Decimal that contains the value of the
specified Double.

DecimalDouble dvalueOf

Returns a Decimal that contains the value of the
specified Long.

DecimalLong lvalueOf

Returns a Decimal that contains the value of the
specified String. As in Java, the string is interpreted as
representing a signed Decimal. For example:

String temp = '12.4567';

DecimalString svalueOf

Decimal myDecimal =
decimal.valueOf(temp);

The following are the instance methods for Decimal.

DescriptionReturn TypeArgumentsName

Returns the absolute value of the Decimal.Decimalabs

262

Reference Apex Primitive Methods

DescriptionReturn TypeArgumentsName

Divides this Decimal by divisor, and sets the scale,
that is, the number of decimal places, of the result using

DecimalDecimal divisor,
Integer scale

divide

scale. In the following example, D has the value of
0.190:

Decimal D = 19;

D.Divide(100, 3);

Divides this Decimal by divisor, sets the scale, that
is, the number of decimal places, of the result using

DecimalDecimal divisor,
Integer scale,

divide

scale, and if necessary, rounds the value usingObject
roundingMode roundingMode. For more information about the valid

values for roundingMode, see Rounding Mode. For
example:

Decimal myDecimal = 12.4567;

Decimal divDec = myDecimal.divide

(7, 2, System.RoundingMode.UP);

system.assertEquals(divDec, 1.78);

Returns the Double value of this Decimal.DoubledoubleValue

Returns the String value of this Decimal using the locale
of the context user.

Scientific notation will be used if an exponent is needed.

Stringformat

Returns the Integer value of this Decimal.IntegerintValue

Returns the Long value of this Decimal.LonglongValue

Returns the value of this decimal raised to the power of
exponent. The value of exponent must be between 0
and 32,767. For example:

Decimal myDecimal = 4.12;

DecimalInteger exponentpow

Decimal powDec = myDecimal.pow(2);

system.assertEquals(powDec, 16.9744);

If you use MyDecimal.pow(0), 1 is returned.

The Math method pow does accept negative values.

Returns the total number of digits for the Decimal. For
example, if the Decimal value was 123.45, precision

Integerprecision

263

Reference Apex Primitive Methods

DescriptionReturn TypeArgumentsName

returns 5. If the Decimal value is 123.123, precision
returns 6. For example:

Decimal D1 = 123.45;

Integer precision1 = D1.precision();

system.assertEquals(precision1, 5);

Decimal D2 = 123.123;

Integer precision2 = D2.precision();

system.assertEquals(precision2, 6);

Returns the rounded approximation of this Decimal.
The number is rounded to zero decimal places using

Longround

half-even rounding mode, that is, it rounds towards the
“nearest neighbor” unless both neighbors are equidistant,
in which case, this mode rounds towards the even
neighbor. Note that this rounding mode statistically
minimizes cumulative error when applied repeatedly
over a sequence of calculations. For more information
about half-even rounding mode, see Rounding Mode.
For example:

Decimal D1 = 5.5;

Long L1 = D1.round();

system.assertEquals(L1, 6);

Decimal D2= 5.2;

Long L2= D2.round();

system.assertEquals(L2, 5);

Decimal D3= -5.7;

Long L3= D3.round();

system.assertEquals(L3, -6);

Returns the rounded approximation of this Decimal.
The number is rounded to zero decimal places using the

LongSystem.RoundingMode
roundingMode

round

rounding mode specified by roundingMode. For more
information about the valid values for roundingMode,
see Rounding Mode.

264

Reference Apex Primitive Methods

DescriptionReturn TypeArgumentsName

Returns the scale of the Decimal, that is, the number of
decimal places.

Integerscale

Sets the scale of the Decimal to the given number of
decimal places, using half-even rounding, if necessary.

DecimalInteger scalesetScale

Half-even rounding mode rounds towards the “nearest
neighbor” unless both neighbors are equidistant, in which
case, this mode rounds towards the even neighbor. For
more information about half-even rounding mode, see
Rounding Mode. The value of scale must be between
–33 and 33.

If you do not explicitly set the scale for a Decimal, the
scale is determined by the item from which the Decimal
is created:

• If the Decimal is created as part of a query, the scale
is based on the scale of the field returned from the
query.

• If the Decimal is created from a String, the scale is
the number of characters after the decimal point of
the String.

• If the Decimal is created from a non-decimal
number, the scale is determined by converting the
number to a String and then using the number of
characters after the decimal point.

Sets the scale of the Decimal to the given number of
decimal places, using the rounding mode specified by

DecimalInteger scale,
System.RoundingMode
roundingMode

setScale

roundingMode , if necessary. For more information
about the valid values for roundingMode, see Rounding
Mode. The value of scale must be between -32,768
and 32,767.

If you do not explicitly set the scale for a Decimal, the
scale is determined by the item from which the Decimal
is created:

• If the Decimal is created as part of a query, the scale
is based on the scale of the field returned from the
query.

• If the Decimal is created from a String, the scale is
the number of characters after the decimal point of
the String.

• If the Decimal is created from a non-decimal
number, the scale is determined by converting the
number to a String and then using the number of
characters after the decimal point.

265

Reference Apex Primitive Methods

DescriptionReturn TypeArgumentsName

Returns the Decimal with any trailing zeros removed.DecimalstripTrailingZeros

Returns the String value of this Decimal, without using
scientific notation.

StringtoPlainString

For more information on Decimal, see Primitive Data Types on page 30.

Rounding Mode

Rounding mode specifies the rounding behavior for numerical operations capable of discarding precision. Each rounding mode
indicates how the least significant returned digit of a rounded result is to be calculated. The following are the valid values for
roundingMode.

DescriptionName

Rounds towards positive infinity. That is, if the result is positive, this mode behaves the
same as the UP rounding mode; if the result is negative, it behaves the same as the DOWN

CEILING

rounding mode. Note that this rounding mode never decreases the calculated value. For
example:
• Input number 5.5: CEILING round mode result: 6
• Input number 1.1: CEILING round mode result: 2
• Input number -1.1: CEILING round mode result: -1
• Input number -2.7: CEILING round mode result: -2

Rounds towards zero. This rounding mode always discards any fractions (decimal points)
prior to executing. Note that this rounding mode never increases the magnitude of the
calculated value. For example:

DOWN

• Input number 5.5: DOWN round mode result: 5
• Input number 1.1: DOWN round mode result: 1
• Input number -1.1: DOWN round mode result: -1
• Input number -2.7: DOWN round mode result: -2

Rounds towards negative infinity. That is, if the result is positive, this mode behaves the
same as theDOWN rounding mode; if negative, this mode behaves the same as the UP

FLOOR

rounding mode. Note that this rounding mode never increases the calculated value. For
example:
• Input number 5.5: FLOOR round mode result: 5
• Input number 1.1: FLOOR round mode result: 1
• Input number -1.1: FLOOR round mode result: -2
• Input number -2.7: FLOOR round mode result: -3

Rounds towards the “nearest neighbor” unless both neighbors are equidistant, in which
case this mode rounds down. This rounding mode behaves the same as the UP rounding

HALF_DOWN

mode if the discarded fraction (decimal point) is > 0.5; otherwise, it behaves the same as
DOWN rounding mode. For example:
• Input number 5.5: HALF_DOWN round mode result: 5
• Input number 1.1: HALF_DOWN round mode result: 1
• Input number -1.1: HALF_DOWN round mode result: -1

266

Reference Apex Primitive Methods

DescriptionName

• Input number -2.7: HALF_DOWN round mode result: -2

Rounds towards the “nearest neighbor” unless both neighbors are equidistant, in which
case, this mode rounds towards the even neighbor. This rounding mode behaves the same

HALF_EVEN

as the HALF_UP rounding mode if the digit to the left of the discarded fraction (decimal
point) is odd. It behaves the same as the HALF_DOWN rounding method if it is even. For
example:
• Input number 5.5: HALF_EVEN round mode result: 6
• Input number 1.1: HALF_EVEN round mode result: 1
• Input number -1.1: HALF_EVEN round mode result: -1
• Input number -2.7: HALF_EVEN round mode result: -3

Note that this rounding mode statistically minimizes cumulative error when applied
repeatedly over a sequence of calculations.

Rounds towards the “nearest neighbor” unless both neighbors are equidistant, in which
case, this mode rounds up. This rounding method behaves the same as the UP rounding

HALF_UP

method if the discarded fraction (decimal point) is >= 0.5; otherwise, this rounding method
behaves the same as the DOWN rounding method. For example:
• Input number 5.5: HALF_UP round mode result: 6
• Input number 1.1: HALF_UP round mode result: 1
• Input number -1.1: HALF_UP round mode result: -1
• Input number -2.7: HALF_UP round mode result: -3

Asserts that the requested operation has an exact result, which means that no rounding
is necessary. If this rounding mode is specified on an operation that yields an inexact
result, an Exception is thrown. For example:

UNNECESSARY

• Input number 5.5: UNNECESSARY round mode result: Exception
• Input number 1.0: UNNECESSARY round mode result: 1

Rounds away from zero. This rounding mode always truncates any fractions (decimal
points) prior to executing. Note that this rounding mode never decreases the magnitude
of the calculated value. For example:

UP

• Input number 5.5: UP round mode result: 6
• Input number 1.1: UP round mode result: 2
• Input number -1.1: UP round mode result: -2
• Input number -2.7: UP round mode result: -3

Double Methods

The following are the system static methods for Double.

DescriptionReturn TypeArgumentsName

Casts x, a history tracking table field of type anyType,
to a Double. For more information on the anyType data

DoubleanyType xvalueOf

267

Reference Apex Primitive Methods

DescriptionReturn TypeArgumentsName

type, see Field Types in the Object Reference for
Database.com.

Returns a Double that contains the value of the specified
String. As in Java, the String is interpreted as
representing a signed decimal. For example:

Double DD1 = double.valueOf('3.14159');

DoubleString svalueOf

The following are the instance methods for Double.

DescriptionReturn TypeArgumentsName

Returns the String value for this Double using the locale
of the context user

Stringformat

Returns the Integer value of this Double by casting it to
an Integer. For example:

Double DD1 = double.valueOf('3.14159');
Integer value = DD1.intValue();
system.assertEquals(value, 3);

IntegerintValue

Returns the Long value of this DoubleLonglongValue

Returns the rounded value of this Double. The number
is rounded to zero decimal places using half-even

Longround

rounding mode, that is, it rounds towards the “nearest
neighbor” unless both neighbors are equidistant, in which
case, this mode rounds towards the even neighbor. Note
that this rounding mode statistically minimizes
cumulative error when applied repeatedly over a sequence
of calculations. For more information about half-even
rounding mode, see Rounding Mode on page 266. For
example:

Double D1 = 5.5;
Long L1 = D1.round();
system.assertEquals(L1, 6);

Double D2= 5.2;
Long L2= D2.round();
system.assertEquals(L2, 5);

Double D3= -5.7;
Long L3= D3.round();
system.assertEquals(L3, -6);

For more information on Double, see Primitive Data Types on page 30.

268

Reference Apex Primitive Methods

http://www.salesforce.com/us/developer/docs/dbcom_objects/index_CSH.htm#field_types.htm

Integer Methods

The following are the system static methods for Integer.

DescriptionReturn TypeArgumentsName

Casts x, a history tracking table field of type anyType,
to an Integer. For more information on the anyType

IntegeranyType xvalueOf

data type, see Field Types in the Object Reference for
Database.com.

Returns an Integer that contains the value of the
specified String. As in Java, the String is interpreted as
representing a signed decimal integer. For example:

Integer myInt = integer.valueOf('123');

IntegerString svalueOf

The following are the instance methods for Integer.

DescriptionReturn TypeArgumentsName

Returns the integer as a string using the locale of the
context user

Stringformat

For more information on integers, see Primitive Data Types on page 30.

Long Methods

The following are the system static methods for Long.

DescriptionReturn TypeArgumentsName

Returns a Long that contains the value of the specified
String. As in Java, the string is interpreted as
representing a signed decimal Long. For example:

Long L1 = long.valueOf('123456789');

LongString svalueOf

The following are the instant method for Long.

DescriptionReturn TypeArgumentsName

Returns the String format for this Long using the locale
of the context user

Stringformat

Returns the Integer value for this LongIntegerintValue

269

Reference Apex Primitive Methods

http://www.salesforce.com/us/developer/docs/dbcom_objects/index_CSH.htm#field_types.htm

For more information on Long, see Primitive Data Types on page 30.

String Methods

The following are the system static methods for String.

DescriptionReturn TypeArgumentsName

Returns a String with the escape character (\) added
before any single quotation marks in the String s. This

StringString sescapeSingleQuotes

method is useful when creating a dynamic SOQL
statement, to help prevent SOQL injection. For more
information on dynamic SOQL, see Dynamic SOQL.
See also Splitting String Example.

Treat the current string as a pattern that should be used
for substitution in the same manner as apex:outputText.

StringString s

List<String>
arguments

format

Returns a String from the values of the list of integers.StringList<Integer>
charArray

fromCharArray

Returns a String that represents the specified Date in
the standard “yyyy-MM-dd” format. For example:

Date myDate = Date.Today();
String sDate = String.valueOf(myDate);

StringDate dvalueOf

Returns a String that represents the specified Datetime
in the standard “yyyy-MM-dd HH:mm:ss” format for
the local time zone

StringDatetime dtvalueOf

Returns a String that represents the specified Decimal.StringDecimal dvalueOf

Returns a String that represents the specified Double.StringDouble dvalueOf

Returns a String that represents the specified Integer.StringInteger IvalueOf

Returns a String that represents the specified Long.StringLong lvalueOf

Casts x, a history tracking table field of type anyType,
to a String. For example:

Double myDouble = 12.34;
String myString =

StringanyType x*valueOf

String.valueOf(myDouble);
System.assertEquals('12.34', myString);

For more information on the anyType data type, see
Field Types in the Object Reference for Database.com.

Returns a String that represents the specified Datetime
in the standard “yyyy-MM-dd HH:mm:ss” format for
the GMT time zone

StringDatetime dtvalueOfGmt

270

Reference Apex Primitive Methods

http://www.salesforce.com/us/developer/docs/dbcom_objects/index_CSH.htm#field_types.htm

The following are the instance methods for String.

DescriptionReturn TypeArgumentsName

Compares two strings lexicographically, based on the
Unicode value of each character in the Strings. The result
is:

IntegerString compStringcompareTo

• A negative Integer if the String that called the
method lexicographically precedes compString

• A positive Integer if the String that called the
method lexicographically follows compString

• Zero if the Strings are equal

If there is no index position at which the Strings differ,
then the shorter String lexicographically precedes the
longer String. For example:

String myString1 = 'abcde';
String myString2 = 'abcd';
Integer result =

myString1.compareTo(myString2);
System.assertEquals(result, 1);

Note that this method returns 0 whenever the equals
method returns true.

Returns true if and only if the String that called the
method contains the specified sequence of characters in
the compString. For example:

String myString1 = 'abcde';
String myString2 = 'abcd';

BooleanString compStringcontains

Boolean result =
myString1.contains(myString2);

System.assertEquals(result, true);

Returns true if the String that called the method ends
with the specified suffix

BooleanString suffixendsWith

Returns true if the compString is not null and
represents the same binary sequence of characters as the

BooleanString compStringequals

String that called the method. This method is true
whenever the compareTo method returns 0. For
example:

String myString1 = 'abcde';
String myString2 = 'abcd';
Boolean result =

myString1.equals(myString2);
System.assertEquals(result, false);

Note that the == operator also performs String
comparison, but is case-insensitive to match Apex

271

Reference Apex Primitive Methods

DescriptionReturn TypeArgumentsName

semantics. (== is case-sensitive for ID comparison for
the same reason.)

Returns true if the compString is not null and
represents the same sequence of characters as the String
that called the method, ignoring case. For example:

String myString1 = 'abcd';
String myString2 = 'ABCD';

BooleanString compStringequalsIgnoreCase

Boolean result =
myString1.equalsIgnoreCase(myString2);
System.assertEquals(result, true);

Returns the index of the first occurrence of the specified
substring. If the substring does not occur, this method
returns -1.

IntegerString subStringindexOf

Returns the index of the first occurrence of the specified
substring from the point of index i. If the substring does
not occur, this method returns -1. For example:

String myString1 = 'abcd';
String myString2 = 'bc';

IntegerString substring

Integer i

indexOf

Integer result =
myString1.indexOf(myString2, 0);

System.assertEquals(result, 1);

Returns the index of the last occurrence of the specified
substring. If the substring does not occur, this method
returns -1.

IntegerString substringlastIndexOf

Returns the number of 16-bit Unicode characters
contained in the String. For example:

String myString = 'abcd';
Integer result = myString.length();
System.assertEquals(result, 4);

Integerlength

Replaces each substring of a string that matches the
literal target sequence target with the specified literal
replacement sequence replacement

StringString target

String replacement

replace

Replaces each substring of a string that matches the
regular expression regExp with the replacement

StringString regExp

String replacement

replaceAll

sequence replacement. See
http://java.sun.com/j2se/1.5.0/docs/
api/java/util/regex/Pattern.html for
information on regular expressions.

272

Reference Apex Primitive Methods

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html

DescriptionReturn TypeArgumentsName

Replaces the first substring of a string that matches the
regular expression regExp with the replacement

StringString regExp

String replacement

replaceFirst

sequence replacement. See
http://java.sun.com/j2se/1.5.0/docs/
api/java/util/regex/Pattern.html for
information on regular expressions.

Returns a list that contains each substring of the String
that is terminated by the regular expression regExp, or

String[]String regExp

Integer limit

split

the end of the String. See
http://java.sun.com/j2se/1.5.0/docs/
api/java/util/regex/Pattern.html for
information on regular expressions.

The substrings are placed in the list in the order in which
they occur in the String. If regExp does not match any
part of the String, the resulting list has just one element
containing the original String.

The optional limit parameter controls the number of
times the pattern is applied and therefore affects the
length of the list:

• If limit is greater than zero, the pattern is applied
at most limit - 1 times, the list's length is no greater
than limit, and the list's last entry contains all input
beyond the last matched delimiter.

• If limit is non-positive then the pattern is applied
as many times as possible and the list can have any
length.

• If limit is zero then the pattern is applied as many
times as possible, the list can have any length, and
trailing empty strings are discarded.

For example, for String s = 'boo:and:foo':

• s.split(':', 2) results in {'boo',
'and:foo'}

• s.split(':', 5) results in {'boo', 'and',
'foo'}

• s.split(':', -2) results in {'boo', 'and',
'foo'}

• s.split('o', 5) results in {'b', '',
':and:f', '', ''}

• s.split('o', -2) results in {'b', '',
':and:f', '', ''}

• s.split('o', 0) results in {'b', '',
':and:f'}

273

Reference Apex Primitive Methods

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html

DescriptionReturn TypeArgumentsName

See also Splitting String Example.

Returns true if the String that called the method begins
with the specified prefix

BooleanString prefixstartsWith

Returns a new String that begins with the character at
the specified startIndex and extends to the end of the
String

StringInteger startIndexsubstring

Returns a new String that begins with the character at
the specified startIndex and extends to the character
at endIndex - 1. For example:

'hamburger'.substring(4, 8);
// Returns "urge"

StringInteger startIndex,

Integer endIndex

substring

'smiles'.substring(1, 5);
// Returns "mile"

Converts all of the characters in the String to lowercase
using the rules of the default locale

StringtoLowerCase

Converts all of the characters in the String to lowercase
using the rules of the specified locale

StringString localetoLowerCase

Converts all of the characters in the String to uppercase
using the rules of the default locale. For example:

String myString1 = 'abcd';
String myString2 = 'ABCD';

StringtoUpperCase

myString1 =
myString1.toUpperCase();

Boolean result =
myString1.equals(myString2);

System.assertEquals(result, true);

Converts all of the characters in the String to the
uppercase using the rules of the specified locale

StringString localetoUpperCase

Returns a copy of the string that no longer contains any
leading or trailing white space characters.

Leading and trailing ASCII control characters such as
tabs and newline characters are also removed.

Stringtrim

Whitespace and control characters that aren’t at the
beginning or end of the sentence aren’t removed.

For more information on Strings, see Primitive Data Types on page 30.

274

Reference Apex Primitive Methods

Splitting String Example

In the following example, a string is split, using a backslash as a delimiter:

public String removePath(String filename) {
if (filename == null)

return null;
List<String> parts = filename.split('\\\\');
filename = parts[parts.size()-1];
return filename;

}

static testMethod void testRemovePath() {
System.assertEquals('PPDSF100111.csv',

EmailUtilities.getInstance().
removePath('e:\\processed\\PPDSF100111.csv'));

}

Time Methods

The following are the system static methods for Time.

DescriptionReturn TypeArgumentsName

Constructs a Time from Integer representations of the
hour, minutes, seconds, and milliseconds. The
following example creates a time of 18:30:2:20:

Time myTime =
Time.newInstance(18, 30, 2, 20);

TimeInteger hour

Integer minutes

Integer seconds

Integer
milliseconds

newInstance

The following are the instance methods for Time.

DescriptionReturn TypeArgumentsName

Adds the specified number of addlHours to a TimeTimeInteger addlHoursaddHours

Adds the specified number of addlMilliseconds to
a Time

TimeInteger
addlMilliseconds

addMilliseconds

Adds the specified number of addlMinutes to a Time.
For example:

Time myTime =
Time.newInstance(18, 30, 2, 20);

TimeInteger
addlMinutes

addMinutes

Integer myMinutes = myTime.minute();
myMinutes = myMinutes + 5;

System.assertEquals(myMinutes, 35);

Adds the specified number of addlSeconds to a TimeTimeInteger
addlSeconds

addSeconds

275

Reference Apex Primitive Methods

DescriptionReturn TypeArgumentsName

Returns the hour component of a Time. For example:

Time myTime =
Time.newInstance(18, 30, 2, 20);

Integerhour

myTime = myTime.addHours(2);

Integer myHour = myTime.hour();
System.assertEquals(myHour, 20);

Returns the millisecond component of a TimeIntegermillisecond

Returns the minute component of a TimeIntegerminute

Returns the second component of a TimeIntegersecond

For more information on time, see Primitive Data Types on page 30.

Apex Collection Methods

All the collections in Apex have methods associated with them for assigning, retrieving, and manipulating the data. The
collection methods are:

• List

• Map

• Set

Note: There is no limit on the number of items a collection can hold. However, there is a general limit on heap size.

List Methods

The list methods are all instance methods, that is, they operate on a particular instance of a list. For example, the following
removes all elements from myList:

myList.clear();

Even though the clear method does not include any parameters, the list that calls it is its implicit parameter.

The following are the instance parameters for List.

Note: In the table below, List_elem represents a single element of the same type as the list.

276

Reference Apex Collection Methods

DescriptionReturn TypeArgumentsName

Adds an element e to the end of the list. For
example:

List<Integer> myList = new
List<Integer>();

VoidAny type eadd

myList.add(47);
Integer myNumber = myList.get(0);
system.assertEquals(myNumber, 47);

Inserts an element e into the list at index position
i. In the following example, a list with six elements

VoidInteger i

Any type e

add

is created, and integers are added to the first and
second index positions.

List<Integer> myList = new
Integer[6];
myList.add(0, 47);
myList.add(1, 52);
system.assertEquals(myList.get(1),
52);

Adds all of the elements in list l to the list that calls
the method. Note that both lists must be of the
same type.

VoidList laddAll

Add all of the elements in set s to the list that calls
the method. Note that the set and the list must be
of the same type.

VoidSet saddAll

Removes all elements from a list, consequently
setting the list's length to zero

Voidclear

Makes a duplicate copy of a list.

Note that if this is a list of sObject records, the
duplicate list will only be a shallow copy of the list.

List (of same type)clone

That is, the duplicate will have references to each
object, but the sObject records themselves will not
be duplicated. For example:

Invoice_Statement__c a = new
Invoice_Statement__c(
Description__c='Invoice1');

Invoice_Statement__c b = new
Invoice_Statement__c();

Invoice_Statement__c[] q1 = new
Invoice_Statement__c[]{a,b};

Invoice_Statement__c[] q2 =
q1.clone();

q1[0].Description__c =
'New description';

277

Reference Apex Collection Methods

DescriptionReturn TypeArgumentsName

System.assertEquals(
q1[0].Description__c,
'New description');

System.assertEquals(
q2[0].Description__c,
'New description');

To also copy the sObject records, you must use the
deepClone method.

Makes a duplicate copy of a list of sObject records,
including the sObject records themselves. For
example:

Invoice_Statement__c a = new
Invoice_Statement__c(

List (of same object
type)

Boolean opt_preserve_id

Boolean
opt_preserve_readonly_timestamps

Boolean
opt_preserve_autonumber

deepClone

Description__c='Invoice1');

Invoice_Statement__c b =
new Invoice_Statement__c();

Invoice_Statement__c[] q1 = new
Invoice_Statement__c[]{a,b};

Invoice_Statement__c[] q2 =
q1.deepClone();

q1[0].Description__c = 'New
description';

System.assertEquals(
q1[0].Description__c,
'New description');

System.assertEquals(
q2[0].Description__c,
'Invoice1');

Note: deepClone only works with lists
of sObjects, not with lists of primitives.

The optional opt_preserve_id argument
determines whether the IDs of the original objects
are preserved or cleared in the duplicates. If set to
true, the IDs are copied to the cloned objects. The
default is false, that is, the IDs are cleared.

Note: For Apex saved using Salesforce.com
API version 22.0 or earlier, the default value
for the opt_preserve_id argument is
true, that is, the IDs are preserved.

The optional
opt_preserve_readonly_timestamps

argument determines whether the read-only
timestamp and user ID fields are preserved or

278

Reference Apex Collection Methods

DescriptionReturn TypeArgumentsName

cleared in the duplicates. If set to true, the
read-only fields CreatedById, CreatedDate,
LastModifiedById, and LastModifiedDate
are copied to the cloned objects. The default is
false, that is, the values are cleared.

The optional opt_preserve_autonumber
argument determines whether the autonumber fields
of the original objects are preserved or cleared in
the duplicates. If set to true, auto number fields
are copied to the cloned objects. The default is
false, that is, auto number fields are cleared.

This example is based on the previous example and
shows how to clone a list with preserved read-only
timestamp and user ID fields.

insert q1;

List<Invoice_Statement__c> invs =
[SELECT CreatedById,
CreatedDate, LastModifiedById,

LastModifiedDate, Description__c

FROM Invoice_Statement__c
WHERE Id = :a.Id OR Id = :b.Id];

// Clone list while preserving
// timestamp and user ID fields.
Invoice_Statement__c[] q3 =

invs.deepClone(false,true,false);

// Verify timestamp fields are
// preserved for the first
// list element.
System.assertEquals(

q3[0].CreatedById,
invs[0].CreatedById);

System.assertEquals(
q3[0].CreatedDate,
invs[0].CreatedDate);

System.assertEquals(
q3[0].LastModifiedById,
invs[0].LastModifiedById);

System.assertEquals(
q3[0].LastModifiedDate,
invs[0].LastModifiedDate);

To make a shallow copy of a list without duplicating
the sObject records it contains, use the clone
method.

279

Reference Apex Collection Methods

DescriptionReturn TypeArgumentsName

Returns the list element stored at index i. For
example,

List<Integer> myList = new
List<Integer>();

Array_elemInteger iget

myList.add(47);
Integer myNumber = myList.get(0);
system.assertEquals(myNumber, 47);

To reference an element of a one-dimensional list
of primitives or sObjects, you can also follow the
name of the list with the element's index position
in square brackets. For example:

List<String> colors = new String[3];
colors[0] = 'Red';
colors[1] = 'Blue';
colors[2] = 'Green';

Returns the token of the sObject type that makes
up a list of sObjects. Use this with describe

Schema.SObjectTypegetSObjectType

information to determine if a list contains sObjects
of a particular type. For example:

Invoice_Statement__c a =
new Invoice_Statement__c();

insert a;
// Create a generic sObject
// variable s
SObject s = Database.query
('SELECT Id FROM ' +
'Invoice_Statement__c ' +
'LIMIT 1');

// Verify if that sObject
// variable is
// an invoice statement token
System.assertEquals(
s.getSObjectType(),
Invoice_Statement__c.sObjectType);

// Create a list of generic sObjects

List<sObject> q =
new Invoice_Statement__c[]{};

// Verify if the list of sObjects
// contains invoice statement tokens
System.assertEquals(
q.getSObjectType(),
Invoice_Statement__c.sObjectType);

Note that this method can only be used with lists
that are composed of sObjects.

280

Reference Apex Collection Methods

DescriptionReturn TypeArgumentsName

For more information, see Understanding Apex
Describe Information on page 157.

Returns true if the list has zero elementsBooleanisEmpty

Returns an instance of an iterator. From the
iterator, you can use the iterable methods hasNext
and next to iterate through the list. For example:

global class CustomIterable
implements

Iteratoriterator

Iterator<Invoice_Statement__c>{

List<Invoice_Statement__c>
invoices {get; set;}

Integer i {get; set;}

public CustomIterable(){
invoices =
[SELECT Id, Description__c
FROM Invoice_Statement__c
WHERE Description__c = 'false'];

i = 0;
}

global boolean hasNext(){
if(i >= invoices.size()) {

return false;
} else {

return true;
}

}

global Invoice_Statement__c next(){

// 8 is an arbitrary
// constant in this example.
// It represents the
// maximum size of the list.
if(i == 8){ i++; return null;}

i=i+1;
return invoices[i-1];

}
}

Note: You do not have to implement the
iterable interface to use the iterable
methods with a list.

Removes the element that was stored at the ith
index of a list, returning the element that was
removed. For example:

List<String> colors = new String[3];
colors[0] = 'Red';

Array_elemInteger iremove

281

Reference Apex Collection Methods

DescriptionReturn TypeArgumentsName

colors[1] = 'Blue';
colors[2] = 'Green';
String S1 = colors.remove(2);
system.assertEquals(S1, 'Green');

Assigns e to the position at list index i. For
example:

List<Integer> myList = new
Integer[6];

VoidInteger i

Any type e

set

myList.set(0, 47);
myList.set(1, 52);
system.assertEquals(myList.get(1),
52);

To set an element of a one-dimensional list of
primitives or sObjects, you can also follow the name
of the list with the element's index position in
square brackets. For example:

List<String> colors = new String[3];
colors[0] = 'Red';
colors[1] = 'Blue';
colors[2] = 'Green';

Returns the number of elements in the list. For
example:

List<Integer> myList = new
List<Integer>();

Integersize

Integer size = myList.size();
system.assertEquals(size, 0);

List<Integer> myList2 = new
Integer[6];
Integer size2 = myList2.size();
system.assertEquals(size2, 6);

Sorts the items in the list in ascending order.

In the following example, the list has three
elements. When the list is sorted, the first element

Voidsort

is null because it has no value assigned while the
second element has the value of 5:

List<Integer> q1 = new Integer[3];

// Assign values to the first
// two elements
q1[0] = 10;
q1[1] = 5;

q1.sort();
// First element is null, second is

282

Reference Apex Collection Methods

DescriptionReturn TypeArgumentsName

5
system.assertEquals(q1.get(1), 5);

Note: Using this method, you can sort
primitive types and sObjects (standard
objects, custom objects, and SelectOption).
For more information on the sort order
used for sObjects, see List Sorting. You can
also sort your own custom types if they
implement the Comparable interface.

For more information on lists, see Lists on page 37.

Map Methods

The map methods are all instance methods, that is, they operate on a particular instance of a map. The following are the
instance methods for maps.

Note: In the table below:

• Key_type represents the primitive type of a map key.

• Value_type represents the primitive or sObject type of a map
value.

DescriptionReturn TypeArgumentsName

Removes all of the key-value mappings from the mapVoidclear

Makes a duplicate copy of the map.

Note that if this is a map with sObject record values, the
duplicate map will only be a shallow copy of the map. That

Map (of same type)clone

is, the duplicate will have references to each sObject record,
but the records themselves are not duplicated. For example:

Invoice_Statement__c a = new
Invoice_Statement__c(
Description__c='Invoice1');

Map<Integer,
Invoice_Statement__c> map1 =
new Map<Integer, Invoice_Statement__c>

{};
map1.put(1, a);

Map<Integer,
Invoice_Statement__c> map2 =
map1.clone();

map1.get(1).Description__c =
'New invoice';

System.assertEquals(

283

Reference Apex Collection Methods

DescriptionReturn TypeArgumentsName

map1.get(1).Description__c,
'New invoice');

System.assertEquals(
map2.get(1).Description__c,
'New invoice');

To also copy the sObject records, you must use the
deepClone method.

Returns true if the map contains a mapping for the specified
key.

If the key is a String, the case of the String value matters.

BooleanKey type keycontainsKey

For example:

Map<string, string> colorCodes =
new Map<String, String>();

colorCodes.put('Red', 'FF0000');
colorCodes.put('Blue', '0000A0');

Boolean contains =
colorCodes.containsKey('Blue');

System.assertEquals(contains, True);

Makes a duplicate copy of a map, including sObject records
if this is a map with sObject record values. For example:

Invoice_Statement__c a = new
Invoice_Statement__c(

Map (of the same
type)

deepClone

Description__c='Invoice1');

Map<Integer,
Invoice_Statement__c> map1 =

new Map<Integer,
Invoice_Statement__c> {};

map1.put(1, a);

Map<Integer,
Invoice_Statement__c> map2 =

map1.deepClone();

map1.get(1).Description__c =
'New invoice';

System.assertEquals(
map1.get(1).
Description__c, 'New invoice');

System.assertEquals(
map2.get(1).
Description__c, 'Invoice1');

To make a shallow copy of a map without duplicating the
sObject records it contains, use the clone() method.

284

Reference Apex Collection Methods

DescriptionReturn TypeArgumentsName

Returns the value to which the specified key is mapped, or
null if the map contains no value for this key. For example:

Map<String, String> colorCodes =
new Map<String, String>();

Value_typeKey type keyget

colorCodes.put('Red', 'FF0000');
colorCodes.put('Blue', '0000A0');

String code =
colorCodes.get('Blue');

System.assertEquals(code, '0000A0');

// The following is not a color
// in the map
String code2 =

colorCodes.get('Magenta');

System.assertEquals(code2, null);

Returns the token of the sObject type that makes up the map
values. Use this with describe information, to determine if a
map contains sObjects of a particular type. For example:

Invoice_Statement__c a = new
Invoice_Statement__c(

Schema.SObjectTypegetSObjectType

Description__c='Invoice1');
insert a;

// Create a generic sObject
// variable s
SObject s = Database.query

('SELECT Id FROM ' +
'Invoice_Statement__c ' +
'LIMIT 1');

// Verify if that sObject
// variable is an
// Invoice_Statement__c token
System.assertEquals(

s.getSObjectType(),
Invoice_Statement__c.sObjectType);

// Create a map of generic
// sObjects
Map<Integer,

Invoice_Statement__c> M =
new Map<Integer,
Invoice_Statement__c>();

// Verify if the list of
// sObjects contains
// Invoice_Statement__c tokens
System.assertEquals(

M.getSObjectType(),
Invoice_Statement__c.sObjectType);

285

Reference Apex Collection Methods

DescriptionReturn TypeArgumentsName

Note that this method can only be used with maps that have
sObject values.

For more information, see Understanding Apex Describe
Information on page 157.

Returns true if the map has zero key-value pairs. For example:

Map<String, String> colorCodes =
new Map<String, String>();

BooleanisEmpty

Boolean empty = colorCodes.isEmpty();
system.assertEquals(empty, true);

Returns a set that contains all of the keys in the map. For
example:

Map<String, String> colorCodes =
new Map<String, String>();

Set of Key_typekeySet

colorCodes.put('Red', 'FF0000');
colorCodes.put('Blue', '0000A0');

Set <String> colorSet = new Set<String>();
colorSet = colorCodes.keySet();

Associates the specified value with the specified key in the
map. If the map previously contained a mapping for this key,

Value_typeKey key,

Value value

put

the old value is returned by the method and then replaced.
For example:

Map<String, String> colorCodes =
new Map<String, String>();

colorCodes.put('Red', 'ff0000');
colorCodes.put('Red', '#FF0000');
// Red is now #FF0000

Copies all of the mappings from the specified map m to the
original map. The new mappings from m replace any mappings
that the original map had.

VoidMap mputAll

If the map is of IDs or Strings to sObjects, adds the list of
sObject records l to the map in the same way as the Map
constructor with this input.

sObject[] lputAll

Removes the mapping for this key from the map if it is
present. The value is returned by the method and then
removed. For example:

Map<String, String> colorCodes =
new Map<String, String>();

Value_typeKey keyremove

colorCodes.put('Red', 'FF0000');

286

Reference Apex Collection Methods

DescriptionReturn TypeArgumentsName

colorCodes.put('Blue', '0000A0');

String myColor = colorCodes.remove('Blue');
String code2 =

colorCodes.get('Blue');

System.assertEquals(code2, null);

Returns the number of key-value pairs in the map. For
example:

Map<String, String> colorCodes =
new Map<String, String>();

Integersize

colorCodes.put('Red', 'FF0000');
colorCodes.put('Blue', '0000A0');

Integer mSize = colorCodes.size();
system.assertEquals(mSize, 2);

Returns a list that contains all of the values in the map in
arbitrary order. For example:

Map<String, String> colorCodes =
new Map<String, String>();

list of Value_typevalues

colorCodes.put('Red', 'FF0000');
colorCodes.put('Blue', '0000A0');

List<String> colors = new List<String>();
colors = colorCodes.values();

For more information on maps, see Maps on page 42.

Set Methods

The set methods work on a set, that is, an unordered collection of primitives or sObjects that was initialized using the set
keyword. The set methods are all instance methods, that is, they all operate on a particular instance of a set. The following
are the instance methods for sets.

Note: In the table below, Set_elem represents a single element in the set.

287

Reference Apex Collection Methods

DescriptionReturn TypeArgumentsName

Adds an element to the set if it is not already present.

This method returns true if the original set changed as
a result of the call. For example:

set<string> myString =
new Set<String>{'a', 'b', 'c'};

BooleanSet element eadd

Boolean result;
result = myString.add('d');
system.assertEquals(result, true);

Adds all of the elements in the specified list to the set
if they are not already present. This method results in

BooleanList laddAll

the union of the list and the set. The list must be of the
same type as the set that calls the method.

This method returns true if the original set changed
as a result of the call.

Adds all of the elements in the specified set to the set
that calls the method if they are not already present. This

BooleanSet saddAll

method results in the union of the two sets. The specified
set must be of the same type as the original set that calls
the method.

This method returns true if the original set changed
as a result of the call. For example:

set<string> myString =
new Set<String>{'a', 'b'};

set<string> sString =
new Set<String>{'c'};

Boolean result1;
result1 = myString.addAll(sString);
system.assertEquals(result1, true);

Removes all of the elements from the setVoidclear

Makes a duplicate copy of the setSet (of same type)clone

Returns true if the set contains the specified element.
For example:

set<string> myString =
new Set<String>{'a', 'b'};

BooleanSet element econtains

Boolean result;
result = myString.contains('z');
system.assertEquals(result, false);

Returns true if the set contains all of the elements in
the specified list. The list must be of the same type as
the set that calls the method.

BooleanList lcontainsAll

288

Reference Apex Collection Methods

DescriptionReturn TypeArgumentsName

Returns true if the set contains all of the elements in
the specified set. The specified set must be of the same

BooleanSet scontainsAll

type as the original set that calls the method. For
example:

set<string> myString =
new Set<String>{'a', 'b'};

set<string> sString =
new Set<String>{'c'};

set<string> rString =
new Set<String>{'a', 'b', 'c'};

Boolean result1, result2;
result1 = myString.addAll(sString);
system.assertEquals(result1, true);

result2 = myString.containsAll(rString);
system.assertEquals(result2, true);

Returns true if the set has zero elements. For example:

Set<integer> mySet =
new Set<integer>();

BooleanisEmpty

Boolean result;
result = mySet.isEmpty();
system.assertEquals(result, true);

Removes the specified element from the set if it is
present.

This method returns true if the original set changed
as a result of the call.

BooleanSet Element eremove

Removes the elements in the specified list from the set
if they are present. This method results in the relative

BooleanList lremoveAll

complement of the two sets. The list must be of the same
type as the set that calls the method.

This method returns true if the original set changed
as a result of the call. For example:

Set<integer> mySet =
new Set<integer>{1, 2, 3};

List<integer> myList =
new List<integer>{1, 3};

Boolean result =
mySet.removeAll(myList);

System.assertEquals(result, true);

Integer result2 = mySet.size();
System.assertEquals(result2, 1);

Removes the elements in the specified set from the
original set if they are present. This method results in

BooleanSet sremoveAll

289

Reference Apex Collection Methods

DescriptionReturn TypeArgumentsName

the relative complement of the two sets. The specified set
must be of the same type as the original set that calls the
method.

This method returns true if the original set changed
as a result of the call.

Retains only the elements in this set that are contained
in the specified list. This method results in the

BooleanList lretainAll

intersection of the list and the set. The list must be of the
same type as the set that calls the method.

This method returns true if the original set changed
as a result of the call. For example:

Set<integer> mySet =
new Set<integer>{1, 2, 3};

List<integer> myList =
new List<integer>{1, 3};

Boolean result =
mySet.retainAll(myList);

System.assertEquals(result, true);

Retains only the elements in the original set that are
contained in the specified set. This method results in

BooleanSet sretainAll

the intersection of the two sets. The specified set must
be of the same type as the original set that calls the
method.

This method returns true if the original set changed
as a result of the call.

Returns the number of elements in the set (its
cardinality). For example:

Set<integer> mySet =
new Set<integer>{1, 2, 3};

Integersize

List<integer> myList =
new List<integer>{1, 3};

Boolean result =
mySet.retainAll(myList);

System.assertEquals(result, true);

Integer result2 = mySet.size();
System.assertEquals(result2, 2);

For more information on sets, see Sets on page 41.

290

Reference Apex Collection Methods

Enum Methods

Although Enum values cannot have user-defined methods added to them, all Enum values, including system Enum values,
have the following methods defined in Apex:

DescriptionReturn TypeName

Returns the name of the Enum item as a String.Stringname

Returns the position of the item in the list of Enum values,
starting with zero.

Integerordinal

In addition, Enum has the following method.

DescriptionReturn TypeName

Returns the values of the Enum as a list of the same Enum
type.

List<Enum type>values

For example:

Integer i = StatusCode.DELETE_FAILED.ordinal();

String s = StatusCode.DELETE_FAILED.name();

List<StatusCode> values = StatusCode.values();

For more information about Enum, see Enums on page 44.

Apex sObject Methods

The term sObject refers to any object that can be stored in the database. The following Apex sObject methods include
methods that can be used with every sObject, as well as more general classes used to describe sObject structures:

• Schema

• sObject

• sObject Describe Results

• Field Describe Results

• Custom Settings

Schema Methods

The following table lists the system methods for Schema.

DescriptionReturn TypeArgumentsName

Returns a map of all sObject
names (keys) to sObject tokens

Map<String,
Schema.SObjectType>

getGlobalDescribe

(values) for the standard and

291

Reference Enum Methods

DescriptionReturn TypeArgumentsName

custom objects defined in your
organization. For example:

Map<String,
Schema.SObjectType> gd
=
Schema.getGlobalDescribe();

For more information, see
Accessing All sObjects on page
160.

sObject Methods

sObject methods are all instance methods, that is, they are called by and operate on a particular instance of an sObject. The
following are the instance methods for sObjects.

DescriptionReturn TypeArgumentsName

Marks a record with a custom error message
and prevents any DML operation from
occurring.

When used on Trigger.new in before
insert and before update triggers, and

VoidString errorMsgaddError

on Trigger.old in before delete
triggers, the error message is displayed in the
application interface.

See Triggers and Trigger Exceptions.

Marks a record with a custom error message
and prevents any DML operation from
occurring.

The exception argument is an Exception
object or a custom exception object that

Exception exceptionaddError

contains the error message to mark the record
with.

When used on Trigger.new in before
insert and before update triggers, and
on Trigger.old in before delete
triggers, the error message is displayed in the
application interface.

See Triggers and Trigger Exceptions.

292

Reference Apex sObject Methods

DescriptionReturn TypeArgumentsName

Places the specified error message on the field
that calls this method in the application

VoidString errorMsgfield.addError

interface and prevents any DML operation
from occurring. For example:

Trigger.new.myField__C.addError('bad');

Note:

• When used on Trigger.new in before
insert and before update triggers,
and on Trigger.old in before delete
triggers, the error appears in the application
interface.

• This method is highly specialized because
the field identifier is not actually the
invoking object—the sObject record is the
invoker. The field is simply used to identify
the field that should be used to display the
error.

• This method will likely change in future
versions of Apex.

See Triggers and Trigger Exceptions.

Clears all field valuesVoidclear

Creates a copy of the sObject record.

The optional opt_preserve_id argument
determines whether the ID of the original

sObject (of same
type)

Boolean opt_preserve_id

Boolean opt_IsDeepClone

Boolean
opt_preserve_readonly_timestamps

clone

object is preserved or cleared in the duplicate.
If set to true, the ID is copied to the

Boolean
opt_preserve_autonumber

duplicate. The default is false, that is, the ID
is cleared.

Note: For Apex saved using
Salesforce.com API version 22.0 or
earlier, the default value for the
opt_preserve_id argument is true,
that is, the ID is preserved.

The optional opt_IsDeepClone argument
determines whether the method creates a full
copy of the sObject field, or just a reference:

• If set to true, the method creates a full
copy of the sObject. All fields on the
sObject are duplicated in memory,
including relationship fields. Consequently,

293

Reference Apex sObject Methods

DescriptionReturn TypeArgumentsName

if you make changes to a field on the cloned
sObject, the original sObject is not affected.

• If set to false, the method performs a
shallow copy of the sObject fields. All
copied relationship fields reference the
original sObjects. Consequently, if you
make changes to a relationship field on the
cloned sObject, the corresponding field on
the original sObject is also affected, and
vice-versa. The default is false.

The optional
opt_preserve_readonly_timestamps

argument determines whether the read-only
timestamp fields are preserved or cleared in the
duplicate. If set to true, the read-only fields
CreatedById, CreatedDate,
LastModifiedById, and
LastModifiedDate are copied to the
duplicate. The default is false, that is, the
values are cleared.

The optional opt_preserve_autonumber
argument determines whether auto number
fields of the original object are preserved or
cleared in the duplicate. If set to true, auto
number fields are copied to the cloned object.
The default is false, that is, auto number
fields are cleared.

Returns the value for the field specified by
fieldName, such as .

For more information, see Dynamic SOQL.

ObjectString fieldNameget

Returns the value for the field specified by the
field token Schema.sObjectField (for

ObjectSchema.sObjectField Fieldget

example,
Schema.Merchandise__c.Price__c).

For more information, see Dynamic SOQL.

Returns the database.DMLOptions object for
the sObject.

For more information, see Database
DMLOptions Properties.

Database.
DMLOptions

getOptions

Returns the value for the field specified by
fieldName. This method is primarily used

sObjectString fieldNamegetSObject

294

Reference Apex sObject Methods

DescriptionReturn TypeArgumentsName

with dynamic DML to access values for
external IDs.

For more information, see Dynamic DML.

Returns the value for the field specified by the
field token Schema.fieldName (for example,

sObjectSchema.SObjectField fieldNamegetSObject

Schema.MyObj.MyExternalId). This
method is primarily used with dynamic DML
to access values for external IDs.

For more information, see Dynamic DML.

Returns the values for the field specified by
fieldName. This method is primarily used

sObject[]String fieldNamegetSObjects

with dynamic DML to access values for
associated objects, such as child relationships.

For more information, see Dynamic DML.

Returns the value for the field specified by the
field token Schema.fieldName (for example,

sObject[]Schema.SObjectType fieldNamegetSObjects

). This method is primarily used with dynamic
DML to access values for associated objects,
such as child relationships.

For more information, see Dynamic DML.

Returns the token for this sObject. This
method is primarily used with describe
information.

For more information, see Understanding Apex
Describe Information.

Schema.SObjectTypegetSObjectType

Sets the value for the field specified by
fieldName and returns the previous value for
the field.

For more information, see Dynamic SOQL.

ObjectString fieldName

Object value

put

Sets the value for the field specified by the field
token Schema.sObjectField (for example,

ObjectSchema.SObjectField fieldName

Object value

put

Schema.Merchandise__c.Price__c) and
returns the previous value for the field.

For more information, see Dynamic SOQL.

Sets the value for the field specified by
fieldName. This method is primarily used

sObjectString fieldName

sObject value

putSObject

with dynamic DML for setting external IDs.

295

Reference Apex sObject Methods

DescriptionReturn TypeArgumentsName

The method returns the previous value of the
field.

For more information, see Dynamic SOQL.

Sets the value for the field specified by the
token Schema.sObjectType. This method

sObjectSchema.sObjectType fieldName

sObject value

putSObject

is primarily used with dynamic DML for
setting external IDs. The method returns the
previous value of the field.

For more information, see Dynamic SOQL.

Sets the DMLOptions object for the sObject.

For more information, see Database
DMLOptions Properties.

Voiddatabase.DMLOptions
DMLOptions

setOptions

For more information on sObjects, see sObject Types on page 32.

sObject Describe Result Methods

The following table describes the methods available for the sObject describe result, the DescribeSObjectResult object. None
of the methods take an argument.

DescriptionData TypeName

Returns a special data type that should not be used
by itself. Instead, fields should always be followed

Specialfields

by either a field member variable name or the
getMap method. For example,

Schema.DescribeFieldResult F =
Schema.SObjectType.Merchandise__c.fields.Name;

For more information, see Understanding Apex
Describe Information.

Returns a list of child relationships, which are the
names of the sObjects that have a foreign key to the

List<Schema.ChildRelationship>getChildRelationships

sObject being described. For example, the
Invoice_Statement__c object has child relationship
Line_Items__r.

Returns the three-character prefix code for the object.
Record IDs are prefixed with three-character codes
that specify the type of the object.

The DescribeSobjectResult object returns a value for
objects that have a stable prefix. For object types that

StringgetKeyPrefix

296

Reference Apex sObject Methods

DescriptionData TypeName

do not have a stable or predictable prefix, this field
is blank. Client applications that rely on these codes
can use this way of determining object type to ensure
forward compatibility.

Returns the object's label, which may or may not
match the object name.

StringgetLabel

Returns the object's plural label, which may or may
not match the object name.

StringgetLabelPlural

Returns the name of the object, similar to the
getName method. However, if the object is part of

StringgetLocalName

the current namespace, the namespace portion of the
name is omitted.

Returns the name of the objectStringgetName

Returns the Schema.SObjectType object for the
sObject. You can use this to create a similar sObject.
For more information, see Schema.SObjectType.

Schema.SObjectTypegetSobjectType

Returns true if the current user can see this field,
false otherwise

BooleanisAccessible

Returns true if the object can be created by the
current user, false otherwise

BooleanisCreateable

Returns true if the object is a custom setting, false
otherwise

BooleanisCustomSetting

Returns true if the object can be deleted by the
current user, false otherwise

BooleanisDeletable

Reserved for future use.BooleanisDeprecatedAndHidden

Returns true if Chatter feeds are enabled for the
object, false otherwise. This method is only

BooleanisFeedEnabled

available for Apex classes and triggers saved using
Salesforce.com API version 19.0 and later.

Returns true if the object can be queried by the
current user, false otherwise

BooleanisQueryable

Returns true if the object can be searched by the
current user, false otherwise

BooleanisSearchable

Returns true if the object cannot be undeleted by
the current user, false otherwise

BooleanisUndeletable

Returns true if the object can be updated by the
current user, false otherwise

BooleanisUpdateable

297

Reference Apex sObject Methods

ChildRelationship Methods

If an sObject is a parent object, you can access the child relationship as well as the child sObject using the ChildRelationship
object methods.

A ChildRelationship object is returned from the sObject describe result using the getChildRelationship method. For
example:

Schema.DescribeSObjectResult R = Invoice_Statement__c.SObjectType.getDescribe();
List<Schema.ChildRelationship> C = R.getChildRelationships();

You can only use 100 getChildRelationships method calls per Apex request. For more information about governor
limits, see Understanding Execution Governors and Limits on page 203.

The following table describes the methods available as part of the ChildRelationship object. None of the methods take an
argument.

DescriptionData TypeName

Returns the token of the child sObject on which there
is a foreign key back to the parent sObject.

Schema.SObjectTypegetChildSObject

Returns the token of the field that has a foreign key
back to the parent sObject.

Schema.SObjectFieldgetField

Returns the name of the relationship.StringgetRelationshipName

Returns true if the child object is deleted when the
parent object is deleted, false otherwise.

BooleanisCascadeDelete

Reserved for future use.BooleanisDeprecatedAndHidden

Returns true if the parent object can't be deleted
because it is referenced by a child object, false
otherwise.

BooleanisRestrictedDelete

Describe Field Result Methods

The following table describes the methods available as part of the field describe result. The following is an example of how to
instantiate a field describe result object:

Schema.DescribeFieldResult F = Invoice_Statement__c.Description__c.getDescribe();

None of the methods take an argument.

DescriptionData TypeName

For variable-length fields (including binary fields),
returns the maximum size of the field, in bytes

IntegergetByteLength

Returns the formula specified for this fieldStringgetCalculatedFormula

Returns the token of the controlling fieldSchema.sObjectFieldgetController

Returns the default value for this fieldObjectgetDefaultValue

298

Reference Apex sObject Methods

DescriptionData TypeName

Returns the default value specified for this field if a
formula is not used

StringgetDefaultValueFormula

Returns the maximum number of digits specified for
the field. This method is only valid with Integer fields

IntegergetDigits

Returns the content of the field-level help. For more
information, see “Defining Field-Level Help” in the
online help.

StringgetInlineHelpText

Returns the text label of the field. This label can be
localized.

StringgetLabel

For string fields, returns the maximum size of the
field in Unicode characters (not bytes)

IntegergetLength

Returns the name of the field, similar to the getName
method. However, if the field is part of the current

StringgetLocalName

namespace, the namespace portion of the name is
omitted.

Returns the field name used in ApexStringgetName

Returns a list of PicklistEntry objects. A runtime
error is returned if the field is not a picklist.

List <Schema.PicklistEntry>getPicklistValues

For fields of type Double, returns the maximum
number of digits that can be stored, including all

IntegergetPrecision

numbers to the left and to the right of the decimal
point (but excluding the decimal point character)

Returns a list of Schema.sObjectType objects for the
parent objects of this field. If the isNamePointing

List <Schema.sObjectType>getReferenceTo

method returns true, there is more than one entry
in the list, otherwise there is only one.

Returns the name of the relationship. For more
information about relationships and relationship

StringgetRelationshipName

names, see Understanding Relationship Names in
the Database.com SOQL and SOSL Reference.

Returns 1 if the field is a child, 0 otherwise. For more
information about relationships and relationship

IntegergetRelationshipOrder

names, see Understanding Relationship Names in
the Database.com SOQL and SOSL Reference.

For fields of type Double, returns the number of
digits to the right of the decimal point. Any extra

IntegergetScale

digits to the right of the decimal point are truncated.
This method returns a fault response if the number
has too many digits to the left of the decimal point.

299

Reference Apex sObject Methods

http://www.salesforce.com/us/developer/docs/dbcom_soql_sosl/Content/sforce_api_calls_soql_relationships.htm#understanding_relationships
http://www.salesforce.com/us/developer/docs/dbcom_soql_sosl/Content/sforce_api_calls_soql_relationships.htm#understanding_relationships

DescriptionData TypeName

Returns one of the SoapType enum values, depending
on the type of field. For more information, see
Schema.SOAPType Enum Values on page 304.

Schema.SOAPTypegetSOAPType

Returns the token for this fieldSchema.sObjectFieldgetSObjectField

Returns one of the DisplayType enum values,
depending on the type of field. For more information,
see Schema.DisplayType Enum Values on page 302.

Schema.DisplayTypegetType

Returns true if the current user can see this field,
false otherwise

BooleanisAccessible

Returns true if the field is an Auto Number field,
false otherwise.

Analogous to a SQL IDENTITY type, Auto
Number fields are read-only, non-createable text

BooleanisAutoNumber

fields with a maximum length of 30 characters. Auto
Number fields are used to provide a unique ID that
is independent of the internal object ID (such as a
purchase order number or invoice number). Auto
Number fields are configured entirely in the
Database.com user interface.

Returns true if the field is a custom formula field,
false otherwise. Note that custom formula fields
are always read-only.

BooleanisCalculated

Returns true if the child object is deleted when the
parent object is deleted, false otherwise.

BooleanisCascadeDelete

Returns true if the field is case sensitive, false
otherwise

BooleanisCaseSensitive

Returns true if the field can be created by the
current user, false otherwise

BooleanisCreateable

Returns true if the field is a custom field, false if
it is a standard object

BooleanisCustom

Returns true if the field receives a default value
when created, false otherwise. If true,

BooleanisDefaultedOnCreate

Database.com implicitly assigns a value for this field
when the object is created, even if a value for this
field is not passed in on the create call. For example,
in the Opportunity object, the Probability field has
this attribute because its value is derived from the
Stage field. Similarly, the Owner has this attribute
on most objects because its value is derived from the
current user (if the Owner field is not specified).

300

Reference Apex sObject Methods

DescriptionData TypeName

Returns true if the picklist is a dependent picklist,
false otherwise

BooleanisDependentPicklist

Reserved for future use.BooleanisDeprecatedAndHidden

Returns true if the field is used as an external ID,
false otherwise

BooleanisExternalID

Returns true if the field can be used as part of the
filter criteria of a WHERE statement, false otherwise

BooleanisFilterable

Returns true if the field can be included in the
GROUP BY clause of a SOQL query, false

BooleanisGroupable

otherwise. This method is only available for Apex
classes and triggers saved using API version 18.0 and
higher.

Returns true if the field has been formatted for
HTML and should be encoded for display in

BooleanisHtmlFormatted

HTML, false otherwise. One example of a field
that returns true for this method is a hyperlink
custom formula field. Another example is a custom
formula field that has an IMAGE text function.

Returns true if the field can be used to specify a
record in an upsert method, false otherwise

BooleanisIdLookup

Returns true if the field is a name field, false
otherwise. This method is used to identify the name

BooleanisNameField

field for custom objects. Objects can only have one
name field.

Returns true if the field can have multiple types of
objects as parents. This method returns false
otherwise.

BooleanisNamePointing

Returns true if the field is nillable, false otherwise.
A nillable field can have empty content. A

BooleanisNillable

non-nillable field must have a value for the object to
be created or saved.

Returns true if field permissions can be specified
for the field, false otherwise.

BooleanisPermissionable

Returns true if the parent object can't be deleted
because it is referenced by a child object, false
otherwise.

BooleanisRestrictedDelete

Returns true if the field is a restricted picklist,
false otherwise

BooleanisRestrictedPicklist

Returns true if a query can sort on the field, false
otherwise

BooleanisSortable

301

Reference Apex sObject Methods

DescriptionData TypeName

Returns true if the value for the field must be
unique, false otherwise

BooleanisUnique

Returns true if:BooleanisUpdateable

• The field can be edited by the current user, or

• Child records in a master-detail relationship field
on a custom object can be reparented to different
parent records

false otherwise

Returns true if writing to the detail object requires
read sharing instead of read/write sharing of the
parent.

BooleanisWriteRequiresMasterRead

Schema.DisplayType Enum Values

A Schema.DisplayType enum value is returned by the field describe result's getType method. For more information, see
Field Types in the Object Reference for Database.com. For more information about the methods shared by all enums, see Enum
Methods on page 291.

What the Field Object ContainsType Field Value

Any value of the following types: String, Picklist, Boolean, Integer, Double,
Percent, ID, Date, DateTime, URL, or Email.

anytype

Base64-encoded arbitrary binary data (of type base64Binary)base64

Boolean (true or false) valuesBoolean

Comboboxes, which provide a set of enumerated values and allow the user to specify a
value not in the list

Combobox

Currency valuesCurrency

Reference to a data category group or a category unique name.DataCategoryGroupReference

Date valuesDate

DateTime valuesDateTime

Double valuesDouble

Email addressesEmail

Encrypted stringEncryptedString

Primary key field for an objectID

Integer valuesInteger

Multi-select picklists, which provide a set of enumerated values from which multiple values
can be selected

MultiPicklist

Percent valuesPercent

302

Reference Apex sObject Methods

http://www.salesforce.com/us/developer/docs/dbcom_objects/index_CSH.htm#field_types.htm

What the Field Object ContainsType Field Value

Phone numbers. Values can include alphabetic characters. Client applications are
responsible for phone number formatting.

Phone

Single-select picklists, which provide a set of enumerated values from which only one
value can be selected

Picklist

Cross-references to a different object, analogous to a foreign key fieldReference

String valuesString

String values that are displayed as multiline text fieldsTextArea

Time valuesTime

URL values that are displayed as hyperlinksURL

Schema.PicklistEntry Methods

Picklist fields contain a list of one or more items from which a user chooses a single item. One of the items can be configured
as the default item.

A Schema.PicklistEntry object is returned from the field describe result using the getPicklistValues method. For example:

Schema.DescribeFieldResult F = Invoice_Statement__c.Status__c.getDescribe();
List<Schema.PicklistEntry> P = F.getPicklistValues();

You can only use 100 getPicklistValue method calls per Apex request. For more information about governor limits, see
Understanding Execution Governors and Limits on page 203.

The following table describes the methods available as part of the PicklistEntry object. None of the methods take an argument.

DescriptionData TypeName

Returns the display name of this item in the picklistStringgetLabel

Returns the value of this item in the picklistStringgetValue

Returns true if this item must be displayed in the drop-down list for the
picklist field in the user interface, false otherwise

BooleanisActive

Returns true if this item is the default value for the picklist, false
otherwise. Only one item in a picklist can be designated as the default.

BooleanisDefaultValue

Schema.sObjectField

A Schema.sObjectField object is returned from the field describe result using the getControler and getSObjectField
methods. For example:

Schema.DescribeFieldResult F = Invoice_Statement__c.Status__c.getDescribe();
Schema.sObjectField T = F.getSObjectField();

The following table describes the method available as part of the sObjectField object. This method does not take an argument.

DescriptionData TypeName

Returns the describe field result for this field.Schema.DescribeFieldResultgetDescribe

303

Reference Apex sObject Methods

Schema.sObjectType

A Schema.sObjectType object is returned from the field describe result using the getReferenceTo method, or from the
sObject describe result using the getSObjectType method. For example:

Schema.DescribeFieldResult F = Invoice_Statement__c.Status__c.getDescribe();
List<Schema.sObjectType> P = F.getReferenceTo();

The following table describes the methods available as part of the sObjectType object.

DescriptionData TypeArgumentName

Returns the describe sObject result for this
field.

Schema.DescribeSObjectResultgetDescribe

Constructs a new sObject of this type.

For an example, see Creating sObjects
Dynamically.

sObjectnewSObject

Constructs a new sObject of this type, with
the specified ID.

For the argument, pass the ID of an existing
record in the database.

sObjectId IdnewSObject

After you create a new sObject, the sObject
returned has all fields set to null. You can
set any updateable field to desired values and
then update the record in the database. Only
the fields you set new values for are updated
and all other fields which are not system fields
are preserved.

Schema.SOAPType Enum Values

A schema.SOAPType enum value is returned by the field describe result getSoapType method.

For more information, see SOAPTypes in the SOAP API Developer's Guide. For more information about the methods shared
by all enums, see Enum Methods on page 291.

What the Field Object ContainsType Field Value

Any value of the following types: String, Boolean, Integer, Double, ID, Date or
DateTime.

anytype

Base64-encoded arbitrary binary data (of type base64Binary)base64binary

Boolean (true or false) valuesBoolean

Date valuesDate

DateTime valuesDateTime

Double valuesDouble

Primary key field for an objectID

Integer valuesInteger

304

Reference Apex sObject Methods

http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_calls_describesobjects_describesobjectresult.htm#soaptype_topic

What the Field Object ContainsType Field Value

String valuesString

Time valuesTime

Custom Settings Methods

Custom settings methods are all instance methods, that is, they are called by and operate on a particular instance of a custom
setting. There are two types of custom settings: hierarchy and list. The methods are divided into those that work with list
custom settings, and those that work with hierarchy custom settings.

The following are the instance methods for list custom settings.

Table 1: List Custom Settings Methods

DescriptionReturn TypeArgumentsName

Returns a map of the data sets defined for the custom
setting.

If no data set is defined, this method returns an empty
map.

Map<String
Data_set_name,
CustomSetting__c>

getAll

Returns the custom setting data set record for the
specified dataset_name. This method returns the exact
same object as getValues(dataset_name).

If no data is defined for the specified data set, this
method returns null.

CustomSetting__cString
dataset_name

getInstance

Returns the custom setting data set record for the
specified dataset_name. This method returns the exact
same object as getInstance(dataset_name).

If no data is defined for the specified data set, this
method returns null.

CustomSetting__cString
dataset_name

getValues

The following are the instance methods for hierarchy custom settings:

Table 2: Hierarchy Custom Settings Methods

DescriptionReturn TypeArgumentsName

Returns a custom setting data set record for the current
user. The fields returned in the custom setting record

CustomSetting__cgetInstance

are merged based on the lowest level fields that are
defined in the hierarchy.

If no custom setting data is defined for the user, this
method returns a new custom setting object with the ID
set to a null, and with merged fields from higher in

305

Reference Apex sObject Methods

DescriptionReturn TypeArgumentsName

the hierarchy. You can add this new custom setting
record for the user by using insert or upsert. If no
custom setting data is defined in the hierarchy, the
returned custom setting has empty fields, except for the
SetupOwnerId field which contains the user ID.

Note: For Apex saved using Salesforce.com API
version 21.0 or earlier, this method returns the
custom setting data set record with fields merged
from field values defined at the lowest hierarchy
level, starting with the user. Also, if no custom
setting data is defined in the hierarchy, this
method returns null.

Examples:

• Custom setting data set defined for the user: If you
have a custom setting data set defined for the user
“Uriel Jones,” for the profile “System Administrator,”
and for the organization as a whole, and the user
running the code is Uriel Jones, this method returns
the custom setting record defined for Uriel Jones.

• Merged fields: If you have a custom setting data set
with fields A and B for the user “Uriel Jones” and
for the profile “System Administrator,” and field A
is defined for Uriel Jones, field B is null but is
defined for the System Adminitrator profile, this
method returns the custom setting record for Uriel
Jones with field A for Uriel Jones and field B from
the System Administrator profile.

• No custom setting data set record defined for the
user: If the current user is “Barbara Mahonie,” who
also shares the “System Administrator” profile, but
no data is defined for Barbara as a user, this method
returns a new custom setting record with the ID set
to null and with fields merged based on the fields
defined in the lowest level in the hierarchy.

This method is equivalent to a method call to
getInstance(User_Id) for the current user.

Returns the custom setting data set record for the
specified User_Id. The lowest level custom setting

CustomSetting__cID User_IdgetInstance

record and fields are returned. Use this when you want
to explicitly retrieve data for the custom setting at the
user level.

If no custom setting data is defined for the user, this
method returns a new custom setting object with the ID

306

Reference Apex sObject Methods

DescriptionReturn TypeArgumentsName

set to a null, and with merged fields from higher in
the hierarchy. You can add this new custom setting
record for the user by using insert or upsert. If no
custom setting data is defined in the hierarchy, the
returned custom setting has empty fields, except for the
SetupOwnerId field which contains the user ID.

Note: For Apex saved using Salesforce.com API
version 21.0 or earlier, this method returns the
custom setting data set record with fields merged
from field values defined at the lowest hierarchy
level, starting with the user. Also, if no custom
setting data is defined in the hierarchy, this
method returns null.

Returns the custom setting data set record for the
specified Profile_Id. The lowest level custom setting

CustomSetting__cID Profile_IdgetInstance

record and fields are returned. Use this when you want
to explicitly retrieve data for the custom setting at the
profile level.

If no custom setting data is defined for the profile, this
method returns a new custom setting record with the
ID set to null and with merged fields from your
organization's default values. You can add this new
custom setting for the profile by using insert or
upsert. If no custom setting data is defined in the
hierarchy, the returned custom setting has empty fields,
except for the SetupOwnerId field which contains the
profile ID.

Note: For Apex saved using Salesforce.com API
version 21.0 or earlier, this method returns the
custom setting data set record with fields merged
from field values defined at the lowest hierarchy
level, starting with the profile. Also, if no custom
setting data is defined in the hierarchy, this
method returns null.

Returns the custom setting data set record for the
organization.

If no custom setting data is defined for the organization,
this method returns an empty custom setting object.

CustomSetting__cgetOrgDefaults

Note: For Apex saved using Salesforce.com API
version 21.0 or earlier, this method returns null
if no custom setting data is defined for the
organization.

307

Reference Apex sObject Methods

DescriptionReturn TypeArgumentsName

Returns the custom setting data set record for the
specified User_Id. Use this if you only want the subset

CustomSetting__cID User_IdgetValues

of custom setting data that has been defined at the user
level. For example, suppose you have a custom setting
field that has been assigned a value of "foo" at the
organizational level, but has no value assigned at the user
or profile level. Using getValues(User_Id) returns
null for this custom setting field.

Returns the custom setting data set for the specified
Profile_Id. Use this if you only want the subset of

CustomSetting__cID Profile_IdgetValues

custom setting data that has been defined at the profile
level. For example, suppose you have a custom setting
field that has been assigned a value of "foo" at the
organizational level, but has no value assigned at the user
or profile level. Using getValues(Profile_Id)
returns null for this custom setting field.

For more information on custom settings, see “Custom Settings Overview” in the Database.com online help.

Note: All custom settings data is exposed in the application cache, which enables efficient access without the cost of
repeated queries to the database. However, querying custom settings data using Standard Object Query Language
(SOQL) doesn't make use of the application cache and is similar to querying a custom object. To benefit from caching,
use other methods for accessing custom settings data such as the Apex Custom Settings methods.

Custom Setting Examples

The following example uses a list custom setting called Games. Games has a field called GameType. This example determines
if the value of the first data set is equal to the string PC.

List<Games__C> mcs = Games__c.getall().values();
boolean textField = null;
if (mcs[0].GameType__c == 'PC') {
textField = true;

}
system.assertEquals(textField, true);

The following example uses a list custom setting, Foundation_Countries, that has a single field, Country_Code. This example
demonstrates that the getValues and getInstance methods list custom setting return identical values.

Foundation_Countries__c myCS1 = Foundation_Countries__c.getValues('United States');
String myCCVal = myCS1.Country_code__c;
Foundation_Countries__c myCS2 = Foundation_Countries__c.getInstance('United States');
String myCCInst = myCS2.Country_code__c;
system.assertEquals(myCCinst, myCCVal);

308

Reference Apex sObject Methods

Hierarchy Custom Setting Examples

In the following example, the hierarchy custom setting GamesSupport has a field called Corporate_number. The code
returns the value for the profile specified with pid.

GamesSupport__c mhc = GamesSupport__c.getInstance(pid);
string mPhone = mhc.Corporate_number__c;

The example is identical if you choose to use the getValues method.

The following example shows how to use hierarchy custom settings methods. For getInstance, the example shows how
field values that aren't set for a specific user or profile are returned from fields defined at the next lowest level in the hierarchy.
The example also shows how to use getOrgDefaults.

Finally, the example demonstrates how getValues returns fields in the custom setting record only for the specific user or
profile, and doesn't merge values from other levels of the hierarchy. Instead, getValues returns null for any fields that
aren't set. This example uses a hierarchy custom setting called Hierarchy. Hierarchy has two fields: OverrideMe and
DontOverrideMe. In addition, a user named Robert has a System Administrator profile. The organization, profile, and user
settings for this example are as follows:

Organization settings
OverrideMe: Hello

DontOverrideMe: World

Profile settings
OverrideMe: Goodbye

DontOverrideMe is not set.

User settings
OverrideMe: Fluffy

DontOverrideMe is not set.

The following example demonstrates the result of the getInstance method if Robert calls it in his organization:

Hierarchy__c CS = Hierarchy__c.getInstance();
System.Assert(CS.OverrideMe__c == 'Fluffy');
System.assert(CS.DontOverrideMe__c == 'World');

If Robert passes his user ID specified by RobertId to getInstance, the results are the same. This is because the lowest
level of data in the custom setting is specified at the user level.

Hierarchy__c CS = Hierarchy__c.getInstance(RobertId);
System.Assert(CS.OverrideMe__c == 'Fluffy');
System.assert(CS.DontOverrideMe__c == 'World');

If Robert passes the System Administrator profile ID specified by SysAdminID to getInstance, the result is different. The
data specified for the profile is returned:

Hierarchy__c CS = Hierarchy__c.getInstance(SysAdminID);
System.Assert(CS.OverrideMe__c == 'Goodbye');
System.assert(CS.DontOverrideMe__c == 'World');

309

Reference Apex sObject Methods

When Robert tries to return the data set for the organization using getOrgDefaults, the result is:

Hierarchy__c CS = Hierarchy__c.getOrgDefaults();
System.Assert(CS.OverrideMe__c == 'Hello');
System.assert(CS.DontOverrideMe__c == 'World');

By using the getValues method, Robert can get the hierarchy custom setting values specific to his user and profile settings.
For example, if Robert passes his user ID RobertId to getValues, the result is:

Hierarchy__c CS = Hierarchy__c.getValues(RobertId);
System.Assert(CS.OverrideMe__c == 'Fluffy');
// Note how this value is null, because you are returning
// data specific for the user
System.assert(CS.DontOverrideMe__c == null);

If Robert passes his System Administrator profile ID SysAdminID to getValues, the result is:

Hierarchy__c CS = Hierarchy__c.getValues(SysAdminID);
System.Assert(CS.OverrideMe__c == 'Goodbye');
// Note how this value is null, because you are returning
// data specific for the profile
System.assert(CS.DontOverrideMe__c == null);

Apex System Methods

The following Apex system methods are specialized classes and methods for manipulating data:

• Database

◊ Database Batch

◊ Database DMLOptions

◊ Database EmptyRecycleBinResult

◊ Database Error

• JSON Support

◊ JSON Methods

◊ JSONGenerator Methods

◊ JSONParser Methods

• Limits

• Math

• Apex REST

◊ RestContext Methods

◊ RestRequest Methods

◊ RestResponse Methods

• Search

• System

• Test

• URL

310

Reference Apex System Methods

• UserInfo

Database Methods

The following are the system static methods for Database.

DescriptionReturn TypeArgumentsName

Returns the number of records that a dynamic
SOQL query would return when executed. For
example,

String QueryString =
'SELECT count() ' +

IntegerString querycountQuery

'FROM Invoice_Statement__c';
Integer i =

Database.countQuery(QueryString);

For more information, see Dynamic SOQL on page
161.

Each executed countQuery method counts against
the governor limit for SOQL queries.

Deletes an existing sObject record from your
organization's data. delete is analogous to the
delete() statement in the SOAP API.

The optional opt_allOrNone parameter specifies
whether the operation allows partial success. If you

DeleteResultSObject recordToDelete

Boolean opt_allOrNone

delete

specify false for this parameter and a record fails,
the remainder of the DML operation can still
succeed. This method returns a result object that
can be used to verify which records succeeded,
which failed, and why.

Each executed delete method counts against the
governor limit for DML statements.

Deletes a list of existing sObject records from your
organization’s data. delete is analogous to the
delete() statement in the SOAP API.

The optional opt_allOrNone parameter specifies
whether the operation allows partial success. If you

DeleteResult[]SObject[] recordsToDelete

Boolean opt_allOrNone

delete

specify false for this parameter and a record fails,
the remainder of the DML operation can still
succeed. This method returns a result object that
can be used to verify which records succeeded,
which failed, and why.

Each executed delete method counts against the
governor limit for DML statements.

311

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

Deletes existing sObject records from your
organization’s data. delete is analogous to the
delete() statement in the SOAP API.

The optional opt_allOrNone parameter specifies
whether the operation allows partial success. If you

DeleteResultRecordID ID

Boolean opt_allOrNone

delete

specify false for this parameter and a record fails,
the remainder of the DML operation can still
succeed. This method returns a result object that
can be used to verify which records succeeded,
which failed, and why.

Each executed delete method counts against the
governor limit for DML statements.

Deletes a list of existing sObject records from your
organization’s data. delete is analogous to the
delete() statement in the SOAP API.

The optional opt_allOrNone parameter specifies
whether the operation allows partial success. If you

DeleteResult[]RecordIDs []IDs

Boolean opt_allOrNone

delete

specify false for this parameter and a record fails,
the remainder of the DML operation can still
succeed. This method returns a result object that
can be used to verify which records succeeded,
which failed, and why.

Each executed delete method counts against the
governor limit for DML statements.

Permanently deletes the specified records from the
recycle bin. Note the following:

Database.
EmptyRecycleBin
Result[]

RecordIds []IdsemptyRecycleBin

• After records are deleted using this method they
cannot be undeleted.

• Only 10,000 records can be specified for
deletion.

• The logged in user can delete any record that
he or she can query in their recycle bin, or the
recycle bins of any subordinates. If the logged
in user has “Modify All Data” permission, he
or she can query and delete records from any
recycle bin in the organization.

• Cascade delete record IDs should not be
included in the list of IDs; otherwise an error
occurs.

• Deleted items are added to the number of items
processed by a DML statement, and the method
call is added to the total number of DML
statements issued. Each executed

312

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

emptyRecycleBin method counts against the
governor limit for DML statements.

Permanently deletes the specified sObject from the
recycle bin. Note the following:

Database.
EmptyRecycleBin
Result

sObject sObjectemptyRecycleBin

• After an sObject is deleted using this method
it cannot be undeleted.

• Only 10,000 sObjects can be specified for
deletion.

• The logged in user can delete any sObject that
he or she can query in their recycle bin, or the
recycle bins of any subordinates. If the logged
in user has “Modify All Data” permission, he
or she can query and delete sObjects from any
recycle bin in the organization.

• Do not include an sObject that was deleted due
to a cascade delete; otherwise an error occurs.

• Deleted items are added to the number of items
processed by a DML statement, and the method
call is added to the total number of DML
statements issued. Each executed
emptyRecycleBin method counts against the
governor limit for DML statements.

Permanently deletes the specified sObjects from
the recycle bin. Note the following:

Database.
EmptyRecycleBin
Result[]

sObjects []listOfSObjectsemptyRecycleBin

• After an sObject is deleted using this method
it cannot be undeleted.

• Only 10,000 sObjects can be specified for
deletion.

• The logged in user can delete any sObject that
he or she can query in their recycle bin, or the
recycle bins of any subordinates. If the logged
in user has “Modify All Data” permission, he
or she can query and delete sObjects from any
recycle bin in the organization.

• Do not include an sObject that was deleted due
to a cascade delete; otherwise an error occurs.

• Deleted items are added to the number of items
processed by a DML statement, and the method
call is added to the total number of DML
statements issued. Each executed
emptyRecycleBin method counts against the
governor limit for DML statements.

313

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

Executes the specified class as a batch Apex job.
For more information, see Using Batch Apex on
page 167.

IDsObject classNameexecuteBatch

Note: The class called by the
executeBatch method implements the
execute method.

Executes the specified class as a batch Apex job.
The value for scope must be greater than 0. For

IDsObject className, Integer
scope

executeBatch

more information, see Using Batch Apex on page
167.

Note: The class called by the
executeBatch method implements the
execute method.

Creates a QueryLocator object used in batch Apex.
For more information, see Database Batch Apex

QueryLocatorsObject [] listOfQueriesgetQueryLocator

Objects and Methods on page 320 and
Understanding Apex Managed Sharing on page
175.

You can't use getQueryLocator with any query
that contains an aggregate function.

Each executed getQueryLocator method counts
against the governor limit of 10,000 total records
retrieved and the total number of SOQL queries
issued.

Creates a QueryLocator object used in batch Apex.
For more information, see Database Batch Apex

QueryLocatorString querygetQueryLocator

Objects and Methods on page 320 and
Understanding Apex Managed Sharing on page
175.

You can't use getQueryLocator with any query
that contains an aggregate function.

Each executed getQueryLocator method counts
against the governor limit of 10,000 total records
retrieved and the total number of SOQL queries
issued.

314

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

Adds an sObject to your organization's data.
insert is analogous to the INSERT statement in
SQL.

The optional opt_allOrNone parameter specifies
whether the operation allows partial success. If you

SaveResultsObject recordToInsert

Boolean opt_allOrNone |
database.DMLOptions
opt_DMLOptions

insert

specify false for this parameter and a record fails,
the remainder of the DML operation can still
succeed. This method returns a result object that
can be used to verify which records succeeded,
which failed, and why.

The optional opt_DMLOptions parameter specifies
additional data for the transaction, such as rollback
behavior when errors occur during record insertions.

Apex classes and triggers saved (compiled) using
API version 15.0 and higher produce a runtime
error if you assign a String value that is too long for
the field.

Each executed insert method counts against the
governor limit for DML statements.

Adds one or more sObjects to your organization’s
data. insert is analogous to the INSERT
statement in SQL.

The optional opt_allOrNone parameter specifies
whether the operation allows partial success. If you

SaveResult[]sObject [] recordsToInsert

Boolean opt_allOrNone |
database.DMLOptions
opt_DMLOptions

insert

specify false for this parameter and a record fails,
the remainder of the DML operation can still
succeed. This method returns a result object that
can be used to verify which records succeeded,
which failed, and why.

The optional opt_DMLOptions parameter specifies
additional data for the transaction, such as rollback
behavior when errors occur during record insertions.

Apex classes and triggers saved (compiled) using
API version 15.0 and higher produce a runtime
error if you assign a String value that is too long for
the field.

Each executed insert method counts against the
governor limit for DML statements.

Creates a dynamic SOQL query at runtime. This
method can be used wherever a static SOQL query

sObject[]String queryquery

can be used, such as in regular assignment
statements and for loops.

315

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

For more information, see Dynamic SOQL on page
161.

Each executed query method counts against the
governor limit for SOQL queries.

Restores the database to the state specified by the
savepoint variable. Any emails submitted since the
last savepoint are also rolled back and not sent.

VoidSystem.Savepoint sprollback

Note: Static variables are not reverted
during a rollback. If you try to run the
trigger again, the static variables retain the
values from the first run.

Each rollback counts against the governor limit for
DML statements. You will receive a runtime error
if you try to rollback the database additional times.

Returns a savepoint variable that can be stored as
a local variable, then used with the rollback
method to restore the database to that point.

If you set more than one savepoint, then roll back
to a savepoint that is not the last savepoint you

System.SavepointsetSavepoint

generated, the later savepoint variables become
invalid. For example, if you generated savepoint
SP1 first, savepoint SP2 after that, and then you
rolled back to SP1, the variable SP2 would no
longer be valid. You will receive a runtime error if
you try to use it.

References to savepoints cannot cross trigger
invocations, because each trigger invocation is a
new execution context. If you declare a savepoint
as a static variable then try to use it across trigger
contexts you will receive a runtime error.

Each savepoint you set counts against the governor
limit for DML statements.

Restores an existing sObject record from your
organization's Recycle Bin. undelete is analogous
to the UNDELETE statement in SQL.

The optional opt_allOrNone parameter specifies
whether the operation allows partial success. If you

UndeleteResultsObject recordToUndelete

Boolean opt_allOrNone

undelete

specify false for this parameter and a record fails,
the remainder of the DML operation can still
succeed. This method returns a result object that

316

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

can be used to verify which records succeeded,
which failed, and why.

Each executed undelete method counts against
the governor limit for DML statements.

Restores one or more existing sObject records, such
as individual invoice statements. undelete is
analogous to the UNDELETE statement in SQL.

The optional opt_allOrNone parameter specifies
whether the operation allows partial success. If you

UndeleteResult[]sObject []
recordsToUndelete

Boolean opt_allOrNone

undelete

specify false for this parameter and a record fails,
the remainder of the DML operation can still
succeed. This method returns a result object that
can be used to verify which records succeeded,
which failed, and why.

Each executed undelete method counts against
the governor limit for DML statements.

Restores an existing sObject record from your
organization's Recycle Bin. undelete is analogous
to the UNDELETE statement in SQL.

The optional opt_allOrNone parameter specifies
whether the operation allows partial success. If you

UndeleteResultRecordID ID

Boolean opt_allOrNone

undelete

specify false for this parameter and a record fails,
the remainder of the DML operation can still
succeed. This method returns a result object that
can be used to verify which records succeeded,
which failed, and why.

Each executed undelete method counts against
the governor limit for DML statements.

Restores one or more existing sObject records, such
as individual invoice statements. undelete is
analogous to the UNDELETE statement in SQL.

The optional opt_allOrNone parameter specifies
whether the operation allows partial success. If you

UndeleteResult []RecordIDs[] ID

Boolean opt_allOrNone

undelete

specify false for this parameter and a record fails,
the remainder of the DML operation can still
succeed. This method returns a result object that
can be used to verify which records succeeded,
which failed, and why.

Each executed undelete method counts against
the governor limit for DML statements.

317

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

Modifies an existing sObject record in your
organization's data. update is analogous to the
UPDATE statement in SQL.

The optional opt_allOrNone parameter specifies
whether the operation allows partial success. If you

Database.SaveResultsObject recordToUpdate

Boolean opt_allOrNone |
database.DMLOptions
opt_DMLOptions

update

specify false for this parameter and a record fails,
the remainder of the DML operation can still
succeed. This method returns a result object that
can be used to verify which records succeeded,
which failed, and why.

The optional opt_DMLOptions parameter specifies
additional data for the transaction, such as rollback
behavior when errors occur during record insertions.

Apex classes and triggers saved (compiled) using
API version 15.0 and higher produce a runtime
error if you assign a String value that is too long for
the field.

Each executed update method counts against the
governor limit for DML statements.

Modifies one or more existing sObject records, such
as individual invoice statements, in your

Database.SaveResult
[]

sObject [] recordsToUpdate

Boolean opt_allOrNone

update

organization’s data. update is analogous to the
UPDATE statement in SQL.

The optional opt_allOrNone parameter specifies
whether the operation allows partial success. If you

|

database.DMLOptions
opt_DMLOptions

specify false for this parameter and a record fails,
the remainder of the DML operation can still
succeed. This method returns a result object that
can be used to verify which records succeeded,
which failed, and why.

The optional opt_DMLOptions parameter specifies
additional data for the transaction, such as rollback
behavior when errors occur during record insertions.

Apex classes and triggers saved (compiled) using
API version 15.0 and higher produce a runtime
error if you assign a String value that is too long for
the field.

Each executed update method counts against the
governor limit for DML statements.

318

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

Creates a new sObject record or updates an existing
sObject record within a single statement, using an

Database.UpsertResultsObject recordToUpsert

Schema.SObjectField
External_ID_Field

upsert

optional custom field to determine the presence of
existing objects.

The External_ID_Field is of type
Schema.SObjectField, that is, a field token. Find

Boolean opt_allOrNone

the token for the field by using the fields special
method. For example, Schema.SObjectField
f =
Invoice_Statement__c.Fields.MyExternalId.

The optional opt_allOrNone parameter specifies
whether the operation allows partial success. If you
specify false for this parameter and a record fails,
the remainder of the DML operation can still
succeed. This method returns a result object that
can be used to verify which records succeeded,
which failed, and why.

Apex classes and triggers saved (compiled) using
API version 15.0 and higher produce a runtime
error if you assign a String value that is too long for
the field.

Each executed upsert method counts against the
governor limit for DML statements.

Cusing an optional custom field to determine the
presence of existing objects.

The External_ID_Field is of type
Schema.SObjectField, that is, a field token. Find

Database.UpsertResult
[]

sObject [] recordsToUpsert

Schema.SObjectField
External_ID_Field

Boolean opt_allOrNone

upsert

the token for the field by using the fields special
method. For example, Schema.SObjectField
f =
Invoice_Statement__c.Fields.MyExternalId.

The optional opt_allOrNone parameter specifies
whether the operation allows partial success. If you
specify false for this parameter and a record fails,
the remainder of the DML operation can still
succeed. This method returns a result object that
can be used to verify which records succeeded,
which failed, and why.

Apex classes and triggers saved (compiled) using
API version 15.0 and higher produce a runtime
error if you assign a String value that is too long for
the field.

319

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

Each executed upsert method counts against the
governor limit for DML statements.

See Also:
Apex Data Manipulation Language (DML) Operations
Understanding Execution Governors and Limits

Database Batch Apex Objects and Methods

Database.QueryLocator Method

The following table lists the method for the Database.QueryLocator object:

DescriptionReturn TypeArgumentsName

Returns the query used to instantiate the
Database.QueryLocator object. This is useful when
testing the start method. For example:

System.assertEquals(QLReturnedFromStart.
getQuery(),

StringgetQuery

Database.getQueryLocator([SELECT Id
FROM

Invoice_Statement__c]).getQuery());

You cannot use the FOR UPDATE keywords

with a getQueryLocator query to lock a set of records.
The start method automatically locks the set of records
in the batch.

Database DMLOptions Properties

Use the Database.DMLOptions class to provide extra information during a transaction, for example, specifying the truncation
behavior of fields or assignment rule information. DMLOptions is only available for Apex saved against API versions 15.0
and higher.

The Database.DMLOptions class has the following properties:

• allowFieldTruncation Property

• localeOptions Property

• optAllOrNone Property

allowFieldTruncation Property

The allowFieldTruncation property specifies the truncation behavior of strings. In Apex saved against API versions
previous to 15.0, if you specify a value for a string and that value is too large, the value is truncated. For API version 15.0 and
later, if a value is specified that is too large, the operation fails and an error message is returned. The allowFieldTruncation

320

Reference Apex System Methods

property allows you to specify that the previous behavior, truncation, be used instead of the new behavior in Apex saved against
API versions 15.0 and later.

The allowFieldTruncation property takes a Boolean value. If true, the property truncates String values that are too
long, which is the behavior in API versions 14.0 and earlier. For example:

Database.DMLOptions dml = new Database.DMLOptions();

dml.allowFieldTruncation = true;

localeOptions Property

The localeOptions property specifies the language of any labels that are returned by Apex. The value must be a valid user
locale (language and country), such as de_DE or en_GB. The value is a String, 2-5 characters long. The first two characters
are always an ISO language code, for example 'fr' or 'en.' If the value is further qualified by a country, then the string also has
an underscore (_) and another ISO country code, for example 'US' or 'UK.' For example, the string for the United States is
'en_US', and the string for French Canadian is 'fr_CA.'

For a list of the languages that Database.com supports, see What languages does Database.com support? in the Database.com
online help.

optAllOrNone Property

The optAllOrNone property specifies whether the operation allows for partial success. If optAllOrNone is set to true,
all changes are rolled back if any record causes errors. The default for this property is false and successfully processed records
are committed while records with errors aren't. This property is available in Apex saved against Salesforce.com API version
20.0 and later.

Database EmptyRecycleBinResult Methods

A list of Database.EmptyRecycleBinResult objects is returned by the Database.emptyRecycleBin method. Each object
in the list corresponds to either a record Id or an sObject passed as the parameter in the Database.emptyRecycleBin
method. The first index in the EmptyRecycleBinResult list matches the first record or sObject specified in the list, the second
with the second, and so on.

The following are all instance methods, that is, they work on a specific instance of an EmptyRecyclelBinResult object. None
of these methods take any arguments.

DescriptionReturn TypeName

If an error occurred during the delete for this record or sObject,
a list of one or more Database.Error objects is returned. If no
errors occurred, this list is empty.

Database.Errors []getErrors

Returns the ID of the record or sObject you attempted to
deleted.

IDgetId

Returns true if the record or sObject was successfully removed
from the recycle bin; otherwise false.

BooleanisSuccess

Database Error Object Methods

A Database.error object contains information about an error that occurred, during a DML operation or other operation.

All DML operations that are executed with their database system method form return an error object if they fail.

321

Reference Apex System Methods

All error objects have access to the following methods:

DescriptionReturn TypeArgumentsName

Returns the error message text.StringgetMessage

Returns a code that characterizes the error. The full list of
status codes is available in the WSDL file for your

StatusCodegetStatusCode

organization (see Downloading Database.com WSDLs and
Client Authentication Certificates in the Database.com
online help.)

JSON Support

JavaScript Object Notation (JSON) support in Apex enables the serialization of Apex objects into JSON format and the
deserialization of serialized JSON content. Apex provides a set of classes that expose methods for JSON serialization and
deserialization. The following table describes the classes available.

DescriptionClass

Contains methods for serializing Apex objects into JSON
format and deserializing JSON content that was serialized
using the serialize method in this class.

System.JSON

Contains methods used to serialize Apex objects into JSON
content using the standard JSON encoding.

System.JSONGenerator

Represents a parser for JSON-encoded content.System.JSONParser

The System.JSONToken enumeration contains the tokens used for JSON parsing.

Methods in these classes throw a JSONException if an issue is encountered during execution.

The following are some limitations of JSON support:

• Deserialized Map objects whose keys are not strings won't match their corresponding Map objects before serialization. Key
values are converted into strings during serialization and will, when deserialized, change their type. For example, a
Map<Object, sObject> will become a Map<String, sObject>.

• When an object is declared as the parent type but is set to an instance of the subtype, some data may be lost. The object
gets serialized and deserialized as the parent type and any fields that are specific to the subtype are lost.

• An object that has a reference to itself won’t get serialized and causes a JSONException to be thrown.

• Reference graphs that reference the same object twice are deserialized and cause multiple copies of the referenced object
to be generated.

• The System.JSONParser data type isn’t serializable. If you have a serializable class that has a member variable of type
System.JSONParser and you attempt to create this object, you’ll receive an exception. To use JSONParser in a
serializable class, use a local variable instead in your method.

JSON Methods

Contains methods for serializing Apex objects into JSON format and deserializing JSON content that was serialized using
the serialize method in this class.

322

Reference Apex System Methods

Usage

Use the methods in the System.JSON class to perform round-trip JSON serialization and deserialization of Apex objects.

Methods

The following are static methods of the System.JSON class.

DescriptionReturn TypeArgumentsMethod

Returns a new JSON generator.

The pretty argument determines whether the JSON
generator creates JSON content in pretty-print format with
the content indented. Set to true to create indented content.

System.JSONGeneratorBoolean
pretty

createGenerator

Returns a new JSON parser.

The jsonString argument is the JSON content to parse.

System.JSONParserString
jsonString

createParser

Deserializes the specified JSON string into an Apex object
of the specified type.

The jsonString argument is the JSON content to
deserialize.

Any typeString
jsonString

System.Type
apexType

deserialize

The apexType argument is the Apex type of the object that
this method creates after deserializing the JSON content.
If the JSON content to parse contains attributes not present
in the Apex type specified in the argument, such as a missing
field or object, this method ignores these attributes and parses
the rest of the JSON content. However, for Apex saved using
Salesforce.com API version 24.0 or earlier, this method
throws a run-time exception for missing attributes.

The following example deserializes a Decimal value.

Decimal n = (Decimal)JSON.deserialize(
'100.1', Decimal.class);

System.assertEquals(n, 100.1);

Deserializes the specified JSON string into an Apex object
of the specified type. All attributes in the JSON string must
be present in the specified type.

The jsonString argument is the JSON content to
deserialize.

Any typeString
jsonString

apexType

deserializeStrict

The apexType argument is the Apex type of the object that
this method creates after deserializing the JSON content.
If the JSON content to parse contains attributes not present
in the Apex type specified in the argument, such as a missing
field or object, this method throws a run-time exception.

323

Reference Apex System Methods

DescriptionReturn TypeArgumentsMethod

The following example deserializes a JSON string into an
object of a user-defined type represented by the Car class,
which this example also defines.

public class Car {
public String make;
public String year;

}

public void parse() {
Car c = (Car)JSON.deserializeStrict(

'{"make":"SFDC","year":"2020"}',
Car.class);

System.assertEquals(c.make, 'SFDC');
System.assertEquals(c.year, '2020');

}

Deserializes the specified JSON string into collections of
primitive data types.

The jsonString argument is the JSON content to
deserialize.

Any typeString
jsonString

deserializeUntyped

The following example deserializes a JSON representation
of an appliance object into a map that contains primitive data
types and further collections of primitive types. It then verifies
the deserialized values.

String jsonInput = '{\n' +
' "description" :"An appliance",\n' +
' "accessories" : ["powerCord", ' +
'{ "right":"door handle1", ' +
'"left":"door handle2" }],\n' +

' "dimensions" : ' +
'{ "height" : 5.5 , ' +
'"width" : 3.0 , ' +
'"depth" : 2.2 },\n' +

' "type" : null,\n' +
' "inventory" : 2000,\n' +
' "price" : 1023.45,\n' +
' "isShipped" : true,\n' +
' "modelNumber" : "123"\n' +
'}';

Map<String, Object> m =
(Map<String, Object>)

JSON.deserializeUntyped(jsonInput);

System.assertEquals(
'An appliance', m.get('description'));

List<Object> a =
(List<Object>)m.get('accessories');

System.assertEquals('powerCord', a[0]);

Map<String, Object> a2 =
(Map<String, Object>)a[1];

System.assertEquals(
'door handle1', a2.get('right'));

System.assertEquals(

324

Reference Apex System Methods

DescriptionReturn TypeArgumentsMethod

'door handle2', a2.get('left'));

Map<String, Object> dim =
(Map<String, Object>)m.get('dimensions');

System.assertEquals(
5.5, dim.get('height'));

System.assertEquals(
3.0, dim.get('width'));

System.assertEquals(
2.2, dim.get('depth'));

System.assertEquals(null, m.get('type'));
System.assertEquals(

2000, m.get('inventory'));
System.assertEquals(

1023.45, m.get('price'));
System.assertEquals(

true, m.get('isShipped'));
System.assertEquals(

'123', m.get('modelNumber'));

Serializes Apex objects into JSON content.

The object argument is the Apex object to serialize.

StringAny type
object

serialize

The following example serializes a new Datetime value.

Datetime dt = Datetime.newInstance(
Date.newInstance(

2011, 3, 22),
Time.newInstance(

1, 15, 18, 0));
String str = JSON.serialize(dt);
System.assertEquals(

'"2011-03-22T08:15:18.000Z"',
str);

Serializes Apex objects into JSON content and generates
indented content using the pretty-print format.

The object argument is the Apex object to serialize.

StringAny type
object

serializePretty

Sample: Serializing and Deserializing a List of Invoices

This sample creates a list of InvoiceStatement objects and serializes the list. Next, the serialized JSON string is used to
deserialize the list again and the sample verifies that the new list contains the same invoices that were present in the original
list.

public class JSONRoundTripSample {

public class InvoiceStatement {
Long invoiceNumber;
Datetime statementDate;
Decimal totalPrice;

public InvoiceStatement(Long i, Datetime dt, Decimal price)
{

invoiceNumber = i;

325

Reference Apex System Methods

statementDate = dt;
totalPrice = price;

}
}

public static void SerializeRoundtrip() {
Datetime dt = Datetime.now();
// Create a few invoices.
InvoiceStatement inv1 = new InvoiceStatement(1,Datetime.valueOf(dt),1000);
InvoiceStatement inv2 = new InvoiceStatement(2,Datetime.valueOf(dt),500);
// Add the invoices to a list.
List<InvoiceStatement> invoices = new List<InvoiceStatement>();
invoices.add(inv1);
invoices.add(inv2);

// Serialize the list of InvoiceStatement objects.
String JSONString = JSON.serialize(invoices);
System.debug('Serialized list of invoices into JSON format: ' + JSONString);

// Deserialize the list of invoices from the JSON string.
List<InvoiceStatement> deserializedInvoices =
(List<InvoiceStatement>)JSON.deserialize(JSONString, List<InvoiceStatement>.class);

System.assertEquals(invoices.size(), deserializedInvoices.size());
Integer i=0;
for (InvoiceStatement deserializedInvoice :deserializedInvoices) {

system.debug('Deserialized:' + deserializedInvoice.invoiceNumber + ','
+ deserializedInvoice.statementDate.formatGmt('MM/dd/yyyy HH:mm:ss.SSS')
+ ', ' + deserializedInvoice.totalPrice);
system.debug('Original:' + invoices[i].invoiceNumber + ','
+ invoices[i].statementDate.formatGmt('MM/dd/yyyy HH:mm:ss.SSS')
+ ', ' + invoices[i].totalPrice);
i++;

}
}

}

See Also:
Type Methods

JSONGenerator Methods

Contains methods used to serialize Apex objects into JSON content using the standard JSON encoding.

Usage

Since the JSON encoding that's generated by Apex through the serialization method in the System.JSON class isn't identical
to the standard JSON encoding in some cases, the System.JSONGenerator class is provided to enable the generation of
standard JSON-encoded content.

Methods

The following are instance methods of the System.JSONGenerator class.

326

Reference Apex System Methods

DescriptionReturn TypeArgumentsMethod

Closes the JSON generator.

No more content can be written after the JSON generator is
closed.

Voidclose

Returns the generated JSON content.

Also, this method closes the JSON generator if it isn't closed
already.

StringgetAsString

Returns true if the JSON generator is closed; otherwise,
returns false.

BooleanisClosed

Writes the specified Blob value as a base64-encoded string.VoidBlob blobValuewriteBlob

Writes a field name and value pair using the specified field
name and BLOB value.

VoidString fieldName

Blob blobValue

writeBlobField

Writes the specified Boolean value.VoidBoolean
blobValue

writeBoolean

Writes a field name and value pair using the specified field
name and Boolean value.

VoidString fieldName

Boolean
booleanValue

writeBooleanField

Writes the specified date value in the ISO-8601 format.VoidDate dateValuewriteDate

Writes a field name and value pair using the specified field
name and date value. The date value is written in the
ISO-8601 format.

VoidString fieldName

Date dateValue

writeDateField

Writes the specified date and time value in the ISO-8601
format.

VoidDatetime
datetimeValue

writeDateTime

Writes a field name and value pair using the specified field
name and date and time value. The date and time value is
written in the ISO-8601 format.

VoidString fieldName

Datetime
datetimeValue

writeDateTimeField

Writes the ending marker of a JSON array (']').VoidwriteEndArray

Writes the ending marker of a JSON object ('}').VoidwriteEndObject

Writes a field name.VoidString fieldNamewriteFieldName

Writes the specified ID value.VoidID identifierwriteId

Writes a field name and value pair using the specified field
name and identifier value.

VoidString fieldName

Id identifier

writeIdField

Writes the JSON null literal value.VoidwriteNull

Writes a field name and value pair using the specified field
name and the JSON null literal value.

VoidString fieldNamewriteNullField

Writes the specified decimal value.VoidDecimal numberwriteNumber

Writes the specified double value.VoidDouble numberwriteNumber

327

Reference Apex System Methods

DescriptionReturn TypeArgumentsMethod

Writes the specified integer value.VoidInteger numberwriteNumber

Writes the specified long value.VoidLong numberwriteNumber

Writes a field name and value pair using the specified field
name and decimal value.

VoidString fieldName

Decimal number

writeNumberField

Writes a field name and value pair using the specified field
name and double value.

VoidString fieldName

Double number

writeNumberField

Writes a field name and value pair using the specified field
name and integer value.

VoidString fieldName

Integer number

writeNumberField

Writes a field name and value pair using the specified field
name and long value.

VoidString fieldName

Long number

writeNumberField

Writes the specified Apex object in JSON formatVoidAny type objectwriteObject

Writes a field name and value pair using the specified field
name and Apex object.

VoidString fieldName

Any type object

writeObjectField

Writes the starting marker of a JSON array ('[').VoidwriteStartArray

Writes the starting marker of a JSON object ('{').VoidwriteStartObject

Writes the specified string value.VoidString
stringValue

writeString

Writes a field name and value pair using the specified field
name and string value.

VoidString fieldName

String
stringValue

writeStringField

Writes the specified time value in the ISO-8601 format.VoidTime timeValuewriteTime

Writes a field name and value pair using the specified field
name and time value in the ISO-8601 format.

VoidString fieldName

Time timeValue

writeTimeField

JSONGenerator Sample

This example generates a JSON string by using the methods of JSONGenerator.

public class JSONGeneratorSample{

public class A {
String str;

public A(String s) { str = s; }
}

static void generateJSONContent() {
// Create a JSONGenerator object.
// Pass true to the constructor for pretty print formatting.
JSONGenerator gen = JSON.createGenerator(true);

328

Reference Apex System Methods

// Create a list of integers to write to the JSON string.
List<integer> intlist = new List<integer>();
intlist.add(1);
intlist.add(2);
intlist.add(3);

// Create an object to write to the JSON string.
A x = new A('X');

// Write data to the JSON string.
gen.writeStartObject();
gen.writeNumberField('abc', 1.21);
gen.writeStringField('def', 'xyz');
gen.writeFieldName('ghi');
gen.writeStartObject();

gen.writeObjectField('aaa', intlist);

gen.writeEndObject();

gen.writeFieldName('Object A');

gen.writeObject(x);

gen.writeEndObject();

// Get the JSON string.
String pretty = gen.getAsString();

System.assertEquals('{\n' +
' "abc" : 1.21,\n' +
' "def" : "xyz",\n' +
' "ghi" : {\n' +
' "aaa" : [1, 2, 3]\n' +
' },\n' +
' "Object A" : {\n' +
' "str" : "X"\n' +
' }\n' +
'}', pretty);

}
}

JSONParser Methods

Represents a parser for JSON-encoded content.

Usage

Use the System.JSONParser methods to parse a response that's returned from a call to an external service that is in JSON
format, such as a JSON-encoded response of a Web service callout.

Methods

The following are instance methods of the System.JSONParser class.

DescriptionReturn TypeArgumentsMethod

Removes the current token.

After this method is called, a call to hasCurrentToken returns
false and a call to getCurrentToken returns null. You

VoidclearCurrentToken

329

Reference Apex System Methods

DescriptionReturn TypeArgumentsMethod

can retrieve the cleared token by calling
getLastClearedToken.

Returns the current token as a BLOB value.

The current token must be of type
JSONToken.VALUE_STRING and must be Base64-encoded.

BlobgetBlobValue

Returns the current token as a Boolean value.

The current token must be of type JSONToken.VALUE_TRUE
or JSONToken.VALUE_FALSE.

BooleangetBooleanValue

The following example parses a sample JSON string and
retrieves a Boolean value.

String JSONContent =
'{"isActive":true}';

JSONParser parser =
JSON.createParser(JSONContent);

// Advance to the start object marker.
parser.nextToken();
// Advance to the next value.
parser.nextValue();
// Get the Boolean value.
Boolean isActive = parser.getBooleanValue();

Returns the name associated with the current token.

If the current token is of type JSONToken.FIELD_NAME, this
method returns the same value as getText. If the current token

StringgetCurrentName

is a value, this method returns the field name that precedes this
token. For other values such as array values or root-level values,
this method returns null.

The following example parses a sample JSON string. It advances
to the field value and retrieves its corresponding field name.

String JSONContent = '{"firstName":"John"}';
JSONParser parser =

JSON.createParser(JSONContent);
// Advance to the start object marker.
parser.nextToken();
// Advance to the next value.
parser.nextValue();
// Get the field name for the current value.
String fieldName = parser.getCurrentName();
// Get the textual representation
// of the value.
String fieldValue = parser.getText();

330

Reference Apex System Methods

DescriptionReturn TypeArgumentsMethod

Returns the token that the parser currently points to or null
if there's no current token.

The following example iterates through all the tokens in a
sample JSON string.

String JSONContent = '{"firstName":"John"}';
JSONParser parser =

System.JSONTokengetCurrentToken

JSON.createParser(JSONContent);
// Advance to the next token.
while (parser.nextToken() != null) {

System.debug('Current token: ' +
parser.getCurrentToken());

}

Returns the current token as a date and time value.

The current token must be of type
JSONToken.VALUE_STRING and must represent a Datetime
value in the ISO-8601 format.

DatetimegetDatetimeValue

The following example parses a sample JSON string and
retrieves a Datetime value.

String JSONContent =
'{"transactionDate":"2011-03-22T13:01:23"}';
JSONParser parser =

JSON.createParser(JSONContent);
// Advance to the start object marker.
parser.nextToken();
// Advance to the next value.
parser.nextValue();
// Get the transaction date.
Datetime transactionDate =

parser.getDatetimeValue();

Returns the current token as a date value.

The current token must be of type
JSONToken.VALUE_STRING and must represent a Date value
in the ISO-8601 format.

DategetDateValue

The following example parses a sample JSON string and
retrieves a Date value.

String JSONContent =
'{"dateOfBirth":"2011-03-22"}';

JSONParser parser =
JSON.createParser(JSONContent);

// Advance to the start object marker.
parser.nextToken();
// Advance to the next value.
parser.nextValue();
// Get the date of birth.
Date dob = parser.getDateValue();

331

Reference Apex System Methods

DescriptionReturn TypeArgumentsMethod

Returns the current token as a decimal value.

The current token must be of type
JSONToken.VALUE_NUMBER_FLOAT or

DecimalgetDecimalValue

JSONToken.VALUE_NUMBER_INT and is a numerical value
that can be converted to a value of type Decimal.

The following example parses a sample JSON string and
retrieves a Decimal value.

String JSONContent =
'{"GPA":3.8}';

JSONParser parser =
JSON.createParser(JSONContent);

// Advance to the start object marker.
parser.nextToken();
// Advance to the next value.
parser.nextValue();
// Get the GPA score.
Decimal gpa = parser.getDecimalValue();

Returns the current token as a double value.

The current token must be of type
JSONToken.VALUE_NUMBER_FLOAT and is a numerical value
that can be converted to a value of type Double.

DoublegetDoubleValue

The following example parses a sample JSON string and
retrieves a Double value.

String JSONContent =
'{"GPA":3.8}';

JSONParser parser =
JSON.createParser(JSONContent);

// Advance to the start object marker.
parser.nextToken();
// Advance to the next value.
parser.nextValue();
// Get the GPA score.
Double gpa = parser.getDoubleValue();

Returns the current token as an ID value.

The current token must be of type
JSONToken.VALUE_STRING and must be a valid ID.

IDgetIdValue

The following example parses a sample JSON string and
retrieves an ID value.

String JSONContent =
'{"recordId":"001R0000002nO6H"}';

JSONParser parser =
JSON.createParser(JSONContent);

// Advance to the start object marker.
parser.nextToken();
// Advance to the next value.
parser.nextValue();

332

Reference Apex System Methods

DescriptionReturn TypeArgumentsMethod

// Get the record ID.
ID recordID = parser.getIdValue();

Returns the current token as an integer value.

The current token must be of type
JSONToken.VALUE_NUMBER_INT and must represent an
Integer.

IntegergetIntegerValue

The following example parses a sample JSON string and
retrieves an Integer value.

String JSONContent =
'{"recordCount":10}';

JSONParser parser =
JSON.createParser(JSONContent);

// Advance to the start object marker.
parser.nextToken();
// Advance to the next value.
parser.nextValue();
// Get the record count.
Integer count = parser.getIntegerValue();

Returns the last token that was cleared by the
clearCurrentToken method.

System.JSONTokengetLastClearedToken

Returns the current token as a long value.

The current token must be of type
JSONToken.VALUE_NUMBER_INT and is a numerical value
that can be converted to a value of type Long .

LonggetLongValue

The following example parses a sample JSON string and
retrieves a Long value.

String JSONContent =
'{"recordCount":2097531021}';

JSONParser parser =
JSON.createParser(JSONContent);

// Advance to the start object marker.
parser.nextToken();
// Advance to the next value.
parser.nextValue();
// Get the record count.
Long count = parser.getLongValue();

Returns the textual representation of the current token or null
if there's no current token.

No current token exists, and therefore this method returns null,
if nextToken has not been called yet for the first time or if the
parser has reached the end of the input stream.

StringgetText

For an example, see getCurrentName on page 330.

333

Reference Apex System Methods

DescriptionReturn TypeArgumentsMethod

Returns the current token as a time value.

The current token must be of type
JSONToken.VALUE_STRING and must represent a Time value
in the ISO-8601 format.

TimegetTimeValue

The following example parses a sample JSON string and
retrieves a Datetime value.

String JSONContent =
'{"arrivalTime":"18:05"}';

JSONParser parser =
JSON.createParser(JSONContent);

// Advance to the start object marker.
parser.nextToken();
// Advance to the next value.
parser.nextValue();
// Get the arrival time.
Time arrivalTime = parser.getTimeValue();

Returns true if the parser currently points to a token; otherwise,
returns false.

BooleanhasCurrentToken

Returns the next token or null if the parser has reached the
end of the input stream.

Advances the stream enough to determine the type of the next
token, if any.

System.JSONTokennextToken

For an example, see getCurrentName on page 330.

Returns the next token that is a value type or null if the parser
has reached the end of the input stream.

Advances the stream enough to determine the type of the next
token that is of a value type, if any, including a JSON array and
object start and end markers.

System.JSONTokennextValue

For an example, see getCurrentName on page 330.

Deserializes JSON content into an object of the specified Apex
type and returns the deserialized object.

The apexType argument specifies the type of the object that
this method returns after deserializing the current value.

Any typeSystem.Type
apexType

readValueAs

If the JSON content to parse contains attributes not present in
the Apex type specified in the argument, such as a missing field
or object, this method ignores these attributes and parses the
rest of the JSON content. However, for Apex saved using
Salesforce.com API version 24.0 or earlier, this method throws
a run-time exception for missing attributes.

334

Reference Apex System Methods

DescriptionReturn TypeArgumentsMethod

The following example parses a sample JSON string and
retrieves a Datetime value. Before being able to run this sample,
you must create a new Apex class as follows:

public class Person {
public String name;
public String phone;

}

Next, insert the following sample in a class method:

// JSON string that contains a Person object.
String JSONContent =

'{"person":{' +
'"name":"John Smith",' +
'"phone":"555-1212"}}';

JSONParser parser =
JSON.createParser(JSONContent);

// Make calls to nextToken()
// to point to the second
// start object marker.
parser.nextToken();
parser.nextToken();
parser.nextToken();
// Retrieve the Person object
// from the JSON string.
Person obj =

(Person)parser.readValueAs(
Person.class);

System.assertEquals(
obj.name, 'John Smith');

System.assertEquals(
obj.phone, '555-1212');

Deserializes JSON content into an object of the specified Apex
type and returns the deserialized object. All attributes in the

Any typeSystem.Type
apexType

readValueAsStrict

JSON content must be present in the specified type.The
apexType argument specifies the type of the object that this
method returns after deserializing the current value.

If the JSON content to parse contains attributes not present in
the Apex type specified in the argument, such as a missing field
or object, this method throws a run-time exception.

The following example parses a sample JSON string and
retrieves a Datetime value. Before being able to run this sample,
you must create a new Apex class as follows:

public class Person {
public String name;
public String phone;

}

Next, insert the following sample in a class method:

// JSON string that contains a Person object.
String JSONContent =

335

Reference Apex System Methods

DescriptionReturn TypeArgumentsMethod

'{"person":{' +
'"name":"John Smith",' +
'"phone":"555-1212"}}';

JSONParser parser =
JSON.createParser(JSONContent);

// Make calls to nextToken()
// to point to the second
// start object marker.
parser.nextToken();
parser.nextToken();
parser.nextToken();
// Retrieve the Person object
// from the JSON string.
Person obj =

(Person)parser.readValueAsStrict(
Person.class);

System.assertEquals(
obj.name, 'John Smith');

System.assertEquals(
obj.phone, '555-1212');

Skips all child tokens of type JSONToken.START_ARRAY and
JSONToken.START_OBJECT that the parser currently points
to.

VoidskipChildren

Sample: Parsing a JSON Response from a Web Service Callout

This example shows how to parse a JSON-formatted response using JSONParser methods. This example makes a callout
to a Web service that returns a response in JSON format. Next, the response is parsed to get all the totalPrice field values and
compute the grand total price. Before you can run this sample, you must add the Web service endpoint URL as an authorized
remote site in the Database.com user interface. To do this, log in to Database.com and select Security Controls > Remote
Site Settings.

public class JSONParserUtil {
@future(callout=true)
public static void parseJSONResponse() {

Http httpProtocol = new Http();
// Create HTTP request to send.
HttpRequest request = new HttpRequest();
// Set the endpoint URL.
String endpoint = 'http://www.cheenath.com/tutorial/sfdc/sample1/response.php';
request.setEndPoint(endpoint);
// Set the HTTP verb to GET.
request.setMethod('GET');
// Send the HTTP request and get the response.
// The response is in JSON format.
HttpResponse response = httpProtocol.send(request);
System.debug(response.getBody());
/* The JSON response returned is the following:
String s = '{"invoiceList":[' +
'{"totalPrice":5.5,"statementDate":"2011-10-04T16:58:54.858Z","lineItems":[' +

'{"UnitPrice":1.0,"Quantity":5.0,"ProductName":"Pencil"},' +
'{"UnitPrice":0.5,"Quantity":1.0,"ProductName":"Eraser"}],' +

'"invoiceNumber":1},' +
'{"totalPrice":11.5,"statementDate":"2011-10-04T16:58:54.858Z","lineItems":[' +

'{"UnitPrice":6.0,"Quantity":1.0,"ProductName":"Notebook"},' +
'{"UnitPrice":2.5,"Quantity":1.0,"ProductName":"Ruler"},' +
'{"UnitPrice":1.5,"Quantity":2.0,"ProductName":"Pen"}],"invoiceNumber":2}' +

']}';

336

Reference Apex System Methods

*/

// Parse JSON response to get all the totalPrice field values.
JSONParser parser = JSON.createParser(response.getBody());
Double grandTotal = 0.0;
while (parser.nextToken() != null) {

if ((parser.getCurrentToken() == JSONToken.FIELD_NAME) &&
(parser.getText() == 'totalPrice')) {
// Get the value.
parser.nextToken();
// Compute the grand total price for all invoices.
grandTotal += parser.getDoubleValue();

}
}
system.debug('Grand total=' + grandTotal);

}
}

Sample: Parsing a JSON String and Deserializing It into Objects

This example uses a hardcoded JSON string, which is the same JSON string returned by the callout in the previous example.
In this example, the entire string is parsed into Invoice objects using the readValueAs method. It also uses the
skipChildren method to skip the child array and child objects and to be able to parse the next sibling invoice in the list.
The parsed objects are instances of the Invoice class that is defined as an inner class. Since each invoice contains line items,
the class that represents the corresponding line item type, the LineItem class, is also defined as an inner class. Add this
sample code to a class to use it.

public static void parseJSONString() {
String jsonStr =

'{"invoiceList":[' +
'{"totalPrice":5.5,"statementDate":"2011-10-04T16:58:54.858Z","lineItems":[' +

'{"UnitPrice":1.0,"Quantity":5.0,"ProductName":"Pencil"},' +
'{"UnitPrice":0.5,"Quantity":1.0,"ProductName":"Eraser"}],' +

'"invoiceNumber":1},' +
'{"totalPrice":11.5,"statementDate":"2011-10-04T16:58:54.858Z","lineItems":[' +

'{"UnitPrice":6.0,"Quantity":1.0,"ProductName":"Notebook"},' +
'{"UnitPrice":2.5,"Quantity":1.0,"ProductName":"Ruler"},' +
'{"UnitPrice":1.5,"Quantity":2.0,"ProductName":"Pen"}],"invoiceNumber":2}' +

']}';

// Parse entire JSON response.
JSONParser parser = JSON.createParser(jsonStr);
while (parser.nextToken() != null) {

// Start at the array of invoices.
if (parser.getCurrentToken() == JSONToken.START_ARRAY) {

while (parser.nextToken() != null) {
// Advance to the start object marker to
// find next invoice statement object.
if (parser.getCurrentToken() == JSONToken.START_OBJECT) {

// Read entire invoice object, including its array of line items.
Invoice inv = (Invoice)parser.readValueAs(Invoice.class);
system.debug('Invoice number: ' + inv.invoiceNumber);
system.debug('Size of list items: ' + inv.lineItems.size());
// For debugging purposes, serialize again to verify what was parsed.
String s = JSON.serialize(inv);
system.debug('Serialized invoice: ' + s);

// Skip the child start array and start object markers.
parser.skipChildren();

}
}

}
}

}

337

Reference Apex System Methods

// Inner classes used for serialization by readValuesAs().

public class Invoice {
public Double totalPrice;
public DateTime statementDate;
public Long invoiceNumber;
List<LineItem> lineItems;

public Invoice(Double price, DateTime dt, Long invNumber, List<LineItem> liList) {
totalPrice = price;
statementDate = dt;
invoiceNumber = invNumber;
lineItems = liList.clone();

}
}

public class LineItem {
public Double unitPrice;
public Double quantity;
public String productName;

}

The System.JSONToken Enum

DescriptionEnum Value

The ending of an array value. This token is returned when ']'
is encountered.

END_ARRAY

The ending of an object value. This token is returned when
'}' is encountered.

END_OBJECT

A string token that is a field name.FIELD_NAME

The requested token isn't available.NOT_AVAILABLE

The start of an array value. This token is returned when '[' is
encountered.

START_ARRAY

The start of an object value. This token is returned when '{'
is encountered.

START_OBJECT

An embedded object that isn't accessible as a typical object
structure that includes the start and end object tokens

VALUE_EMBEDDED_OBJECT

START_OBJECT and END_OBJECT but is represented
as a raw object.

The literal “false” value.VALUE_FALSE

The literal “null” value.VALUE_NULL

A float value.VALUE_NUMBER_FLOAT

An integer value.VALUE_NUMBER_INT

A string value.VALUE_STRING

338

Reference Apex System Methods

DescriptionEnum Value

A value that corresponds to the “true” string literal.VALUE_TRUE

See Also:
Type Methods

Limits Methods

Because Apex runs in a multitenant environment, the Apex runtime engine strictly enforces a number of limits to ensure that
runaway Apex does not monopolize shared resources.

The Limits methods return the specific limit for the particular governor, such as the number of calls of a method or the amount
of heap size remaining.

None of the Limits methods require an argument. The format of the limits methods is as follows:

myDMLLimit = Limits.getDMLStatements();

There are two versions of every method: the first returns the amount of the resource that has been used while the second
version contains the word limit and returns the total amount of the resource that is available.

See Understanding Execution Governors and Limits on page 203.

DescriptionReturn
Type

Name

Returns the number of aggregate queries that have been
processed with any SOQL query statement.

IntegergetAggregateQueries

Returns the total number of aggregate queries that can be
processed with SOQL query statements.

IntegergetLimitAggregateQueries

Returns the number of Web service statements that have been
processed.

IntegergetCallouts

Returns the total number of Web service statements that can
be processed.

IntegergetLimitCallouts

Returns the number of child relationship objects that have
been returned.

IntegergetChildRelationshipsDescribes

Returns the total number of child relationship objects that can
be returned.

IntegergetLimitChildRelationshipsDescribes

Returns the CPU time (in milliseconds) accumulated on the
Database.com servers in the current transaction.

IntegergetCpuTime

339

Reference Apex System Methods

DescriptionReturn
Type

Name

Returns the time limit (in milliseconds) of CPU usage in the
current transaction.

Returns -1 if called in a context where there is no CPU time
limit such as in a test method.

getLimitCpuTime

Returns the number of records that have been processed with
any DML statement (insertions, deletions) or the
database.EmptyRecycleBin method.

IntegergetDMLRows

Returns the total number of records that can be processed with
any DML statement or the database.EmptyRecycleBin
method.

IntegergetLimitDMLRows

Returns the number of DML statements (such as insert,
update or the database.EmptyRecycleBin method) that
have been called.

IntegergetDMLStatements

Returns the total number of DML statements or the
database.EmptyRecycleBin methods that can be called.

IntegergetLimitDMLStatements

Returns the number of field describe calls that have been made.IntegergetFieldsDescribes

Returns the total number of field describe calls that can be
made.

IntegergetLimitFieldsDescribes

Returns the number of methods with the future annotation
that have been executed (not necessarily completed).

IntegergetFutureCalls

Returns the total number of methods with the future
annotation that can be executed (not necessarily completed).

IntegergetLimitFutureCalls

Returns the approximate amount of memory (in bytes) that
has been used for the heap.

IntegergetHeapSize

Returns the total amount of memory (in bytes) that can be
used for the heap.

IntegergetLimitHeapSize

Returns the number of SOQL queries that have been issued.IntegergetQueries

Returns the total number of SOQL queries that can be issued.IntegergetLimitQueries

Returns the number of PicklistEntry objects that have been
returned.

IntegergetPicklistDescribes

Returns the total number of PicklistEntry objects that can be
returned.

IntegergetLimitPicklistDescribes

Returns the number of records that have been returned by the
Database.getQueryLocator method.

IntegergetQueryLocatorRows

Returns the total number of records that have been returned
by the Database.getQueryLocator method.

IntegergetLimitQueryLocatorRows

340

Reference Apex System Methods

DescriptionReturn
Type

Name

Returns the number of records that have been returned by
issuing SOQL queries.

IntegergetQueryRows

Returns the total number of records that can be returned by
issuing SOQL queries.

IntegergetLimitQueryRows

Returns the number of RecordTypeInfo objects that have been
returned.

IntegergetRecordTypesDescribes

Returns the total number of RecordTypeInfo objects that can
be returned.

IntegergetLimitRecordTypesDescribes

This method is deprecated. Returns the same value as
getDMLStatements. The number of RunAs methods is no

IntegergetRunAs

longer a separate limit, but is tracked as the number of DML
statements issued.

This method is deprecated. Returns the same value as
getLimitDMLStatements. The number of RunAs methods

IntegergetLimitRunAs

is no longer a separate limit, but is tracked as the number of
DML statements issued.

This method is deprecated. Returns the same value as
getDMLStatements. The number of Rollback methods

IntegergetSavepointRollbacks

is no longer a separate limit, but is tracked as the number of
DML statements issued.

This method is deprecated. Returns the same value as
getLimitDMLStatements. The number of Rollback

IntegergetLimitSavepointRollbacks

methods is no longer a separate limit, but is tracked as the
number of DML statements issued.

This method is deprecated. Returns the same value as
getDMLStatements. The number of setSavepoint

IntegergetSavepoints

methods is no longer a separate limit, but is tracked as the
number of DML statements issued.

This method is deprecated. Returns the same value as
getLimitDMLStatements. The number of setSavepoint

IntegergetLimitSavepoints

methods is no longer a separate limit, but is tracked as the
number of DML statements issued.

Returns the number of Apex statements that have executed.IntegergetScriptStatements

Returns the total number of Apex statements that can execute.IntegergetLimitScriptStatements

Returns the number of SOSL queries that have been issued.IntegergetSoslQueries

Returns the total number of SOSL queries that can be issued.IntegergetLimitSoslQueries

341

Reference Apex System Methods

Math Methods

The following are the system static methods for Math.

DescriptionReturn TypeArgumentsName

Returns the absolute value of the specified DecimalDecimalDecimal dabs

Returns the absolute value of the specified DoubleDoubleDouble dabs

Returns the absolute value of the specified Integer. For
example:

Integer I = -42;
Integer I2 = math.abs(I);
system.assertEquals(I2, 42);

IntegerInteger iabs

Returns the absolute value of the specified LongLongLong labs

Returns the arc cosine of an angle, in the range of 0.0
through pi

DecimalDecimal dacos

Returns the arc cosine of an angle, in the range of 0.0
through pi

DoubleDouble dacos

Returns the arc sine of an angle, in the range of -pi/2
through pi/2

DecimalDecimal dasin

Returns the arc sine of an angle, in the range of -pi/2
through pi/2

DoubleDouble dasin

Returns the arc tangent of an angle, in the range of -pi/2
through pi/2

DecimalDecimal datan

Returns the arc tangent of an angle, in the range of -pi/2
through pi/2

DoubleDouble datan

Converts rectangular coordinates (x and y) to polar (r
and theta). This method computes the phase theta

DecimalDecimal x

Decimal y

atan2

by computing an arc tangent of x/y in the range of -pi
to pi

Converts rectangular coordinates (x and y) to polar (r
and theta). This method computes the phase theta

DoubleDouble x

Double y

atan2

by computing an arc tangent of x/y in the range of -pi
to pi

Returns the cube root of the specified Decimal. The
cube root of a negative value is the negative of the cube
root of that value's magnitude.

DecimalDecimal dcbrt

Returns the cube root of the specified Double. The cube
root of a negative value is the negative of the cube root
of that value's magnitude.

DoubleDouble dcbrt

342

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

Returns the smallest (closest to negative infinity)
Decimal that is not less than the argument and is equal
to a mathematical integer

DecimalDecimal dceil

Returns the smallest (closest to negative infinity) Double
that is not less than the argument and is equal to a
mathematical integer

DoubleDouble dceil

Returns the trigonometric cosine of the angle specified
by d

DecimalDecimal dcos

Returns the trigonometric cosine of the angle specified
by d

DoubleDouble dcos

Returns the hyperbolic cosine of d. The hyperbolic cosine
of d is defined to be (ex + e-x)/2 where e is Euler's
number.

DecimalDecimal dcosh

Returns the hyperbolic cosine of d. The hyperbolic cosine
of d is defined to be (ex + e-x)/2 where e is Euler's
number.

DoubleDouble dcosh

Returns Euler's number e raised to the power of the
specified Decimal

DecimalDecimal dexp

Returns Euler's number e raised to the power of the
specified Double

DoubleDouble dexp

Returns the largest (closest to positive infinity) Decimal
that is not greater than the argument and is equal to a
mathematical integer

DecimalDecimal dfloor

Returns the largest (closest to positive infinity) Double
that is not greater than the argument and is equal to a
mathematical integer

DoubleDouble dfloor

Returns the natural logarithm (base e) of the specified
Decimal

DecimalDecimal dlog

Returns the natural logarithm (base e) of the specified
Double

DoubleDouble dlog

Returns the logarithm (base 10) of the specified DecimalDecimalDecimal dlog10

Returns the logarithm (base 10) of the specified DoubleDoubleDouble dlog10

Returns the larger of the two specified Decimals. For
example:

Decimal larger = math.max(12.3, 156.6);
system.assertEquals(larger, 156.6);

DecimalDecimal d1

Decimal d2

max

343

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

Returns the larger of the two specified DoublesDoubleDouble d1

Double d2

max

Returns the larger of the two specified IntegersIntegerInteger i1

Integer i2

max

Returns the larger of the two specified LongsLongLong l1

Long l2

max

Returns the smaller of the two specified Decimals. For
example:

Decimal smaller = math.min(12.3, 156.6);
system.assertEquals(smaller, 12.3);

DecimalDecimal d1

Decimal d2

min

Returns the smaller of the two specified DoublesDoubleDouble d1

Double d2

min

Returns the smaller of the two specified IntegersIntegerInteger i1

Integer i2

min

Returns the smaller of the two specified LongsLongLong l1

Long l2

min

Returns the remainder of i1 divided by i2. For example:

Integer remainder = math.mod(12, 2);
system.assertEquals(remainder, 0);

IntegerInteger i1

Integer i2

mod

Integer remainder2 = math.mod(8, 3);
system.assertEquals(remainder2, 2);

Returns the remainder of L1 divided by L2LongLong L1

Long L2

mod

Returns the value of the first Double raised to the power
of exp

DoubleDouble d

Double exp

pow

Returns a positive Double that is greater than or equal
to 0.0 and less than 1.0

Doublerandom

Returns the value that is closest in value to d and is equal
to a mathematical integer

DecimalDecimal drint

Returns the value that is closest in value to d and is equal
to a mathematical integer

DoubleDouble drint

344

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

Do not use. This method is deprecated as of the Winter
'08 Release. Instead, use roundToLong or

IntegerDouble dround

round(Decimal d). Returns the closest Integer to the
specified Double by adding 1/2, taking the floor of the
result, and casting the result to type Integer. If the result
is less than -2,147,483,648 or greater than
2,147,483,647, Apex generates an error.

Returns the closest Integer to the specified Decimal by
adding 1/2, taking the floor of the result, and casting
the result to type Integer

IntegerDecimal dround

Returns the closest Long to the specified Decimal by
adding 1/2, taking the floor of the result, and casting
the result to type Long

LongDecimal droundToLong

Returns the closest Long to the specified Double by
adding 1/2, taking the floor of the result, and casting
the result to type Long

LongDouble droundToLong

Returns the signum function of the specified Decimal,
which is 0 if d is 0, 1.0 if d is greater than 0, -1.0 if d is
less than 0

DecimalDecimal dsignum

Returns the signum function of the specified Double,
which is 0 if d is 0, 1.0 if d is greater than 0, -1.0 if d is
less than 0

DoubleDouble dsignum

Returns the trigonometric sine of the angle specified by
d

DecimalDecimal dsin

Returns the trigonometric sine of the angle specified by
d

DoubleDouble dsin

Returns the hyperbolic sine of d. The hyperbolic sine of
d is defined to be (ex - e-x)/2 where e is Euler's number.

DecimalDecimal dsinh

Returns the hyperbolic sine of d. The hyperbolic sine of
d is defined to be (ex - e-x)/2 where e is Euler's number.

DoubleDouble dsinh

Returns the correctly rounded positive square root of dDecimalDecimal dsqrt

Returns the correctly rounded positive square root of dDoubleDouble dsqrt

Returns the trigonometric tangent of the angle specified
by d

DecimalDecimal dtan

Returns the trigonometric tangent of the angle specified
by d

DoubleDouble dtan

Returns the hyperbolic tangent of d. The hyperbolic
tangent of d is defined to be (ex - e-x)/(ex + e-x) where e

DecimalDecimal dtanh

is Euler's number. In other words, it is equivalent to

345

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

sinh(x)/cosinh(x). The absolute value of the exact
tanh is always less than 1.

Returns the hyperbolic tangent of d. The hyperbolic
tangent of d is defined to be (ex - e-x)/(ex + e-x) where e

DoubleDouble dtanh

is Euler's number. In other words, it is equivalent to
sinh(x)/cosinh(x). The absolute value of the exact
tanh is always less than 1.

Apex REST

Apex REST enables you to implement custom Web services in Apex and expose them through the REST architecture. To
expose your Apex class as a REST service, you first define your class with the @RestResource annotation to expose it as a
REST resource. Similarly, you add annotations to the class methods to expose them through REST. For example, you can
add the @HttpGet annotation to your method to expose it as a REST resource that can be called by an HTTP GET request.

DescriptionClass

Contains the RestRequest and RestResponse objects.System.RestContext

Represents an object used to pass data from an HTTP request
to an Apex RESTful Web service method.

System.RestRequest

Represents an object used to pass data from an Apex RESTful
Web service method to an HTTP response.

System.RestResponse

RestContext Methods

Contains the RestRequest and RestResponse objects.

Usage

Use the System.RestContext class to access the RestRequest and RestResponse objects in your Apex REST methods.

Properties

The following are properties of the System.RestContext class.

DescriptionReturn TypeName

Returns the RestRequest for your Apex REST
method.

System.RestRequestrequest

Returns the RestResponse for your Apex REST
method.

System.RestResponseresponse

346

Reference Apex System Methods

Sample

The following example shows how to use RestContext to access the RestRequest and RestResponse objects in an Apex
REST method.

@RestResource(urlMapping='/MyRestContextExample/*')
global with sharing class MyRestContextExample {

@HttpGet
global static Invoice_Statement__c doGet() {

RestRequest req = RestContext.request;
RestResponse res = RestContext.response;
String invId = req.requestURI.substring(

req.requestURI.lastIndexOf('/')+1);
Invoice_Statement__c result =

[SELECT Id, Description__c
FROM Invoice_Statement__c
WHERE Id = :invId];

return result;
}

}

See Also:
Introduction to Apex REST

RestRequest Methods

Represents an object used to pass data from an HTTP request to an Apex RESTful Web service method.

Usage

Use the System.RestRequest class to pass request data into an Apex RESTful Web service method that is defined using
one of the REST annotations.

Methods

The following are instance methods of the System.RestRequest class.

Note: At runtime, you typically don't need to add a header or parameter to the RestRequest object because they
are automatically deserialized into the corresponding properties. The following methods are intended for unit testing
Apex REST classes. You can use them to add header or parameter values to the RestRequest object without having
to recreate the REST method call.

DescriptionReturn TypeArgumentsMethod

Adds a header to the request header map. This method is
intended for unit testing of Apex REST classes.

Please note that the following headers aren't allowed:

VoidString name,
String value

addHeader

• cookie
• set-cookie
• set-cookie2
• content-length
• authorization

347

Reference Apex System Methods

DescriptionReturn TypeArgumentsMethod

If any of these are used, an Apex exception will be thrown.

Adds a parameter to the request params map . This method is
intended for unit testing of Apex REST classes.

VoidString name,
String value

addParameter

Properties

The following are properties of the System.RestRequest class.

Note: While the RestRequest List and Map properties are read-only, their contents are read-write. You can modify
them by calling the collection methods directly or you can use of the associated RestRequest methods shown in the
previous table.

DescriptionReturn TypeName

Returns the headers that are received by the request.Map <String, String>headers

Returns one of the supported HTTP request methods:StringhttpMethod

• DELETE
• GET
• HEAD
• PATCH
• POST
• PUT

Returns the parameters that are received by the request.Map <String, String>params

Returns the IP address of the client making the request.StringremoteAddress

Returns or sets the body of the request.

If the Apex method has no parameters, then Apex REST
copies the HTTP request body into the

BlobrequestBody

RestRequest.requestBody property. If there are
parameters, then Apex REST attempts to deserialize the data
into those parameters and the data won't be deserialized into
the RestRequest.requestBody property.

Returns or sets everything after the host in the HTTP request
string.

StringrequestURI

Sample: An Apex Class with REST Annotated Methods

The following example shows you how to implement the Apex REST API in Apex. This class exposes three methods that
each handle a different HTTP request: GET, DELETE, and POST. You can call these annotated methods from a client by
issuing HTTP requests.

@RestResource(urlMapping='/Invoice_Statement__c/*')
global with sharing class MyRestResource {

@HttpDelete
global static void doDelete() {

RestRequest req = RestContext.request;

348

Reference Apex System Methods

RestResponse res = RestContext.response;
String invId = req.requestURI.substring(

req.requestURI.lastIndexOf('/')+1);
Invoice_Statement__c inv =

[SELECT Id FROM Invoice_Statement__c
WHERE Id = :invId];

delete inv;
}

@HttpGet
global static Invoice_Statement__c doGet() {

RestRequest req = RestContext.request;
RestResponse res = RestContext.response;
String invId = req.requestURI.substring(

req.requestURI.lastIndexOf('/')+1);
Invoice_Statement__c result =

[SELECT Id, Description__c
FROM Invoice_Statement__c
WHERE Id = :invId];

return result;
}

@HttpPost
global static String doPost(String status,

String description) {
Invoice_Statement__c inv = new Invoice_Statement__c();
inv.Status__c = status;
inv.Description__c = description;
insert inv;
return inv.Id;

}
}

See Also:
Introduction to Apex REST

RestResponse Methods

Represents an object used to pass data from an Apex RESTful Web service method to an HTTP response.

Usage

Use the System.RestReponse class to pass response data from an Apex RESTful web service method that is defined using
one of the REST annotations on page 211.

Methods

The following are instance methods of the System.RestResponse class.

Note: At runtime, you typically don't need to add a header to the RestResponse object because it's automatically
deserialized into the corresponding properties. The following methods are intended for unit testing Apex REST
classes. You can use them to add header or parameter values to the RestRequest object without having to recreate
the REST method call.

349

Reference Apex System Methods

DescriptionReturn TypeArgumentsMethod

Adds a header to the response header map.

Please note that the following headers aren't allowed:

VoidString name,
String value

addHeader

• cookie
• set-cookie
• set-cookie2
• content-length
• authorization

If any of these are used, an Apex exception will be thrown.

Properties

The following are properties of the System.RestResponse class.

Note: While the RestResponse List and Map properties are read-only, their contents are read-write. You can
modify them by calling the collection methods directly or you can use of the associated RestResponse methods
shown in the previous table.

DescriptionReturn TypeName

Returns the headers to be sent to the response.Map <String, String>headers

Returns or sets the body of the response.

The response is either the serialized form of the method
return value or it's the value of the responseBody
property based on the following rules:

BlobresponseBody

• If the method returns void, then Apex REST returns
the response in the responseBody property.

• If the method returns a value, then Apex REST
serializes the return value as the response.

Returns or sets the response status code. The supported
status codes are listed in the following table and are a
subset of the status codes defined in the HTTP spec.

IntegerstatusCode

Status Codes

The following are valid response status codes. The status code is returned by the RestResponse.statusCode property.

Note: If you set the RestResponse.statusCode property to a value that's not listed in the table, then an HTTP
status of 500 is returned with the error message “Invalid status code for HTTP response: nnn” where nnn is the invalid
status code value.

DescriptionStatus Code

OK200

CREATED201

350

Reference Apex System Methods

DescriptionStatus Code

ACCEPTED202

NO_CONTENT204

PARTIAL_CONTENT206

MULTIPLE_CHOICES300

MOVED_PERMANENTLY301

FOUND302

NOT_MODIFIED304

BAD_REQUEST400

UNAUTHORIZED401

FORBIDDEN403

NOT_FOUND404

METHOD_NOT_ALLOWED405

NOT_ACCEPTABLE406

CONFLICT409

GONE410

PRECONDITION_FAILED412

REQUEST_ENTITY_TOO_LARGE413

REQUEST_URI_TOO_LARGE414

UNSUPPORTED_MEDIA_TYPE415

EXPECTATION_FAILED417

INTERNAL_SERVER_ERROR500

SERVER_UNAVAILABLE503

Sample: An Apex Class with REST Annotated Methods

See RestRequest Methods for an example of a RESTful Apex service class and methods.

See Also:
Introduction to Apex REST

Search Methods

The following are the system static methods for Search.

351

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

Creates a dynamic SOSL query at runtime. This method
can be used wherever a static SOSL query can be used,
such as in regular assignment statements and for loops.

For more information, see Dynamic SOQL.

sObject[sObject[]]String queryquery

System Methods

The following are the static methods for System.

Note: AnyDataType represents any primitive, object record, array, map, set, or the special value null.

DescriptionReturn TypeArgumentsName

Stops the specified job. The stopped job is
still visible in the job queue in the

VoidString Job_IDabortJob

Database.com user interface. The Job_ID is
the ID associated with either AsyncApexJob
or CronTrigger. One of these IDs is returned
by the following methods:
• System.schedule method—returns

the CronTrigger object ID associated
with the scheduled job as a string.

• getTriggerId method—returns the
CronTrigger object ID associated with
the scheduled job as a string.

• getJobId method—returns the
AsyncApexJob object ID associated with
the batch job as a string.

• Database.executeBatch
method—returns the AsyncApexJob
object ID associated with the batch job
as a string.

Asserts that condition is true. If it is not,
a fatal error is returned that causes code

VoidBoolean
condition,

Any data type
opt_msg

assert

execution to halt. The returned error
optionally contains the custom message
specified in the last argument.

You can’t catch an assertion failure using a
try/catch block even though it is logged as an
exception.

352

Reference Apex System Methods

http://www.salesforce.com/us/developer/docs/dbcom_objects/index_CSH.htm#sforce_api_objects_asyncapexjob.htm
http://www.salesforce.com/us/developer/docs/dbcom_objects/index_CSH.htm#sforce_api_objects_crontrigger.htm

DescriptionReturn TypeArgumentsName

Asserts that the first two arguments, x and
y, are the same. If they are not, a fatal error

VoidAny data type x,

Any data type y,

assertEquals

is returned that causes code execution to halt.
Any data type
opt_msg

The returned error optionally contains the
custom message specified in the last
argument.

The x argument specifies the expected value.

The y argument specifies the actual value.

You can’t catch an assertion failure using a
try/catch block even though it is logged as an
exception.

Asserts that the first two arguments, x and
y are different. If they are the same, a fatal

VoidAny data type x,

Any data type y,

assertNotEquals

error is returned that causes code execution
Any data type
opt_msg

to halt. The returned error optionally
contains the custom message specified in the
last argument.

The x argument specifies the expected value.

The y argument specifies the actual value.

You can’t catch an assertion failure using a
try/catch block even though it is logged as an
exception.

Returns the current time in milliseconds,
which is expressed as the difference between

LongcurrentTimeMillis

the current time and midnight, January 1,
1970 UTC.

Writes the argument msg, in string format,
to the execution debug log. If you do not

VoidAny data type msgdebug

specify a log level, the DEBUG log level is
used. This means that any debug method
with no log level specified, or a log level of
ERROR, WARN, INFO or DEBUG is written to
the debug log.

Note that when a map or set is printed, the
output is sorted in key order and is
surrounded with square brackets ([]). When
an array or list is printed, the output is
enclosed in parentheses (()).

Note: Calls to System.debug are
not counted as part of Apex code
coverage.

353

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

For more information on log levels, see
“Setting Debug Log Filters” in the
Database.com online help.

Specifies the log level for all debug methods.VoidEnum logLevel

Any data type msg

debug

Note: Calls to System.debug are
not counted as part of Apex code
coverage.

Valid log levels are (listed from lowest to
highest):

• ERROR

• WARN

• INFO

• DEBUG

• FINE

• FINER

• FINEST

Log levels are cumulative. For example, if the
lowest level, ERROR, is specified, only
debug methods with the log level of ERROR
are logged. If the next level, WARN, is
specified, the debug log contains debug
methods specified as either ERROR or
WARN.

In the following example, the string MsgTxt
is not written to the debug log because the
log level is ERROR, and the debug method
has a level of INFO.

System.debug
(Logginglevel.ERROR);

System.debug(Logginglevel.INFO,

'MsgTxt');

For more information on log levels, see
“Setting Debug Log Filters” in the
Database.com online help.

Returns the read write mode set for an
organization during Salesforce.com upgrades

System.ApplicationReadWriteModegetApplication
ReadWriteMode

and downtimes. This method returns the
enum System.ApplicationReadWriteMode.
Valid values are:

354

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

• DEFAULT

• READ_ONLY

getApplicationReadWriteMode is
available as part of 5 Minute Upgrade.

Returns true if the currently executing code
is invoked by a batch Apex job; false
otherwise.

Since a future method can't be invoked from
a batch Apex job, use this method to check

BooleanisBatch

if the currently executing code is a batch
Apex job before you invoke a future method.

Returns true if the currently executing code
is invoked by code contained in a method
annotated with future; false otherwise.

Since a future method can't be invoked from
another future method, use this method to

BooleanisFuture

check if the current code is executing within
the context of a future method before you
invoke a future method.

Returns true if the currently executing code
is invoked by a scheduled Apex job; false
otherwise.

BooleanisScheduled

Returns the current date and time in the
GMT time zone.

Datetimenow

Processes the list of work item IDs. For more
information, see Apex Approval Processing
Classes.

List<Id>List<WorkItemIDs>
WorkItemIDs

String Action

process

String Comments

String
NextApprover

Deletes asynchronous Apex job records
(records in AsyncApexJob) for jobs that have

IntegerDate dtpurgeOldAsyncJobs

finished execution before the specified date
with a Completed, Aborted, or Failed status,
and returns the number of records deleted.

The dt argument specifies the date up to
which old records are deleted. The date
comparison is based on the CompletedDate
field of AsyncApexJob, which is in the GMT
time zone.

355

Reference Apex System Methods

http://www.salesforce.com/us/developer/docs/dbcom_objects/index_CSH.htm#sforce_api_objects_asyncapexjob.htm

DescriptionReturn TypeArgumentsName

The system cleans up asynchronous job
records for jobs that have finished execution
and are older than seven days. You can use
this method to further reduce the size of
AsyncApexJob by cleaning up more records.

Each execution of this method counts as a
single row against the governor limit for
DML statements. For more information, see
Understanding Execution Governors and
Limits.

This example shows how to delete all job
records for jobs that have finished before
today’s date.

Integer count =
System.purgeOldAsyncJobs

(Date.today());
System.debug('Deleted ' +

count + ' old jobs.');

Resets the password for the specified user.
When the user logs in with the new

System.ResetPasswordResultID userID

Boolean
send_user_email

resetPassword

password, they are prompted to enter a new
password, and to select a security question
and answer if they haven't already. If you
specify true for send_user_email, the
user is sent an email notifying them that their
password was reset. A link to sign onto
Database.com using the new password is
included in the email. Use setPassword if
you don't want the user to be prompted to
enter a new password when they log in.

Caution: Be careful with this
method, and do not expose this
functionality to end-users.

Changes the current user to the specified
user. All of the specified user's permissions

VoidUser user_varrunAs

and record sharing are enforced during the
execution of runAs. You can only use runAs
in a test method.

Note: The runAs method ignores
user license limits. You can create
new users with runAs even if your

356

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

organization has no additional user
licenses.

The runAs method implicitly inserts the user
that is passed in as parameter if the user has
been instantiated, but not inserted yet.

For more information, see Using the runAs
Method on page 144.

You can also use runAs to perform mixed
DML operations in your test by enclosing
the DML operations within the runAs
block. In this way, you bypass the mixed
DML error that is otherwise returned when
inserting or updating setup objects together
with other sObjects. See sObjects That
Cannot Be Used Together in DML
Operations.

Note: Every call to runAs counts
against the total number of DML
statements issued in the process.

Use schedule with an Apex class that
implements the Schedulable interface to

StringString JobName

String
CronExpression

schedule

schedule the class to run at the time specified
by CronExpression. Use extreme care if

Object
schedulable_class

you are planning to schedule a class from a
trigger. You must be able to guarantee that
the trigger will not add more scheduled
classes than the 25 that are allowed. In
particular, consider API bulk updates, import
wizards, mass record changes through the
user interface, and all cases where more than
one record can be updated at a time.

Note: Database.com only adds the
process to the queue at the scheduled
time. Actual execution may be
delayed based on service availability.

For more information see, Using the
System.Schedule Method on page 359.
Use the abortJob method to stop the job
after it has been scheduled.

Sets the password for the specified user.
When the user logs in with this password,

VoidID userID

String password

setPassword

357

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

they are not prompted to create a new
password. Use resetPassword if you want
the user to go through the reset process and
create their own password.

Caution: Be careful with this
method, and do not expose this
functionality to end-users.

Submits the processed approvals. For more
information, see Apex Approval Processing
Classes.

List<ID>List<WorkItemIDs>
WorkItemIDs

String Comments

submit

String
NextApprover

Returns the current date in the current user's
time zone.

Datetoday

System Logging Levels

Use the loggingLevel enum to specify the logging level for all debug methods.

Valid log levels are (listed from lowest to highest):

• ERROR

• WARN

• INFO

• DEBUG

• FINE

• FINER

• FINEST

Log levels are cumulative. For example, if the lowest level, ERROR, is specified, only debug methods with the log level of
ERROR are logged. If the next level, WARN, is specified, the debug log contains debug methods specified as either ERROR
or WARN.

In the following example, the string MsgTxt is not written to the debug log because the log level is ERROR and the debug
method has a level of INFO:

System.LoggingLevel level = LoggingLevel.ERROR;

System.debug(logginglevel.INFO, 'MsgTxt');

For more information on log levels, see “Setting Debug Log Filters” in the Database.com online help.

Using the System.ApplicationReadWriteMode Enum

Use the System.ApplicationReadWriteMode enum returned by the getApplicationReadWriteMode to
programmatically determine if the application is in read-only mode during Database.com upgrades and downtimes.

358

Reference Apex System Methods

Valid values for the enum are:

• DEFAULT

• READ_ONLY

Example:

public class myClass {
public static void execute() {
ApplicationReadWriteMode mode = System.getApplicationReadWriteMode();

if (mode == ApplicationReadWriteMode.READ_ONLY) {
// Do nothing. If DML operaton is attempted in readonly mode,
// InvalidReadOnlyUserDmlException will be thrown.

} else if (mode == ApplicationReadWriteMode.DEFAULT) {
Invoice_Statement__c inv = new

Invoice_Statement__c(
Description__c='Invoice1');

insert inv;
}

}
}

Using the System.Schedule Method

After you implement a class with the Schedulable interface, use the System.Schedule method to execute it. The scheduler
runs as system: all classes are executed, whether the user has permission to execute the class or not.

Note: Use extreme care if you are planning to schedule a class from a trigger. You must be able to guarantee that the
trigger will not add more scheduled classes than the 25 that are allowed. In particular, consider API bulk updates,
import wizards, mass record changes through the user interface, and all cases where more than one record can be
updated at a time.

The System.Schedule method takes three arguments: a name for the job, an expression used to represent the time and
date the job is scheduled to run, and the name of the class. This expression has the following syntax:

Seconds Minutes Hours Day_of_month Month Day_of_week optional_year

Note: Database.com only adds the process to the queue at the scheduled time. Actual execution may be delayed based
on service availability.

The System.Schedule method uses the user's timezone for the basis of all schedules.

The following are the values for the expression:

Special CharactersValuesName

None0–59Seconds

None0–59Minutes

, - * /0–23Hours

, - * ? / L W1–31Day_of_month

, - * /1–12 or the following:Month

• JAN

• FEB

• MAR

359

Reference Apex System Methods

Special CharactersValuesName

• APR

• MAY

• JUN

• JUL

• AUG

• SEP

• OCT

• NOV

• DEC

, - * ? / L #1–7 or the following:Day_of_week

• SUN

• MON

• TUE

• WED

• THU

• FRI

• SAT

, - * /null or 1970–2099optional_year

The special characters are defined as follows:

DescriptionSpecial Character

Delimits values. For example, use JAN, MAR, APR to specify more than one
month.

,

Specifies a range. For example, use JAN-MAR to specify more than one month.-

Specifies all values. For example, if Month is specified as *, the job is scheduled
for every month.

*

Specifies no specific value. This is only available for Day_of_month and
Day_of_week, and is generally used when specifying a value for one and not
the other.

?

Specifies increments. The number before the slash specifies when the intervals
will begin, and the number after the slash is the interval amount. For example,

/

if you specify 1/5 for Day_of_month, the Apex class runs every fifth day of the
month, starting on the first of the month.

Specifies the end of a range (last). This is only available for Day_of_month and
Day_of_week. When used with Day of month, L always means the last day

L

of the month, such as January 31, February 28 for leap years, and so on. When
used with Day_of_week by itself, it always means 7 or SAT. When used with
a Day_of_week value, it means the last of that type of day in the month. For
example, if you specify 2L, you are specifying the last Monday of the month.
Do not use a range of values with L as the results might be unexpected.

360

Reference Apex System Methods

DescriptionSpecial Character

Specifies the nearest weekday (Monday-Friday) of the given day. This is only
available for Day_of_month. For example, if you specify 20W, and the 20th is

W

a Saturday, the class runs on the 19th. If you specify 1W, and the first is a
Saturday, the class does not run in the previous month, but on the third, which
is the following Monday.

Tip: Use the L and W together to specify the last weekday of the month.

Specifies the nth day of the month, in the format weekday#day_of_month.
This is only available for Day_of_week. The number before the # specifies

#

weekday (SUN-SAT). The number after the # specifies the day of the month.
For example, specifying 2#2 means the class runs on the second Monday of
every month.

The following are some examples of how to use the expression.

DescriptionExpression

Class runs every day at 1 PM.0 0 13 * * ?

Class runs the last Friday of every month at 10 PM.0 0 22 ? * 6L

Class runs Monday through Friday at 10 AM.0 0 10 ? * MON-FRI

Class runs every day at 8 PM during the year 2010.0 0 20 * * ? 2010

In the following example, the class proschedule implements the Schedulable interface. The class is scheduled to run at
8 AM, on the 13th of February.

proschedule p = new proschedule();
String sch = '0 0 8 13 2 ?';
system.schedule('One Time Pro', sch, p);

System.ResetPasswordResult Object

A System.ResetPasswordResult object is returned by the System.ResetPassword method. This can be used to access the
generated password.

The following is the instance method for the System.ResetPasswordResult object:

DescriptionReturnsArgumentsMethod

Returns the password
generated as a result of the

StringgetPassword

System.ResetPassword
method that instantiated this

361

Reference Apex System Methods

DescriptionReturnsArgumentsMethod

System.ResetPasswordResult
object.

See Also:
Batch Apex
Future Annotation
Apex Scheduler

Test Methods

The following are the system static methods for Test.

DescriptionReturn TypeArgumentsName

Returns true if the currently executing code
was called by code contained in a method

BooleanisRunningTest

defined as testMethod, false otherwise.
Use this method if you need to run different
code depending on whether it was being called
from a test.

Defines a list of fixed search results to be
returned by all subsequent SOSL statements

VoidID[]
opt_set_search_results

setFixedSearchResults

in a test method. If
opt_set_search_results is not specified,
all subsequent SOSL queries return no results.

The list of record IDs specified by
opt_set_search_results replaces the
results that would normally be returned by the
SOSL queries if they were not subject to any
WHERE or LIMIT clauses. If these clauses exist
in the SOSL queries, they are applied to the
list of fixed search results.

For more information, see Adding SOSL
Queries to Unit Tests on page 145.

Sets the application mode for an organization
to read-only in an Apex test to simulate

VoidBoolean application_modesetReadOnlyApplicationMode

read-only mode during Database.com
upgrades and downtimes. The application
mode is reset to the default mode at the end
of each Apex test run.

setReadOnlyApplicationMode is
available as part of 5 Minute Upgrade. See also

362

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

the getApplicationReadWriteMode
System method.

Marks the point in your test code when your
test actually begins. Use this method when

VoidstartTest

you are testing governor limits. You can also
use this method with stopTest to ensure
that all asynchronous calls that come after the
startTest method are run before doing any
assertions or testing. Each testMethod is
allowed to call this method only once. All of
the code before this method should be used
to initialize variables, populate data structures,
and so on, allowing you to set up everything
you need to run your test. Any code that
executes after the call to startTest and
before stopTest is assigned a new set of
governor limits.

Marks the point in your test code when your
test ends. Use this method in conjunction with

VoidstopTest

the startTest method. Each testMethod
is allowed to call this method only once. Any
code that executes after the stopTest method
is assigned the original limits that were in
effect before startTest was called. All
asynchronous calls made after the startTest
method are collected by the system. When
stopTest is executed, all asynchronous
processes are run synchronously.

Note: Asynchronous calls, such as
@future or executeBatch, called
in a startTest, stopTest block,
do not count against your limits for
the number of queued jobs.

setReadOnlyApplicationMode Example

The following example sets the application mode to read only and attempts to insert a new invoice statement record, which
results in the exception. It then resets the application mode and performs a successful insert.

@isTest
private class ApplicationReadOnlyModeTestClass {
public static testmethod void test() {
// Create an invoice statement that is used for querying later.
Invoice_Statement__c inv = new Invoice_Statement__c(

Description__c='Test Invoice 1');
insert inv;

363

Reference Apex System Methods

// Set the application read only mode.
Test.setReadOnlyApplicationMode(true);

// Verify that the application is in read-only mode.
System.assertEquals(

ApplicationReadWriteMode.READ_ONLY,
System.getApplicationReadWriteMode());

// Create a new invoice statement object.
Invoice_Statement__c inv2 = new Invoice_Statement__c(

Description__c='Test Invoice 2');

try {
// Get the test invoice created earlier. Should be successful.
Invoice_Statement__c testInvoiceFromDb =
[SELECT Id FROM Invoice_Statement__c
WHERE Description__c = 'Test Invoice 1'];

System.assertEquals(inv.Id, testInvoiceFromDb.Id);

// Inserts should result in the InvalidReadOnlyUserDmlException
// being thrown.
insert inv2;
System.assertEquals(false, true);

} catch (System.InvalidReadOnlyUserDmlException e) {
// Expected

}
// Insertion should work after read only application mode gets disabled.
Test.setReadOnlyApplicationMode(false);

insert inv2;
Invoice_Statement__c testInvoice2FromDb =

[SELECT Id FROM Invoice_Statement__c
WHERE Description__c = 'Test Invoice 2'];

System.assertEquals(inv2.Id, testInvoice2FromDb.Id);
}

}

Type Methods

Contains methods for getting the Apex type that corresponds to an Apex class and for instantiating new types.

Usage

Use the forName methods to retrieve the type of an Apex class, which can be a built-in or a user-defined class. Also, use the
newInstance method if you want to instantiate a Type that implements an interface and call its methods while letting
someone else provide the methods’ implementation.

Methods

The following are static methods of the System.Type class.

DescriptionReturn TypeArgumentsMethod

Returns the type that corresponds to the specified
fully qualified class name.

The fullyQualifiedName argument is the fully
qualified name of the class to get the type of. The

System.TypeString
fullyQualifiedName

forName

fully qualified class name contains the namespace
name, if any.

364

Reference Apex System Methods

DescriptionReturn TypeArgumentsMethod

This example shows how to get the type that
corresponds to fully qualified class name
MyNamespace.ClassName.

Type myType =

Type.forName('MyNamespace.ClassName');

Returns the type that corresponds to the specified
namespace and class name.

The namespace argument is the namespace of
the class.

System.TypeString namespace

String name

forName

The name argument is the name of the class.

If the class doesn't have a namespace, set the
namespace argument to null or call
forName(fullyQualifiedName) and pass it
the name of the class.

This example shows how to get the type that
corresponds to the ClassName class and the
MyNamespace namespace.

Type myType =
Type.forName('MyNamespace',

'ClassName');

The following are instance methods of the System.Type class.

DescriptionReturn TypeMethod

Returns the name of the current type.

This example shows how to get a Type’s name. It first obtains
a Type by calling forName, then calls getName on the Type
object.

Type t =
Type.forName('MyClassName');

StringgetName

String typeName =
t.getName();

System.assertEquals('MyClassName',
typeName);

Creates an instance of the current type and returns this new
instance.

This method enables you to instantiate a Type that implements
an interface and call its methods while letting someone else
provide the methods’ implementation.

Any typenewInstance

365

Reference Apex System Methods

DescriptionReturn TypeMethod

This example shows how to create an instance of a Type. It
first gets a Type by calling forName with the name of a class,
then calls newInstance on this Type object. The newObj
instance is declared with the interface type that the ShapeImpl
class implements.

Type t =
Type.forName('ShapeImpl');

Shape newObj =
t.newInstance();

Sample: Instantiating a Type Based on Its Name

The following sample shows how to use the Type methods to instantiate a Type based on its name.

In this sample, Vehicle represents the interface that the VehicleImpl class implements. The last class contains the code
sample that invokes the methods implemented in VehicleImpl.

This is the Vehicle interface.

global interface Vehicle {
Long getMaxSpeed();
String getType();

}

This is the implementation of the Vehicle interface.

global class VehicleImpl implements Vehicle {
global Long getMaxSpeed() { return 100; }
global String getType() { return 'Sedan'; }

}

The method in this class gets the name of the class that implements the Vehicle interface through a custom setting value.
It then instantiates this class by getting the corresponding type and calling the newInstance method. Next, it invokes the
methods implemented in VehicleImpl. This sample requires that you create a public list custom setting named
CustomImplementation with a text field named className. Create one record for this custom setting with a data set
name of Vehicle and a class name value of VehicleImpl.

public class CustomerImplInvocationClass {

public static void invokeCustomImpl() {
// Get the class name from a custom setting.
// This class implements the Vehicle interface.
CustomImplementation__c cs = CustomImplementation__c.getInstance('Vehicle');

// Get the Type corresponding to the class name
Type t = Type.forName(cs.className__c);

// Instantiate the type.
// The type of the instantiated object
// is the interface.
Vehicle v = (Vehicle)t.newInstance();

// Call the methods that have a custom implementation
System.debug('Max speed: ' + v.getMaxSpeed());

366

Reference Apex System Methods

System.debug('Vehicle type: ' + v.getType());
}

}

Class Property

The class property returns the System.Type of the current object or class. It is exposed on all Apex objects and on all
built-in and user-defined classes. This property can be used instead of forName methods.

You can use this property for the second argument of JSON.deserialize and JSONParser.readValueAs methods to
get the type of the object to deserialize.

URL Methods

Represents a uniform resource locator (URL) and provides access to parts of the URL. Enables access to the base URL of a
Database.com organization.

Usage

Use the methods of the System.URL class to create links to objects in your organization. For example, you can create a link
to a file uploaded as an attachment to a Chatter post by concatenating the Database.com base URL with the file ID, as shown
in the following example:

// Get a file uploaded through Chatter.
ContentDocument doc = [SELECT Id FROM ContentDocument

WHERE Title = 'myfile'];
// Create a link to the file.
String fullFileURL = URL.getSalesforceBaseUrl().toExternalForm() +

'/' + doc.id;
system.debug(fullFileURL);

The following example creates a link to a Database.com record. The full URL is created by concatenating the Database.com
base URL with the record ID.

Invoice_Statement__c inv = [SELECT Id FROM Invoice_Statement__c
WHERE Description__c = 'My invoice' LIMIT 1];

String fullRecordURL = URL.getSalesforceBaseUrl().toExternalForm() + '/' + inv.Id;

Constructors

DescriptionArguments

Creates a new instance of the System.URL class.Default constructor. No arguments.

Creates a new instance of the System.URL class using the specified
protocol, host, port, and file on the host.

String protocol

String host

Integer port

String file

Creates a new instance of the System.URL class using the specified
protocol, host, and file on the host. The default port for the specified
protocol is used.

String protocol

String host

String file

367

Reference Apex System Methods

DescriptionArguments

Creates a new instance of the System.URL class by parsing the specified
spec within the specified context.

For more information about the arguments of this constructor, see the
corresponding URL(java.net.URL, java.lang.String) constructor for Java.

URL context

String spec

Creates a new instance of the System.URL class using the specified string
representation of the URL.

String spec

Methods

The following are static methods for the System.URL class.

DescriptionReturnsMethod

Returns the URL of an entire request for a Database.com
organization.

System.URLgetCurrentRequestUrl

Returns the base URL for a Database.com organization.

For example, https://<unique_string>.database.com.
The unique string in the URL is unique for the organization.

System.URLgetSalesforceBaseUrl

The following are instance methods for the System.URL class.

DescriptionReturnArgumentsMethod

Returns the authority portion of the current
URL.

StringgetAuthority

Returns the default port number of the
protocol associated with the current URL.

Returns -1 if the URL scheme or the stream
protocol handler for the URL doesn't define
a default port number.

IntegergetDefaultPort

Returns the file name of the current URL.StringgetFile

Returns the host name of the current URL.StringgetHost

Returns the path portion of the current
URL.

StringgetPath

Returns the port of the current URL.IntegergetPort

Returns the protocol name of the current
URL. For example, https.

StringgetProtocol

Returns the query portion of the current
URL.

Returns null if no query portion exists.

StringgetQuery

368

Reference Apex System Methods

http://download.oracle.com/javase/6/docs/api/java/net/URL.html#URL%28java.net.URL,%20java.lang.String%29

DescriptionReturnArgumentsMethod

Returns the anchor of the current URL.

Returns null if no query portion exists.

StringgetRef

Gets the UserInfo portion of the current
URL.

Returns null if no UserInfo portion exists.

StringgetUserInfo

Compares the current URL with the
specified URL object, excluding the
fragment component.

Returns true if both URL objects reference
the same remote resource; otherwise, returns
false.

BooleanSystem.URL
URLToCompare

sameFile

For more information about the syntax of
URIs and fragment components, see
RFC3986.

Returns a string representation of the
current URL.

StringtoExternalForm

URL Sample

In this example, the base URL and the full request URL for the current Database.com organization are retrieved. Next, a
URL pointing to a specific invoice statement object is created. Finally, components of the base and full URL are obtained.
This example prints out all the results to the debug log output.

// Create a new invoice that we will create a link for later.
Invoice_Statement__c invoice = new Invoice_Statement__c(

Description__c='My invoice');
insert invoice;

// Get the base URL.
String sfdcBaseURL = URL.getSalesforceBaseUrl().toExternalForm();
System.debug('Base URL: ' + sfdcBaseURL);

// Get the URL for the current request.
String currentRequestURL = URL.getCurrentRequestUrl().toExternalForm();
System.debug('Current request URL: ' + currentRequestURL);

// Create the invoice URL from the base URL.
String invoiceURL = URL.getSalesforceBaseUrl().toExternalForm() +

'/' + invoice.Id;
System.debug('URL of a particular invoice: ' + invoiceURL);

// Get some parts of the base URL.
System.debug('Host: ' + URL.getSalesforceBaseUrl().getHost());
System.debug('Protocol: ' + URL.getSalesforceBaseUrl().getProtocol());

// Get the query string of the current request.
System.debug('Query: ' + URL.getCurrentRequestUrl().getQuery());

369

Reference Apex System Methods

http://tools.ietf.org/html/rfc3986

UserInfo Methods

The following are the system static methods for UserInfo.

DescriptionReturn TypeArgumentsName

Returns the context user's default currency code for
multiple currency organizations or the organization's
currency code for single currency organizations.

StringgetDefaultCurrency

Note: For Apex saved using Salesforce.com
API version 22.0 or earlier,
getDefaultCurrency returns null for
single currency organizations.

Returns the context user's first nameStringgetFirstName

Returns the context user's languageStringgetLanguage

Returns the context user's last nameStringgetLastName

Returns the context user's locale. For example:

String result =
UserInfo.getLocale();

StringgetLocale

System.assertEquals('en_US',
result);

Returns the context user's full name. The format
of the name depends on the language preferences

StringgetName

specified for the organization. The format is one of
the following:
• FirstName LastName

• LastName, FirstName

Returns the context organization's IDStringgetOrganizationId

Returns the context organization's company nameStringgetOrganizationName

Returns the context user's profile IDStringgetProfileId

Returns the session ID for the current session.

For Apex code that is executed asynchronously,
such as @future methods, Batch Apex jobs, or

StringgetSessionId

scheduled Apex jobs, getSessionId returns
null.

As a best practice, ensure that your code handles
both cases – when a session ID is or is not available.

370

Reference Apex System Methods

DescriptionReturn TypeArgumentsName

Returns the default organization theme. Use
getUiThemeDisplayed to determine the theme
actually displayed to the current user.

Valid values are:

StringgetUiTheme

• Theme1

• Theme2

• PortalDefault

• Webstore

Returns the theme being displayed for the current
user.

Valid values are:

StringgetUiThemeDisplayed

• Theme1

• Theme2

• PortalDefault

• Webstore

Returns the context user's IDStringgetUserId

Returns the context user's login nameStringgetUserName

Returns the context user's role IDStringgetUserRoleId

Returns the context user's typeStringgetUserType

Specifies whether the organization uses multiple
currencies

BooleanisMultiCurrencyOrganization

Version Methods

Use the Version methods to get the version of a managed package of a subscriber and to compare package versions.

Usage

A package version is a number that identifies the set of components uploaded in a package. The version number has the format
majorNumber.minorNumber.patchNumber (for example, 2.1.3). The major and minor numbers increase to a chosen value
during every major release. The patchNumber is generated and updated only for a patch release.

A called component can check the version against which the caller was compiled using the System.requestVersion
method and behave differently depending on the caller’s expectations. This allows you to continue to support existing behavior
in classes and triggers in previous package versions while continuing to evolve the code.

The value returned by the System.requestVersion method is an instance of this class with a two-part version number
containing a major and a minor number. Since the System.requestVersion method doesn’t return a patch number, the
patch number in the returned Version object is null.

The System.Version class can also hold also a three-part version number that includes a patch number.

371

Reference Apex System Methods

Constructors

DescriptionArguments

Creates a two-part package version using the specified major and minor
version numbers.

Integer major

Integer minor

Creates a three-part package version using the specified major, minor,
and patch version numbers.

Integer major

Integer minor

Integer patch

Methods

The following are instance methods for the System.Version class.

DescriptionReturn TypeArgumentsMethod

Compares the current version with the
specified version and returns one of the
following values:

IntegerSystem.Version versioncompareTo

• zero if the current package version is
equal to the specified package version

• an Integer value greater than zero if the
current package version is greater than
the specified package version

• an Integer value less than zero if the
current package version is less than the
specified package version

If a two-part version is being compared to
a three-part version, the patch number is
ignored and the comparison is based only
on the major and minor numbers.

Returns the major package version of the of
the calling code.

Integermajor

Returns the minor package version of the
calling code.

Integerminor

Returns the patch package version of the
calling code or null if there is no patch
version.

Integerpatch

Version Sample

This example shows how to use the methods in this class, along with the requestVersion method, to determine the managed
package version of the code that is calling your package.

if (System.requestVersion() == new Version(1,0))
{

// Do something
}

372

Reference Apex System Methods

if ((System.requestVersion().major() == 1)
&& (System.requestVersion().minor() > 0)
&& (System.requestVersion().minor() <=9))

{
// Do something different for versions 1.1 to 1.9

}
else if (System.requestVersion().compareTo(new Version(2,0)) >= 0)
{

// Do something completely different for versions 2.0 or greater
}

See Also:
System Methods

Using Exception Methods

All exceptions support built-in methods for returning the error message and exception type. In addition to the standard
exception class, there are several different types of exceptions:

DescriptionException

Any problem with an asynchronous operation, such as failing to enqueue an asynchronous
call.

AsyncException

Any problem with a Web service operation, such as failing to make a callout to an
external system.

CalloutException

Any problem with a DML statement, such as an insert statement missing a required
field on a record.

DmlException

Any problem with JSON serialization and deserialization operations. For more
information, see the methods of System.JSON, System.JSONParser, and
System.JSONGenerator.

JSONException

Any problem with a list, such as attempting to access an index that is out of bounds.ListException

Any problem with a mathematical operation, such as dividing by zero.MathException

Used specifically by the Iterator next method. This exception is thrown if you try to
access items beyond the end of the list. For example, if iterator.hasNext() ==
false and you call iterator.next(), this exception is thrown.

NoSuchElementException

Any problem with dereferencing null, such as in the following code:

String s;
s.toLowerCase(); // Since s is null, this call causes

// a NullPointerException

NullPointerException

Any problem with SOQL queries, such as assigning a query that returns no records or
more than one record to a singleton sObject variable.

QueryException

A Chatter feature is required for code that has been deployed to an organization that
does not have Chatter enabled.

RequiredFeatureMissing

373

Reference Using Exception Methods

DescriptionException

Any problem with SOSL queries executed with SOAP API search() call, for example,
when the searchString parameter contains less than two characters. For more
information, see the SOAP API Developer's Guide.

SearchException

Any problem with static methods in the Crypto utility class. For more information, see
Crypto Class on page 395.

SecurityException

Any problem with sObject records, such as attempting to change a field in an update
statement that can only be changed during insert.

SObjectException

Any problem with Strings, such as a String that is exceeding your heap size.StringException

Any problem with type conversions, such as attempting to convert the String 'a' to an
Integer using the valueOf method.

TypeException

Any problem with the XmlStream classes, such as failing to read or write XML. For
more information, see XmlStream Classes.

XmlException

The following is an example using the DmlException exception:

Invoice_Statement__c[] invs = new Invoice_Statement__c[]{
new Invoice_Statement__c(Description__c = 'Invoice 1')};

try {
insert invs;

} catch (System.DmlException e) {
for (Integer i = 0; i < e.getNumDml(); i++) {

// Process exception here
System.debug(e.getDmlMessage(i));

}
}

Common Exception Methods
Exception methods are all called by and operate on a particular instance of an exception. The table below describes all instance
exception methods. All types of exceptions have the following methods in common:

DescriptionReturn TypeArgumentsName

Returns the cause of the exception as an exception object.ExceptiongetCause

Returns the line number from where the exception was
thrown.

IntegergetLineNumber

Returns the error message that displays for the user.StringgetMessage

Returns the stack trace as a string.StringgetStackTraceString

Returns the type of exception, such as DmlException,
ListException, MathException, and so on.

StringgetTypeName

Sets the cause for the exception, if one has not already
been set.

VoidsObject ExceptioninitCause

Sets the error message that displays for the user.VoidString ssetMessage

374

Reference Using Exception Methods

http://www.salesforce.com/us/developer/docs/api/index.htm

DMLException and EmailException Methods
In addition to the common exception methods, DMLExceptions and EmailExceptions have the following additional methods:

DescriptionReturn TypeArgumentsName

Returns the names of the field or fields that caused the
error described by the ith failed row.

String []Integer igetDmlFieldNames

Returns the field token or tokens for the field or fields
that caused the error described by the ith failed row.

Schema.sObjectField
[]

Integer igetDmlFields

For more information on field tokens, see Dynamic
Apex.

Returns the ID of the failed record that caused the error
described by the ith failed row.

StringInteger igetDmlId

Returns the original row position of the ith failed row.IntegerInteger igetDmlIndex

Returns the user message for the ith failed row.StringInteger igetDmlMessage

Deprecated. Use getDmlType instead. Returns the Apex
failure code for the ith failed row.

StringInteger igetDmlStatusCode

Returns the value of the System.StatusCode enum. For
example:

try {
insert new Invoice_Statement__c();

System.StatusCodeInteger igetDmlType

} catch (SystemDmlException ex) {
System.assertEquals(

StatusCode.REQUIRED_FIELD_MISSING,
ex.getDmlType(0);

}

For more information about System.StatusCode, see
Enums.

Returns the number of failed rows for DML exceptions.IntegergetNumDml

Apex Classes
Though you can create your classes using Apex, you can also use the system delivered classes for building your application.

• Exception Class

• Pattern and Matcher Classes

• HTTP (RESTful) Services Classes

• XML Classes

• Apex Community Classes

375

Reference Apex Classes

Exception Class

You can create your own exception classes in Apex. Exceptions can be top-level classes, that is, they can have member variables,
methods and constructors, they can implement interfaces, and so on.

Exceptions that you create behave as any other standard exception type, and can be thrown and caught as expected.

User-defined exception class names must end with the string exception, such as “MyException”, “PurchaseException” and
so on. All exception classes automatically extend the system-defined base class exception.

For example, the following code defines an exception type within an anonymous block:

public class MyException extends Exception {}

try {
Integer i;
// Your code here
if (i < 5) throw new MyException();

} catch (MyException e) {
// Your MyException handling code here

}

Like Java classes, user-defined exception types can form an inheritance tree, and catch blocks can catch any portion. For
example:

public class BaseException extends Exception {}
public class OtherException extends BaseException {}

try {
Integer i;
// Your code here
if (i < 5) throw new OtherException('This is bad');

} catch (BaseException e) {
// This catches the OtherException

}

This section contains the following topics:

• Constructing an Exception

• Using Exception Variables

See also Using Exception Methods.

Constructing an Exception

You can construct exceptions:

• With no arguments:

new MyException();

• With a single String argument that specifies the error message:

new MyException('This is bad');

376

Reference Exception Class

• With a single Exception argument that specifies the cause and that displays in any stack trace:

new MyException(e);

• With both a String error message and a chained exception cause that displays in any stack trace:

new MyException('This is bad', e);

For example the following code generates a stack trace with information about both My1Exception and My2Exception:

public class My1Exception extends Exception {}
public class My2Exception extends Exception {}
try {

throw new My1Exception();
} catch (My1Exception e) {

throw new My2Exception('This is bad', e);
}

The following figure shows the stack trace that results from running the code above:

Figure 9: Stack Trace For Exceptions (From Debug Log)

Using Exception Variables

As in Java, variables, arguments, and return types can be declared of type Exception, which is a system-defined based class in
Apex. For example:

Exception e1;
try {

String s = null;
s.tolowercase(); // This will generate a null pointer exception...

} catch (System.NullPointerException e) {
e1 = e; // ...which can be assigned to a variable, or passed

377

Reference Exception Class

// into or out of another method
}

Pattern and Matcher Classes

A regular expression is a string that is used to match another string, using a specific syntax. Apex supports the use of regular
expressions through its Pattern and Matcher classes.

Note: In Apex, Patterns and Matchers, as well as regular expressions, are based on their counterparts in Java.
See http://java.sun.com/j2se/1.5.0/docs/api/index.html?java/util/regex/Pattern.html.

Using Patterns and Matchers

A Pattern is a compiled representation of a regular expression. Patterns are used by Matchers to perform match operations on
a character string. Many Matcher objects can share the same Pattern object, as shown in the following illustration:

Figure 10: Many Matcher objects can be created from the same Pattern object

Regular expressions in Apex follow the standard syntax for regular expressions used in Java. Any Java-based regular expression
strings can be easily imported into your Apex code.

Note: Database.com limits the number of times an input sequence for a regular expression can be accessed to 1,000,000
times. If you reach that limit, you receive a runtime error.

All regular expressions are specified as strings. Most regular expressions are first compiled into a Pattern object: only the String
split method takes a regular expression that isn't compiled.

Generally, after you compile a regular expression into a Pattern object, you only use the Pattern object once to create a Matcher
object. All further actions are then performed using the Matcher object. For example:

// First, instantiate a new Pattern object "MyPattern"
Pattern MyPattern = Pattern.compile('a*b');

// Then instantiate a new Matcher object "MyMatcher"
Matcher MyMatcher = MyPattern.matcher('aaaaab');

378

Reference Pattern and Matcher Classes

http://java.sun.com/j2se/1.5.0/docs/api/index.html?java/util/regex/Pattern.html

// You can use the system static method assert to verify the match
System.assert(MyMatcher.matches());

If you are only going to use a regular expression once, use the Pattern class matches method to compile the expression and
match a string against it in a single invocation. For example, the following is equivalent to the code above:

Boolean Test = Pattern.matches('a*b', 'aaaaab');

Using Regions

A Matcher object finds matches in a subset of its input string called a region. The default region for a Matcher object is always
the entirety of the input string. However, you can change the start and end points of a region by using the region method,
and you can query the region's end points by using the regionStart and regionEnd methods.

The region method requires both a start and an end value. The following table provides examples of how to set one value
without setting the other.

Code ExampleEnd of the RegionStart of the Region

MyMatcher.region(start, MyMatcher.regionEnd());
Leave unchangedSpecify explicitly

MyMatcher.region(MyMatcher.regionStart(), end);
Specify explicitlyLeave unchanged

MyMatcher.region(0, end);
Specify explicitlyReset to the default

Using Match Operations

A Matcher object performs match operations on a character sequence by interpreting a Pattern.

A Matcher object is instantiated from a Pattern by the Pattern's matcher method. Once created, a Matcher object can be
used to perform the following types of match operations:

• Match the Matcher object's entire input string against the pattern using the matches method

• Match the Matcher object's input string against the pattern, starting at the beginning but without matching the entire
region, using the lookingAt method

• Scan the Matcher object's input string for the next substring that matches the pattern using the find method

Each of these methods returns a Boolean indicating success or failure.

After you use any of these methods, you can find out more information about the previous match, that is, what was found, by
using the following Matcher class methods:

• end: Once a match is made, this method returns the position in the match string after the last character that was matched.

• start: Once a match is made, this method returns the position in the string of the first character that was matched.

• group: Once a match is made, this method returns the subsequence that was matched.

379

Reference Pattern and Matcher Classes

Using Bounds

By default, a region is delimited by anchoring bounds, which means that the line anchors (such as ^ or $) match at the region
boundaries, even if the region boundaries have been moved from the start and end of the input string. You can specify whether
a region uses anchoring bounds with the useAnchoringBounds method. By default, a region always uses anchoring bounds.
If you set useAnchoringBounds to false, the line anchors match only the true ends of the input string.

By default, all text located outside of a region is not searched, that is, the region has opaque bounds. However, using transparent
bounds it is possible to search the text outside of a region. Transparent bounds are only used when a region no longer contains
the entire input string. You can specify which type of bounds a region has by using the useTransparentBounds method.

Suppose you were searching the following string, and your region was only the word “STRING”:

This is a concatenated STRING of cats and dogs.

If you searched for the word “cat”, you wouldn't receive a match unless you had transparent bounds set.

Understanding Capturing Groups

During a matching operation, each substring of the input string that matches the pattern is saved. These matching substrings
are called capturing groups.

Capturing groups are numbered by counting their opening parentheses from left to right. For example, in the regular expression
string ((A)(B(C))), there are four capturing groups:

1. ((A)(B(C)))

2. (A)

3. (B(C))

4. (C)

Group zero always stands for the entire expression.

The captured input associated with a group is always the substring of the group most recently matched, that is, that was
returned by one of the Matcher class match operations.

If a group is evaluated a second time using one of the match operations, its previously captured value, if any, is retained if the
second evaluation fails.

Pattern and Matcher Example

The Matcher class end method returns the position in the match string after the last character that was matched. You would
use this when you are parsing a string and want to do additional work with it after you have found a match, such as find the
next match.

In regular expression syntax, ? means match once or not at all, and + means match 1 or more times.

In the following example, the string passed in with the Matcher object matches the pattern since (a(b)?) matches the string
'ab' - 'a' followed by 'b' once. It then matches the last 'a' - 'a' followed by 'b' not at all.

pattern myPattern = pattern.compile('(a(b)?)+');
matcher myMatcher = myPattern.matcher('aba');
System.assert(myMatcher.matches() && myMatcher.hitEnd());

// We have two groups: group 0 is always the whole pattern, and group 1 contains
// the substring that most recently matched--in this case, 'a'.

380

Reference Pattern and Matcher Classes

// So the following is true:

System.assert(myMatcher.groupCount() == 2 &&
myMatcher.group(0) == 'aba' &&
myMatcher.group(1) == 'a');

// Since group 0 refers to the whole pattern, the following is true:

System.assert(myMatcher.end() == myMatcher.end(0));

// Since the offset after the last character matched is returned by end,
// and since both groups used the last input letter, that offset is 3
// Remember the offset starts its count at 0. So the following is also true:

System.assert(myMatcher.end() == 3 &&
myMatcher.end(0) == 3 &&
myMatcher.end(1) == 3);

Pattern Methods

The following are the system static methods for Pattern.

DescriptionReturn TypeArgumentsName

Compiles the regular expression into a Pattern
object.

Pattern objectString regExpcompile

Compiles the regular expression regExp and
tries to match it against s. This method returns

BooleanString regExp

String s

matches

true if the string s matches the regular
expression, false otherwise.

If a pattern is to be used multiple times,
compiling it once and reusing it is more
efficient than invoking this method each time.

Note that the following code example:

Pattern.matches(regExp, input);

produces the same result as this code example:

Pattern.compile(regex).
matcher(input).matches();

Returns a string that can be used to create a
pattern that matches the string s as if it were

StringString squote

a literal pattern. Metacharacters (such as $ or
^) and escape sequences in the input string are
treated as literal characters with no special
meaning.

The following are the instance methods for Pattern.

381

Reference Pattern and Matcher Classes

DescriptionReturn TypeArgumentsName

Creates a Matcher object that matches the
input string regExp against this Pattern object.

Matcher objectString regExpmatcher

Returns the regular expression from which this
Pattern object was compiled.

Stringpattern

Returns a list that contains each substring of
the String that matches this pattern.

The substrings are placed in the list in the
order in which they occur in the String. If s

String[]String ssplit

does not match the pattern, the resulting list
has just one element containing the original
String.

Returns a list that contains each substring of
the String that is terminated either by the

String[]String regExp

Integer limit

split

regular expression regExp that matches this
pattern, or by the end of the String. The
optional limit parameter controls the number
of times the pattern is applied and therefore
affects the length of the list:
• If limit is greater than zero, the pattern

is applied at most limit - 1 times, the list's
length is no greater than limit, and the
list's last entry contains all input beyond
the last matched delimiter.

• If limit is non-positive then the pattern
is applied as many times as possible and the
list can have any length.

• If limit is zero then the pattern is applied
as many times as possible, the list can have
any length, and trailing empty strings are
discarded.

Matcher Methods

The following are the system static methods for Matcher.

DescriptionReturn TypeArgumentsName

Returns a literal replacement string for the specified
string s. The characters in the returned string match the

StringString squoteReplacement

sequence of characters in s. Metacharacters (such as $
or ̂) and escape sequences in the input string are treated
as literal characters with no special meaning.

382

Reference Pattern and Matcher Classes

The following are the instance methods for Matcher.

DescriptionReturnsArgumentsName

Returns the position after the last matched character.Integerend

Returns the position after the last character of the
subsequence captured by the group groupIndex

IntegerInteger groupIndexend

during the previous match operation. If the match
was successful but the group itself did not match
anything, this method returns -1.

Captured groups are indexed from left to right,
starting at one. Group zero denotes the entire
pattern, so the expression m.end(0) is equivalent
to m.end().

See Understanding Capturing Groups.

Attempts to find the next subsequence of the input
sequence that matches the pattern. This method

Booleanfind

returns true if a subsequence of the input sequence
matches this Matcher object's pattern.

This method starts at the beginning of this Matcher
object's region, or, if a previous invocation of the
method was successful and the Matcher object has
not since been reset, at the first character not
matched by the previous match.

If the match succeeds, more information can be
obtained using the start, end, and group
methods.

For more information, see Using Regions.

Resets the Matcher object and then tries to find the
next subsequence of the input sequence that matches

BooleanInteger groupfind

the pattern. This method returns true if a
subsequence of the input sequence matches this
Matcher object's pattern.

If the match succeeds, more information can be
obtained using the start, end, and group
methods.

Returns the input subsequence returned by the
previous match.

Note that some groups, such as (a*), match the
empty string. This method returns the empty string

Stringgroup

when such a group successfully matches the empty
string in the input.

383

Reference Pattern and Matcher Classes

DescriptionReturnsArgumentsName

Returns the input subsequence captured by the
specified group groupIndex during the previous

StringInteger groupIndexgroup

match operation. If the match was successful but the
specified group failed to match any part of the input
sequence, null is returned.

Captured groups are indexed from left to right,
starting at one. Group zero denotes the entire
pattern, so the expression m.group(0) is equivalent
to m.group().

Note that some groups, such as (a*), match the
empty string. This method returns the empty string
when such a group successfully matches the empty
string in the input.

See Understanding Capturing Groups.

Returns the number of capturing groups in this
Matching object's pattern. Group zero denotes the
entire pattern and is not included in this count.

See Understanding Capturing Groups.

IntegergroupCount

Returns true if the Matcher object has anchoring
bounds, false otherwise. By default, a Matcher object
uses anchoring bounds regions.

If a Matcher object uses anchoring bounds, the
boundaries of this Matcher object's region match
start and end of line anchors such as ^ and $.

BooleanhasAnchoringBounds

For more information, see Using Bounds.

Returns true if the Matcher object has transparent
bounds, false if it uses opaque bounds. By default, a
Matcher object uses opaque region boundaries.

For more information, see Using Bounds.

BooleanhasTransparentBounds

Returns true if the end of input was found by the
search engine in the last match operation performed

BooleanhitEnd

by this Matcher object. When this method returns
true, it is possible that more input would have
changed the result of the last search.

Attempts to match the input sequence, starting at
the beginning of the region, against the pattern.

Like the matches method, this method always starts
at the beginning of the region; unlike that method,
it does not require the entire region be matched.

BooleanlookingAt

384

Reference Pattern and Matcher Classes

DescriptionReturnsArgumentsName

If the match succeeds, more information can be
obtained using the start, end, and group
methods.

See Using Regions.

Attempts to match the entire region against the
pattern.

If the match succeeds, more information can be
obtained using the start, end, and group
methods.

Booleanmatches

See Using Regions.

Returns the Pattern object from which this Matcher
object was created.

Pattern objectpattern

Sets the limits of this Matcher object's region. The
region is the part of the input sequence that is

Matcher objectInteger start

Integer end

region

searched to find a match. This method first resets
the Matcher object, then sets the region to start at
the index specified by start and end at the index
specified by end.

Depending on the transparency boundaries being
used, certain constructs such as anchors may behave
differently at or around the boundaries of the region.

See Using Regions and Using Bounds.

Returns the end index (exclusive) of this Matcher
object's region.

See Using Regions.

IntegerregionEnd

Returns the start index (inclusive) of this Matcher
object's region.

See Using Regions.

IntegerregionStart

Replaces every subsequence of the input sequence
that matches the pattern with the replacement string
s.

This method first resets the Matcher object, then
scans the input sequence looking for matches of the

StringString sreplaceAll

pattern. Characters that are not part of any match
are appended directly to the result string; each match
is replaced in the result by the replacement string.
The replacement string may contain references to
captured subsequences.

385

Reference Pattern and Matcher Classes

DescriptionReturnsArgumentsName

Note that backslashes (\) and dollar signs ($) in the
replacement string may cause the results to be
different than if the string was treated as a literal
replacement string. Dollar signs may be treated as
references to captured subsequences, and backslashes
are used to escape literal characters in the
replacement string.

Invoking this method changes this Matcher object's
state. If the Matcher object is to be used in further
matching operations it should first be reset.

Given the regular expression a*b, the input
"aabfooaabfooabfoob", and the replacement
string "-", an invocation of this method on a
Matcher object for that expression would yield the
string "-foo-foo-foo-".

Replaces the first subsequence of the input sequence
that matches the pattern with the replacement string
s.

Note that backslashes (\) and dollar signs ($) in the
replacement string may cause the results to be

StringString sreplaceFirst

different than if the string was treated as a literal
replacement string. Dollar signs may be treated as
references to captured subsequences, and backslashes
are used to escape literal characters in the
replacement string.

Invoking this method changes this Matcher object's
state. If the Matcher object is to be used in further
matching operations it should first be reset.

Given the regular expression dog, the input
"zzzdogzzzdogzzz", and the replacement string
"cat", an invocation of this method on a Matcher
object for that expression would return the string
"zzzcatzzzdogzzz".

Returns true if more input could change a positive
match into a negative one.

If this method returns true, and a match was found,
then more input could cause the match to be lost.

BooleanrequireEnd

If this method returns false and a match was found,
then more input might change the match but the
match won't be lost.

If a match was not found, then requireEnd has no
meaning.

386

Reference Pattern and Matcher Classes

DescriptionReturnsArgumentsName

Resets this Matcher object. Resetting a Matcher
object discards all of its explicit state information.

This method does not change whether the Matcher
object uses anchoring bounds. You must explicitly

Matcher objectreset

use the useAnchoringBounds method to change
the anchoring bounds.

For more information, see Using Bounds.

Resets this Matcher object with the new input
sequence s. Resetting a Matcher object discards all
of its explicit state information.

MatcherString sreset

Returns the start index of the first character of the
previous match.

Integerstart

Returns the start index of the subsequence captured
by the group specified by groupIndex during the

IntegerInteger groupIndexstart

previous match operation. Captured groups are
indexed from left to right, starting at one. Group
zero denotes the entire pattern, so the expression
m.start(0) is equivalent to m.start().

See Understanding Capturing Groups on page 380.

Sets the anchoring bounds of the region for the
Matcher object. By default, a Matcher object uses
anchoring bounds regions.

If you specify true for this method, the Matcher
object uses anchoring bounds. If you specify false,
non-anchoring bounds are used.

Matcher objectBoolean buseAnchoringBounds

If a Matcher object uses anchoring bounds, the
boundaries of this Matcher object's region match
start and end of line anchors such as ^ and $.

For more information, see Using Bounds on page
380.

Changes the Pattern object that the Matcher object
uses to find matches. This method causes the

Matcher objectPattern patternusePattern

Matcher object to lose information about the groups
of the last match that occurred. The Matcher object's
position in the input is maintained.

387

Reference Pattern and Matcher Classes

DescriptionReturnsArgumentsName

Sets the transparency bounds for this Matcher object.
By default, a Matcher object uses anchoring bounds
regions.

If you specify true for this method, the Matcher
object uses transparent bounds. If you specify false,
opaque bounds are used.

Matcher objectBoolean buseTransparentBounds

For more information, see Using Bounds.

HTTP (RESTful) Services Classes

You can access HTTP services, also called RESTful services, using the following classes:

• HTTP Classes

• Crypto Class

• EncodingUtil Class

HTTP Classes

These classes expose the general HTTP request/response functionality:

• Http Class. Use this class to initiate an HTTP request and response.

• HttpRequest Class: Use this class to programmatically create HTTP requests like GET, POST, PUT, and DELETE.

• HttpResponse Class: Use this class to handle the HTTP response returned by HTTP.

The HttpRequest and HttpResponse classes support the following elements:

• HttpRequest:

◊ HTTP request types such as GET, POST, PUT, DELETE, TRACE, CONNECT, HEAD, and OPTIONS.

◊ Request headers if needed.

◊ Read and connection timeouts.

◊ Redirects if needed.

◊ Content of the message body.

• HttpResponse:

◊ The HTTP status code.

◊ Response headers if needed.

◊ Content of the response body.

The following example shows an HTTP GET request made to the external server specified by the value of url that gets
passed into the getContent method. This example also shows accessing the body of the returned response:

public class HttpCalloutSample {

// Pass in the endpoint to be used using the string url

388

Reference HTTP (RESTful) Services Classes

public String getContent(String url) {

// Instantiate a new http object
Http h = new Http();

// Instantiate a new HTTP request, specify the method (GET) as well as the endpoint
HttpRequest req = new HttpRequest();
req.setEndpoint(url);
req.setMethod('GET');

// Send the request, and return a response
HttpResponse res = h.send(req);
return res.getBody();

}
}

The previous example runs synchronously, meaning no further processing happens until the external Web service returns a
response. Alternatively, you can use the @future annotation to make the callout run asynchronously.

Before you can access external servers from an endpoint or redirect endpoint using Apex or any other feature, you must add
the remote site to a list of authorized remote sites in the Database.com user interface. To do this, log in to Database.com and
select Security Controls > Remote Site Settings.

Note: The AJAX proxy handles redirects and authentication challenges (401/407 responses) automatically. For more
information about the AJAX proxy, see AJAX Toolkit documentation.

Use the DOM Classes or JSON Classes to parse XML or JSON content in the body of a request created by HttpRequest,
or a response accessed by HttpResponse.

Http Class

Use the Http class to initiate an HTTP request and response. The Http class contains the following public methods:

DescriptionReturn TypeArgumentsName

Sends an HttpRequest and returns the response.System.HttpResponseHttpRequest
request

send

Returns a string that displays and identifies the object's
properties.

StringtoString

HttpRequest Class

Use the HttpRequest class to programmatically create HTTP requests like GET, POST, PUT, and DELETE.

Use the DOM Classes or JSON Classes to parse XML or JSON content in the body of a request created by HttpRequest.

The HttpRequest class contains the following public methods:

DescriptionReturn TypeArgumentsName

Retrieves the body of this request.StringgetBody

389

Reference HTTP (RESTful) Services Classes

http://www.salesforce.com/us/developer/docs/ajax/index_CSH.htm#sforce_api_ajax_queryresultiterator.htm#ajax_proxy

DescriptionReturn TypeArgumentsName

Sets the contents of the body for this request. Limit:
3 MB.

The HTTP request and response sizes count towards
the total heap size.

VoidString bodysetBody

Retrieves the body of this request as a Blob.BlobgetBodyAsBlob

Sets the contents of the body for this request using
a Blob. Limit: 3 MB.

The HTTP request and response sizes count towards
the total heap size.

VoidBlob bodysetBodyAsBlob

Retrieves the body of this request as a DOM
document. Use it as a shortcut for:

String xml = httpRequest.getBody();
Dom.Document domDoc = new
Dom.Document(xml);

Dom.DocumentgetBodyDocument

Sets the contents of the body for this request. The
contents represent a DOM document. Limit: 3 MB.

VoidDom.Document
document

setBodyDocument

If true, the request body is compressed, false
otherwise.

BooleangetCompressed

If true, the data in the body is delivered to the
endpoint in the gzip compressed format. If false,
no compression format is used.

VoidBoolean flagsetCompressed

Retrieves the URL for the endpoint of the external
server for this request.

StringgetEndpoint

Sets the URL for the endpoint of the external server
for this request.

VoidString endpointsetEndpoint

Retrieves the contents of the request header.StringString keygetHeader

Sets the contents of the request header. Limit 100
KB.

VoidString key

String Value

setHeader

Returns the type of method used by HttpRequest.
For example:

StringgetMethod

• DELETE

• GET

• HEAD

• POST

• PUT

• TRACE

390

Reference HTTP (RESTful) Services Classes

DescriptionReturn TypeArgumentsName

Sets the type of method to be used for the HTTP
request. For example:

String methodsetMethod

• DELETE

• GET

• HEAD

• POST

• PUT

• TRACE

You can also use this method to set any required
options.

This method is deprecated. Use
setClientCertificateName instead.

If the server requires a client certificate for
authentication, set the client certificate PKCS12 key
store and password.

VoidString clientCert

String password

setClientCertificate

If the external service requires a client certificate for
authentication, set the certificate name. See Using
Certificates with HTTP Requests.

VoidString certDevNamesetClientCertificateName

Sets the timeout in milliseconds for the request. This
can be any value between 1 and 60,000 milliseconds.

VoidInteger timeoutsetTimeout

Returns a string containing the URL for the
endpoint of the external server for this request and

StringtoString

the method used, for example,
Endpoint=http://YourServer,
Method=POST

The following example illustrates how you can use an authorization header with a request, and handle the response:

public class AuthCallout {

public void basicAuthCallout(){
HttpRequest req = new HttpRequest();
req.setEndpoint('http://www.yahoo.com');
req.setMethod('GET');

// Specify the required user name and password to access the endpoint
// As well as the header and header information

String username = 'myname';
String password = 'mypwd';

Blob headerValue = Blob.valueOf(username + ':' + password);
String authorizationHeader = 'BASIC ' +
EncodingUtil.base64Encode(headerValue);
req.setHeader('Authorization', authorizationHeader);

// Create a new http object to send the request object

391

Reference HTTP (RESTful) Services Classes

// A response object is generated as a result of the request

Http http = new Http();
HTTPResponse res = http.send(req);
System.debug(res.getBody());

}
}

Compression

If you need to compress the data you send, use setCompressed, as the following sample illustrates:

HttpRequest req = new HttpRequest();
req.setEndPoint('my_endpoint');
req.setCompressed(true);
req.setBody('some post body');

If a response comes back in compressed format, getBody automatically recognizes the format, uncompresses it, and returns
the uncompressed value.

HttpResponse Class

Use the HttpResponse class to handle the HTTP response returned by the Http class.

Use the DOM Classes or JSON Classes to parse XML or JSON content in the body of a response accessed by HttpResponse.

The HttpResponse class contains the following public methods:

DescriptionReturn TypeArgumentsName

Retrieves the body returned in the response. Limit3 MB.

The HTTP request and response sizes count towards the total
heap size.

StringgetBody

Retrieves the body returned in the response as a Blob. Limit3
MB.

The HTTP request and response sizes count towards the total
heap size.

BlobgetBodyAsBlob

Retrieves the body returned in the response as a DOM
document. Use it as a shortcut for:

String xml = httpResponse.getBody();
Dom.Document domDoc = new Dom.Document(xml);

Dom.DocumentgetBodyDocument

Retrieves the contents of the response header.StringString keygetHeader

Retrieves an array of header keys returned in the response.String[]getHeaderKeys

Retrieves the status message returned for the response.StringgetStatus

Retrieves the value of the status code returned in the response.IntegergetStatusCode

392

Reference HTTP (RESTful) Services Classes

DescriptionReturn TypeArgumentsName

Returns an XmlStreamReader (XmlStreamReader Class)
that parses the body of the callout response. Use it as a
shortcut for:

String xml = httpResponse.getBody();
XmlStreamReader xsr = new
XmlStreamReader(xml);

XmlStreamReadergetXmlStreamReader

For a full example, see getXmlStreamReader example.

Returns the status message and status code returned in the
response, for example:

Status=OK, StatusCode=200

StringtoString

In the following getXmlStreamReader example, content is retrieved from an external Web server, then the XML is parsed
using the XmlStreamReader class.

public class ReaderFromCalloutSample {

public void getAndParse() {

// Get the XML document from the external server
Http http = new Http();
HttpRequest req = new HttpRequest();
req.setEndpoint('http://www.cheenath.com/tutorial/sample1/build.xml');
req.setMethod('GET');
HttpResponse res = http.send(req);

// Log the XML content
System.debug(res.getBody());

// Generate the HTTP response as an XML stream
XmlStreamReader reader = res.getXmlStreamReader();

// Read through the XML
while(reader.hasNext()) {
System.debug('Event Type:' + reader.getEventType());
if (reader.getEventType() == XmlTag.START_ELEMENT) {
System.debug(reader.getLocalName());

}
reader.next();

}

}
}

Testing HTTP Callouts

To deploy or package Apex, 75% of your code must have test coverage. Test methods don’t support HTTP callouts. HTTP
callouts made in a test method result in an exception and cause the test method to be skipped. To run the test method and
increase your code coverage, add conditional logic around the code that sends the HTTP request and generates a fake response
if the code is called from a test method. The example in this topic shows you how to do this.

393

Reference HTTP (RESTful) Services Classes

Testing Callouts

This example contains a method, getTotalPrice, that makes an HTTP callout to an external Web service and gets an
HTTP response in JSON format. The test method, testCalloutMethod, is listed at the end of this class. The
getTotalPrice method calls the makeCallout helper method that makes the callout. The makeCallout method
determines if it has been called from a test using Test.isRunningTest, and either creates a fake response, or sends the
request and gets the response. This portion of the code is marked in bold in the makeCallout method.

public class TestingCalloutExample {

// Make an HTTP callout to an external Web server
public Double getTotalPrice() {

HttpRequest req = new HttpRequest();
req.setEndpoint('http://www.cheenath.com/tutorial/sfdc/sample1/response.php');
req.setMethod('GET');

// Make the HTTP request call
HttpResponse res = makeCallout(req);

// Verify results
System.assert(res.getStatusCode() == 200);
System.assertEquals('OK', res.getStatus());

// Parse results
JSONParser parser = JSON.createParser(res.getBody());
Double grandTotal = 0.0;
while (parser.nextToken() != null) {

if ((parser.getCurrentToken() == JSONToken.FIELD_NAME) &&
(parser.getText() == 'totalPrice')) {
// Get the value.
parser.nextToken();
// Compute the grand total price for all invoices.
grandTotal += parser.getDoubleValue();

}
}
system.debug('Grand total=' + grandTotal);

return grandTotal;
}

// Send the request to the external Web server,
// or create a fake response for tests.
private HttpResponse makeCallout(HttpRequest req) {

HttpResponse res;

if (Test.isRunningTest()) {
res = createMockResponse();

} else {
res = new Http().send(req);

}
return res;

}

// Create fake response for the test
private HttpResponse createMockResponse() {

HttpResponse res = new HttpResponse();
res.setStatus('OK'); // all are new methods
res.setStatusCode(200);

String jsonStr =
'{"invoiceList":[' +
'{"totalPrice":5.5,"statementDate":"2011-10-04T16:58:54.858Z","lineItems":[' +

'{"UnitPrice":1.0,"Quantity":5.0,"ProductName":"Pencil"},' +
'{"UnitPrice":0.5,"Quantity":1.0,"ProductName":"Eraser"}],' +

'"invoiceNumber":1},' +

394

Reference HTTP (RESTful) Services Classes

'{"totalPrice":11.5,"statementDate":"2011-10-04T16:58:54.858Z","lineItems":[' +
'{"UnitPrice":6.0,"Quantity":1.0,"ProductName":"Notebook"},' +
'{"UnitPrice":2.5,"Quantity":1.0,"ProductName":"Ruler"},' +
'{"UnitPrice":1.5,"Quantity":2.0,"ProductName":"Pen"}],"invoiceNumber":2}' +

']}';

res.setBody(jsonStr);
return res;

}

// Test method for testing the callout
static testmethod void testCalloutMethod() {

TestingCalloutExample demo = new TestingCalloutExample();

// Make the call which contains the HttpRequest calls.
// No HTTP request is sent for the test, instead
// a fake response is returned.
Double price = demo.getTotalPrice();

// Verify fake results
System.assert(price == 17.0);

}
}

Crypto Class

The methods in the Crypto class provide standard algorithms for creating digests, message authentication codes, and signatures,
as well as encrypting and decrypting information. These can be used for securing content in Force.com, or for integrating with
external services such as Google or Amazon WebServices (AWS).

DescriptionReturn TypeArgumentsName

Decrypts the blob cipherText using the specified
algorithm, private key, and initialization vector. Use this

BlobString
algorithmName

Blob privateKey

decrypt

method to decrypt blobs encrypted using a third party
application or the encrypt method.

Valid values for algorithmName are:
Blob
initializationVector

• AES128Blob cipherText
• AES192

• AES256

These are all industry standard Advanced Encryption
Standard (AES) algorithms with different size keys. They
use cipher block chaining (CBC) and PKCS5 padding.

The length of privateKey must match the specified
algorithm: 128 bits, 192 bits, or 256 bits, which is 16,
24, or 32 bytes, respectively. You can use a third-party
application or the generateAesKey method to generate
this key for you.

The initialization vector must be 128 bits (16 bytes.)

For an example, see Example Encrypting and
Decrypting.

395

Reference HTTP (RESTful) Services Classes

DescriptionReturn TypeArgumentsName

For more information about possible exceptions thrown
during execution, see Encrypt and Decrypt Exceptions.

Decrypts the blob IVAndCipherText using the specified
algorithm and private key. Use this method to decrypt

BlobString
algorithmName

Blob privateKey

decryptWithManagedIV

blobs encrypted using a third party application or the
encryptWithManagedIV method.

Valid values for algorithmName are:
Blob
IVAndCipherText

• AES128

• AES192

• AES256

These are all industry standard Advanced Encryption
Standard (AES) algorithms with different size keys. They
use cipher block chaining (CBC) and PKCS5 padding.

The length of privateKey must match the specified
algorithm: 128 bits, 192 bits, or 256 bits, which is 16,
24, or 32 bytes, respectively. You can use a third-party
application or the generateAesKey method to generate
this key for you.

The first 128 bits (16 bytes) of IVAndCipherText must
contain the initialization vector.

For an example, see Example Encrypting and
Decrypting.

For more information about possible exceptions thrown
during execution, see Encrypt and Decrypt Exceptions.

Encrypts the blob clearText using the specified
algorithm, private key and initialization vector. Use this

BlobString
algorithmName

Blob privateKey

encrypt

method when you want to specify your own initialization
vector. The initialization vector must be 128 bits (16

Blob
initializationVector

bytes.) Use either a third-party application or the
decrypt method to decrypt blobs encrypted using this
method. Use the encryptWithManagedIV method ifBlob clearText
you want Database.com to generate the initialization
vector for you. It is stored as the first 128 bits (16 bytes)
of the encrypted blob.

Valid values for algorithmName are:

• AES128

• AES192

• AES256

396

Reference HTTP (RESTful) Services Classes

DescriptionReturn TypeArgumentsName

These are all industry standard Advanced Encryption
Standard (AES) algorithms with different size keys. They
use cipher block chaining (CBC) and PKCS5 padding.

The length of privateKey must match the specified
algorithm: 128 bits, 192 bits, or 256 bits, which is 16,
24, or 32 bytes, respectively. You can use a third-party
application or the generateAesKey method to generate
this key for you.

For an example, see Example Encrypting and
Decrypting.

For more information about possible exceptions thrown
during execution, see Encrypt and Decrypt Exceptions.

Encrypts the blob clearText using the specified
algorithm and private key. Use this method when you

BlobString
algorithmName

Blob privateKey

encryptWithManagedIV

want Database.com to generate the initialization vector
for you. It is stored as the first 128 bits (16 bytes) of the

Blob clearText encrypted blob. Use either third-party applications or
the decryptWithManagedIV method to decrypt blobs
encrypted with this method. Use the encrypt method
if you want to generate your own initialization vector.

Valid values for algorithmName are:

• AES128

• AES192

• AES256

These are all industry standard Advanced Encryption
Standard (AES) algorithms with different size keys. They
use cipher block chaining (CBC) and PKCS5 padding.

The length of privateKey must match the specified
algorithm: 128 bits, 192 bits, or 256 bits, which is 16,
24, or 32 bytes, respectively. You can use a third-party
application or the generateAesKey method to generate
this key for you.

For an example, see Example Encrypting and
Decrypting.

For more information about possible exceptions thrown
during execution, see Encrypt and Decrypt Exceptions.

Generates an Advanced Encryption Standard (AES)
key. Use size to specify the key's size in bits. Valid
values are:

BlobInteger sizegenerateAesKey

• 128

397

Reference HTTP (RESTful) Services Classes

DescriptionReturn TypeArgumentsName

• 192

• 256

Computes a secure, one-way hash digest based on the
supplied input string and algorithm name. Valid values
for algorithmName are:

BlobString
algorithmName

Blob input

generateDigest

• MD5

• SHA1

• SHA-256

• SHA-512

Computes a message authentication code (MAC) for
the input string, using the private key and the specified
algorithm. The valid values for algorithmName are:

BlobString
algorithmName

Blob input

generateMac

• hmacMD5
Blob privateKey • hmacSHA1

• hmacSHA256

• hmacSHA512

The value of privateKey does not need to be in
decoded form. The value cannot exceed 4 KB.

Returns a random Integer.IntegergetRandomInteger

Returns a random Long.LonggetRandomLong

Computes a unique digital signature for the input string,
using the supplied private key and the specified

BlobString
algorithmName

sign

algorithm. The valid values for algorithmName are
Blob input RSA-SHA1 or RSA. Both values represent the same

algorithm.

The value of privateKey must be decoded using the
EncodingUtil base64Decode method, and should

Blob privateKey

be in RSA's PKCS #8 (1.2) Private-Key Information
Syntax Standard form. The value cannot exceed 4 KB.

The following snippet is an example declaration and
initialization:

String algorithmName = 'RSA';
String key = 'pkcs8 format private key';
Blob privateKey =
EncodingUtil.base64Decode(key);
Blob input =
Blob.valueOf('12345qwerty');
Crypto.sign(algorithmName, input,
privateKey);

398

Reference HTTP (RESTful) Services Classes

http://www.rsa.com/rsalabs/node.asp?id=2130
http://www.rsa.com/rsalabs/node.asp?id=2130

Example Integrating Amazon WebServices

The following example demonstrates an integration of Amazon WebServices with Database.com:

public class HMacAuthCallout {

public void testAlexaWSForAmazon() {

// The date format is yyyy-MM-dd'T'HH:mm:ss.SSS'Z'
DateTime d = System.now();
String timestamp = ''+ d.year() + '-' +
d.month() + '-' +
d.day() + '\'T\'' +
d.hour() + ':' +
d.minute() + ':' +
d.second() + '.' +
d.millisecond() + '\'Z\'';
String timeFormat = d.formatGmt(timestamp);

String urlEncodedTimestamp = EncodingUtil.urlEncode(timestamp, 'UTF-8');
String action = 'UrlInfo';
String inputStr = action + timeFormat;
String algorithmName = 'HMacSHA1';
Blob mac = Crypto.generateMac(algorithmName, Blob.valueOf(inputStr),

Blob.valueOf('your_signing_key'));
String macUrl = EncodingUtil.urlEncode(EncodingUtil.base64Encode(mac), 'UTF-8');

String urlToTest = 'amazon.com';
String version = '2005-07-11';
String endpoint = 'http://awis.amazonaws.com/';
String accessKey = 'your_key';

HttpRequest req = new HttpRequest();
req.setEndpoint(endpoint +

'?AWSAccessKeyId=' + accessKey +
'&Action=' + action +
'&ResponseGroup=Rank&Version=' + version +
'&Timestamp=' + urlEncodedTimestamp +
'&Url=' + urlToTest +
'&Signature=' + macUrl);

req.setMethod('GET');
Http http = new Http();
try {

HttpResponse res = http.send(req);
System.debug('STATUS:'+res.getStatus());
System.debug('STATUS_CODE:'+res.getStatusCode());
System.debug('BODY: '+res.getBody());

} catch(System.CalloutException e) {
System.debug('ERROR: '+ e);

}
}

}

Example Encrypting and Decrypting

The following example uses the encryptWithManagedIV and decryptWithManagedIV methods, as well as the
generateAesKey method.

// Use generateAesKey to generate the private key
Blob cryptoKey = Crypto.generateAesKey(256);

// Generate the data to be encrypted.
Blob data = Blob.valueOf('Test data to encrypted');

399

Reference HTTP (RESTful) Services Classes

// Encrypt the data and have Database.com generate the initialization vector
Blob encryptedData = Crypto.encryptWithManagedIV('AES256', cryptoKey, data);

// Decrypt the data
Blob decryptedData = Crypto.decryptWithManagedIV('AES256', cryptoKey, encryptedData);

The following is an example of writing a unit test for the encryptWithManagedIV and decryptWithManagedIV methods.

@isTest
private class CryptoTest {

public static testMethod void testValidDecryption() {

// Use generateAesKey to generate the private key
Blob key = Crypto.generateAesKey(128);
// Generate the data to be encrypted.
Blob data = Blob.valueOf('Test data');
// Generate an encrypted form of the data using base64 encoding
String b64Data = EncodingUtil.base64Encode(data);
// Encrypt and decrypt the data
Blob encryptedData = Crypto.encryptWithManagedIV('AES128', key, data);
Blob decryptedData = Crypto.decryptWithManagedIV('AES128', key, encryptedData);
String b64Decrypted = EncodingUtil.base64Encode(decryptedData);
// Verify that the strings still match
System.assertEquals(b64Data, b64Decrypted);

}
public static testMethod void testInvalidDecryption() {

// Verify that you must use the same key size for encrypting data
// Generate two private keys, using different key sizes
Blob keyOne = Crypto.generateAesKey(128);
Blob keyTwo = Crypto.generateAesKey(256);
// Generate the data to be encrypted.
Blob data = Blob.valueOf('Test data');
// Encrypt the data using the first key
Blob encryptedData = Crypto.encryptWithManagedIV('AES128', keyOne, data);
try {
// Try decrypting the data using the second key

Crypto.decryptWithManagedIV('AES256', keyTwo, encryptedData);
System.assert(false);

} catch(SecurityException e) {
System.assertEquals('Given final block not properly padded', e.getMessage());

}
}

}

Encrypt and Decrypt Exceptions
The following exceptions can be thrown for these methods:

• decrypt

• encrypt

• decryptWithManagedIV

• encryptWithManagedIV

DescriptionMessageException

Thrown if you're using managed
initialization vectors, and the cipher text
is less than 16 bytes.

Unable to parse initialization vector from
encrypted data.

InvalidParameterValue

Thrown if the algorithm name isn't one
of the valid values.

Invalid algorithm algoName. Must be
AES128, AES192, or AES256.

InvalidParameterValue

400

Reference HTTP (RESTful) Services Classes

DescriptionMessageException

Thrown if size of the private key doesn't
match the specified algorithm.

Invalid private key. Must be size bytes.InvalidParameterValue

Thrown if the initialization vector isn't
16 bytes.

Invalid initialization vector. Must be 16
bytes.

InvalidParameterValue

Thrown if the data is greater than 1 MB.
For decryption, 1048608 bytes are

Invalid data. Input data is size bytes,
which exceeds the limit of 1048576 bytes.

InvalidParameterValue

allowed for the initialization vector
header, plus any additional padding the
encryption added to align to block size.

Thrown if one of the required method
arguments is null.

Argument cannot be null.NullPointerException

Thrown if the data isn't properly
block-aligned or similar issues occur
during encryption or decryption.

Given final block not properly padded.SecurityException

Thrown if something goes wrong during
either encryption or decryption.

Message VariesSecurityException

EncodingUtil Class

Use the methods in the EncodingUtil class to encode and decode URL strings, and convert strings to hexadecimal format.

DescriptionReturn TypeArgumentsName

Converts a Base64-encoded String to a Blob representing its
normal form.

BlobString inputStringbase64Decode

Converts a Blob to an unencoded String representing its normal
form.

StringBlob inputBlobbase64Encode

Returns a hexadecimal (base 16) representation of the
inputString. This method can be used to compute the client

StringBlob inputStringconvertToHex

response (for example, HA1 or HA2) for HTTP Digest
Authentication (RFC2617).

Decodes a string in application/x-www-form-urlencoded
format using a specific encoding scheme, for example “UTF-8.”

StringString inputString
String
encodingScheme

urlDecode

This method uses the supplied encoding scheme to determine
which characters are represented by any consecutive sequence of
the from \"%xy\". For more information about the format, see
The form-urlencoded Media Type in Hypertext Markup Language
- 2.0.

Encodes a string into the
application/x-www-form-urlencoded format using a

StringString inputString
String
encodingScheme

urlEncode

specific encoding scheme, for example “UTF-8.” This method
uses the supplied encoding scheme to obtain the bytes for unsafe
characters. For more information about the format, see The

401

Reference HTTP (RESTful) Services Classes

http://www.w3.org/MarkUp/html-spec/html-spec_8.html#SEC8.2.1
http://www.w3.org/MarkUp/html-spec/html-spec_8.html#SEC8.2.1

DescriptionReturn TypeArgumentsName

form-urlencoded Media Type in Hypertext Markup Language -
2.0.

Example:

String encoded = EncodingUtil.urlEncode(url,
'UTF-8');

Note: You cannot use the EncodingUtil methods to move documents with non-ASCII characters to Database.com.
You can, however, download a document from Database.com. To do so, query the ID of the document using the API
query call, then request it by ID.

The following example illustrates how to use convertToHex to compute a client response for HTTP Digest Authentication
(RFC2617):

global class SampleCode {
static testmethod void testConvertToHex() {

String myData = 'A Test String';
Blob hash = Crypto.generateDigest('SHA1',Blob.valueOf(myData));
String hexDigest = EncodingUtil.convertToHex(hash);
System.debug(hexDigest);

}
}

XML Classes

Use the following classes to read and write XML content:

• XmlStream Classes

• DOM Classes

XmlStream Classes

Use the XmlStream methods to read and write XML strings.

• XmlStreamReader Class

• XmlStreamWriter Class

XmlStreamReader Class

Similar to the XMLStreamReader utility class from StAX, methods in the XmlStreamReader class enable forward, read-only
access to XML data. You can pull data from XML or skip unwanted events.

The following code snippet illustrates how to instantiate a new XmlStreamReader object:

String xmlString = '<books><book>My Book</book><book>Your Book</book></books>';
XmlStreamReader xsr = new XmlStreamReader(xmlString);

These methods work on the following XML events:

402

Reference XML Classes

http://www.w3.org/MarkUp/html-spec/html-spec_8.html#SEC8.2.1
http://stax.codehaus.org/

• An attribute event is specified for a particular element. For example, the element <book> has an attribute title: <book
title="Database.com for Dummies">.

• A start element event is the opening tag for an element, for example <book>.

• An end element event is the closing tag for an element, for example </book>.

• A start document event is the opening tag for a document.

• An end document event is the closing tag for a document.

• An entity reference is an entity reference in the code, for example !ENTITY title = "My Book Title".

• A characters event is a text character.

• A comment event is a comment in the XML file.

Use the next and hasNext methods to iterate over XML data. Access data in XML using get methods such as the
getNamespace method.

Note: The XmlStreamReader class in Apex is based on its counterpart in Java. See
java.xml.stream.XMLStreamReader.

The following methods are available to support reading XML files:

DescriptionReturn TypeArgumentsName

Returns the number of attributes on the start element.
This method is only valid on a start element or attribute

IntegergetAttributeCount

XML events. This value excludes namespace definitions.
The count for the number of attributes for an attribute
XML event starts with zero.

Returns the local name of the attribute at the specified
index. If there is no name, an empty string is returned.

StringInteger indexgetAttributeLocalName

This method is only valid with start element or attribute
XML events.

Returns the namespace URI of the attribute at the
specified index. If no namespace is specified, null is

StringInteger indexgetAttributeNamespace

returned. This method is only valid with start element
or attribute XML events.

Returns the prefix of this attribute at the specified index.
If no prefix is specified, null is returned. This method
is only valid with start element or attribute XML events.

StringInteger indexgetAttributePrefix

Returns the XML type of the attribute at the specified
index. For example, id is an attribute type. This method
is only valid with start element or attribute XML events.

StringInteger indexgetAttributeType

Returns the value of the attribute in the specified
localName at the specified URI. Returns null if the

StringString
namespaceURI

String localName

getAttributeValue

value is not found. You must specify a value for
localName. This method is only valid with start
element or attribute XML events.

403

Reference XML Classes

http://download.oracle.com/javase/6/docs/api/javax/xml/stream/XMLStreamReader.html

DescriptionReturn TypeArgumentsName

Returns the value of the attribute at the specified index.
This method is only valid with start element or attribute
XML events.

StringInteger indexgetAttributeValueAt

XmlTag is an enumeration of constants indicating the
type of XML event the cursor is pointing to:

System.XmlTaggetEventType

• ATTRIBUTE

• CDATA

• CHARACTERS

• COMMENT

• DTD

• END_DOCUMENT

• END_ELEMENT

• ENTITY_DECLARATION

• ENTITY_REFERENCE

• NAMESPACE

• NOTATION_DECLARATION

• PROCESSING_INSTRUCTION

• SPACE

• START_DOCUMENT

• START_ELEMENT

Returns the local name of the current event. For start
element or end element XML events, it returns the

StringgetLocalName

local name of the current element. For the entity
reference XML event, it returns the entity name. The
current XML event must be start element, end element,
or entity reference.

Return the current location of the cursor. If the location
is unknown, returns -1. The location information is
only valid until the next method is called.

StringgetLocation

If the current event is a start element or end element,
this method returns the URI of the prefix or the default

StringgetNamespace

namespace. Returns null if the XML event does not
have a prefix.

Returns the number of namespaces declared on a start
element or end element. This method is only valid on
a start element, end element, or namespace XML event.

IntegergetNamespaceCount

Returns the prefix for the namespace declared at the
index. Returns null if this is the default namespace

StringInteger indexgetNamespacePrefix

declaration. This method is only valid on a start
element, end element, or namespace XML event.

404

Reference XML Classes

DescriptionReturn TypeArgumentsName

Return the URI for the given prefix. The returned URI
depends on the current state of the processor.

StringString PrefixgetNamespaceURI

Returns the URI for the namespace declared at the
index. This method is only valid on a start element, end
element, or namespace XML event.

StringInteger IndexgetNamespaceURIAt

Returns the data section of a processing instruction.StringgetPIData

Returns the target section of a processing instruction.StringgetPITarget

Returns the prefix of the current XML event or null if
the event does not have a prefix.

StringgetPrefix

Returns the current value of the XML event as a string.
The valid values for the different events are:

StringgetText

• The string value of a character XML event

• The string value of a comment

• The replacement value for an entity reference. For
example, assume getText reads the following
XML snippet:

<!ENTITY
Title "Database.com For Dummies"

>
]>

<foo a=\"b\">Name &Title;</foo>';

The getText method returns Database.com
for Dummies, not &Title.

• The string value of a CDATA section

• The string value for a space XML event

• The string value of the internal subset of the DTD

Returns the XML version specified on the XML
declaration. Returns null if none was declared.

StringgetVersion

Returns true if the current XML event has a name.
Returns false otherwise. This method is only valid
for start element and stop element XML events.

BooleanhasName

Returns true if there are more XML events and false
if there are no more XML events. This method returns
false if the current XML event is end document.

BooleanhasNext

Returns true if the current event has text, false
otherwise The following XML events have text:
characters, entity reference, comment and space.

BooleanhasText

Returns true if the cursor points to a character data
XML event. Otherwise, returns false.

BooleanisCharacters

405

Reference XML Classes

DescriptionReturn TypeArgumentsName

Returns true if the cursor points to an end tag.
Otherwise, it returns false.

BooleanisEndElement

Returns true if the cursor points to a start tag.
Otherwise, it returns false.

BooleanisStartElement

Returns true if the cursor points to a character data
XML event that consists of all white space. Otherwise
it returns false.

BooleanisWhiteSpace

Reads the next XML event. A processor may return all
contiguous character data in a single chunk, or it may

Integernext

split it into several chunks. Returns an integer which
indicates the type of event.

Skips any white space (the isWhiteSpace method
returns true), comment, or processing instruction

IntegernextTag

XML events, until a start element or end element is
reached. Returns the index for that XML event. This
method throws an error if elements other than white
space, comments, processing instruction, start elements
or stop elements are encountered.

If you specify true for returnAsSingleBlock, text
is returned in a single block, from a start element to the

VoidBoolean
returnAsSingleBlock

setCoalescing

first end element or the next start element, whichever
comes first. If you specify it as false, the parser may
return text in multiple blocks.

If you specify true for isNamespaceAware, the parser
recognizes namespace. If you specify it as false, the
parser does not. The default value is true.

VoidBoolean
isNamespaceAware

setNamespaceAware

Returns the length of the input XML given to
XmlStreamReader.

StringtoString

XmlStreamReader Example

The following example processes an XML string.

public class XmlStreamReaderDemo {

// Create a class Book for processing
public class Book {
String name;
String author;

}

Book[] parseBooks(XmlStreamReader reader) {
Book[] books = new Book[0];
while(reader.hasNext()) {

// Start at the beginning of the book and make sure that it is a book

406

Reference XML Classes

if (reader.getEventType() == XmlTag.START_ELEMENT) {
if ('Book' == reader.getLocalName()) {

// Pass the book to the parseBook method (below)
Book book = parseBook(reader);
books.add(book);

}
}
reader.next();

}
return books;
}

// Parse through the XML, deterimine the auther and the characters
Book parseBook(XmlStreamReader reader) {
Book book = new Book();
book.author = reader.getAttributeValue(null, 'author');
while(reader.hasNext()) {

if (reader.getEventType() == XmlTag.END_ELEMENT) {
break;

} else if (reader.getEventType() == XmlTag.CHARACTERS) {
book.name = reader.getText();

}
reader.next();

}
return book;

}

// Test that the XML string contains specific values
static testMethod void testBookParser() {

XmlStreamReaderDemo demo = new XmlStreamReaderDemo();

String str = '<books><book author="Chatty">Foo bar</book>' +
'<book author="Sassy">Baz</book></books>';

XmlStreamReader reader = new XmlStreamReader(str);
Book[] books = demo.parseBooks(reader);

System.debug(books.size());

for (Book book : books) {
System.debug(book);

}
}

}

XmlStreamWriter Class

Similar to the XMLStreamWriter utility class from StAX, methods in the XmlStreamWriter class enable the writing of
XML data. For example, you can use the XmlStreamWriter class to programmatically construct an XML document, then
use HTTP Classes to send the document to an external server.

The following code snippet illustrates how to instantiate a new XmlStreamWriter:

XmlStreamWriter w = new XmlStreamWriter();

Note: The XmlStreamWriter class in Apex is based on its counterpart in Java. See
https://stax-utils.dev.java.net/nonav/javadoc/api/javax/xml/stream/XMLStreamWriter.html.

The following methods are available to support writing XML files:

407

Reference XML Classes

http://stax.codehaus.org/
https://stax-utils.dev.java.net/nonav/javadoc/api/javax/xml/stream/XMLStreamReader.html

DescriptionReturn TypeArgumentsName

Closes this instance of an XmlStreamWriter and free
any resources associated with it.

Voidclose

Returns the XML written by the XmlStreamWriter
instance.

StringgetXmlString

Binds the specified URI to the default namespace. This
URI is bound in the scope of the current
START_ELEMENT – END_ELEMENT pair.

VoidString URIsetDefaultNamespace

Writes an attribute to the output stream. localName
specifies the name of the attribute.

VoidString prefix

String namespaceURI

writeAttribute

String localName

String value

Writes the specified CData to the output stream.VoidString datawriteCData

Writes the specified text to the output stream.VoidString textwriteCharacters

Writes the specified comment to the output stream.VoidString datawriteComment

Writes the specified namespace to the output stream.VoidString namespaceURIwriteDefaultNamespace

Writes an empty element tag to the output stream.
localName specifies the name of the tag to be written.

VoidString prefix

String localName

writeEmptyElement

String namespaceURI

Closes any start tags and writes corresponding end tags
to the output stream.

VoidwriteEndDocument

Writes an end tag to the output stream, relying on the
internal state of the writer to determine the prefix and
local name.

VoidwriteEndElement

Writes the specified namespace to the output stream.VoidString prefix

String namespaceURI

writeNamespace

Writes the specified processing instruction.VoidString target

String data

writeProcessingInstruction

Writes the XML Declaration using the specified XML
encoding and version.

VoidString encoding

String version

writeStartDocument

Writes the start tag specified by localName to the
output stream.

VoidString prefix

String localName

writeStartElement

String namespaceURI

408

Reference XML Classes

XML Writer Methods Example

The following example writes an XML document and tests the validity of it.

public class XmlWriterDemo {

public String getXml() {
XmlStreamWriter w = new XmlStreamWriter();
w.writeStartDocument(null, '1.0');
w.writeProcessingInstruction('target', 'data');
w.writeStartElement('m', 'Library', 'http://www.book.com');
w.writeNamespace('m', 'http://www.book.com');
w.writeComment('Book starts here');
w.setDefaultNamespace('http://www.defns.com');
w.writeCData('<Cdata> I like CData </Cdata>');
w.writeStartElement(null, 'book', null);
w.writedefaultNamespace('http://www.defns.com');
w.writeAttribute(null, null, 'author', 'Manoj');
w.writeCharacters('This is my book');
w.writeEndElement(); //end book
w.writeEmptyElement(null, 'ISBN', null);
w.writeEndElement(); //end library
w.writeEndDocument();
String xmlOutput = w.getXmlString();
w.close();
return xmlOutput;

}

public static TestMethod void basicTest() {
XmlWriterDemo demo = new XmlWriterDemo();
String result = demo.getXml();
String expected = '<?xml version="1.0"?><?target data?>' +

'<m:Library xmlns:m="http://www.book.com">' +
'<!--Book starts here-->' +
'<![CDATA[<Cdata> I like CData </Cdata>]]>' +

//make sure you put the next two lines on one line in your code.
'<book xmlns="http://www.defns.com" author="Manoj">' +

'This is my book</book><ISBN/></m:Library>';

System.assert(result == expected);
}

}

DOM Classes

DOM (Document Object Model) classes help you to parse or generate XML content. You can use these classes to work with
any XML content. One common application is to use the classes to generate the body of a request created by HttpRequest
or to parse a response accessed by HttpResponse. The DOM represents an XML document as a hierarchy of nodes. Some
nodes may be branch nodes and have child nodes, while others are leaf nodes with no children.

The DOM classes are contained in the Dom namespace.

Use the Document Class to process the content in the body of the XML document.

Use the XmlNode Class to work with a node in the XML document.

Document Class

Use the Document class to process XML content. One common application is to use it to create the body of a request for
HttpRequest or to parse a response accessed by HttpResponse.

409

Reference XML Classes

XML Namespaces

An XML namespace is a collection of names identified by a URI reference and used in XML documents to uniquely identify
element types and attribute names. Names in XML namespaces may appear as qualified names, which contain a single colon,
separating the name into a namespace prefix and a local part. The prefix, which is mapped to a URI reference, selects a
namespace. The combination of the universally managed URI namespace and the document's own namespace produces
identifiers that are universally unique.

The following XML element has a namespace of http://my.name.space and a prefix of myprefix.

<sampleElement xmlns:myprefix="http://my.name.space" />

In the following example, the XML element has two attributes:

• The first attribute has a key of dimension; the value is 2.
• The second attribute has a key namespace of http://ns1; the value namespace is http://ns2; the key is foo; the value

is bar.

<square dimension="2" ns1:foo="ns2:bar" xmlns:ns1="http://ns1" xmlns:ns2="http://ns2" />

Methods

The Document class has the following methods:

DescriptionReturn TypeArgumentsName

Creates the top-level root element for a document.

The name argument can't have a null value.

Dom.XmlNodeString name

String namespace

createRootElement

If the namespace argument has a non-null value and
the prefix argument is null, the namespace is set as
the default namespace.

String prefix

If the prefix argument is null, Database.com
automatically assigns a prefix for the element. The format
of the automatic prefix is nsi, where i is a number.

If the prefix argument is '', the namespace is set as
the default namespace.

For more information about namespaces, see XML
Namespaces on page 410.

Calling this method more than once on a document
generates an error as a document can have only one root
element.

Returns the top-level root element node in the document.
If this method returns null, the root element has not
been created yet.

Dom.XmlNodegetRootElement

Parse the XML representation of the document specified
in the xml argument and load it into a document. For
example:

Dom.Document doc = new Dom.Document();
doc.load(xml);

VoidString xmlload

410

Reference XML Classes

DescriptionReturn TypeArgumentsName

Returns the XML representation of the document as a
String.

StringtoXmlString

Document Example

For the purposes of the sample below, assume that the url argument passed into the parseResponseDom method returns
this XML response:

<address>
<name>Kirk Stevens</name>
<street1>808 State St</street1>
<street2>Apt. 2</street2>
<city>Palookaville</city>
<state>PA</state>
<country>USA</country>

</address>

The following example illustrates how to use DOM classes to parse the XML response returned in the body of a GET request:

public class DomDocument {

// Pass in the URL for the request
// For the purposes of this sample,assume that the URL
// returns the XML shown above in the response body
public void parseResponseDom(String url){

Http h = new Http();
HttpRequest req = new HttpRequest();
// url that returns the XML in the response body
req.setEndpoint(url);
req.setMethod('GET');
HttpResponse res = h.send(req);
Dom.Document doc = res.getBodyDocument();

//Retrieve the root element for this document.
Dom.XMLNode address = doc.getRootElement();

String name = address.getChildElement('name', null).getText();
String state = address.getChildElement('state', null).getText();
// print out specific elements
System.debug('Name: ' + name);
System.debug('State: ' + state);

// Alternatively, loop through the child elements.
// This prints out all the elements of the address
for(Dom.XMLNode child : address.getChildElements()) {

System.debug(child.getText());
}

}
}

XmlNode Class

Use the XmlNode class to work with a node in an XML document. The DOM represents an XML document as a hierarchy
of nodes. Some nodes may be branch nodes and have child nodes, while others are leaf nodes with no children.

411

Reference XML Classes

Node Types

There are different types of DOM nodes available in Apex. XmlNodeType is an enum of these different types. The values
are:

• COMMENT
• ELEMENT
• TEXT

It is important to distinguish between elements and nodes in an XML document. The following is a simple XML example:

<name>
<firstName>Suvain</firstName>
<lastName>Singh</lastName>

</name>

This example contains three XML elements: name, firstName, and lastName. It contains five nodes: the three name,
firstName, and lastName element nodes, as well as two text nodes—Suvain and Singh. Note that the text within an
element node is considered to be a separate text node.

For more information about the methods shared by all enums, see Enum Methods on page 291.

Methods

The XmlNode class has the following methods:

DescriptionReturn TypeArgumentsName

Creates a child element node for this node.

The name argument can't have a null value.

Dom.XmlNodeString name

String namespace

addChildElement

If the namespace argument has a non-null value and
the prefix argument is null, the namespace is set as
the default namespace.

String prefix

If the prefix argument is null, Database.com
automatically assigns a prefix for the element. The
format of the automatic prefix is nsi, where i is a
number.

If the prefix argument is '', the namespace is set as
the default namespace.

Creates a child comment node for this node. The text
argument can't have a null value.

Dom.XmlNodeString textaddCommentNode

Creates a child text node for this node. The text
argument can't have a null value.

Dom.XmlNodeString textaddTextNode

Returns namespacePrefix:attributeValue for
the given key and keyNamespace.

For example, for the <foo a:b="c:d" /> element:

StringString key

String keyNamespace

getAttribute

• getAttribute returns c:d
• getAttributeValue returns d

Returns the number of attributes for this node.IntegergetAttributeCount

412

Reference XML Classes

DescriptionReturn TypeArgumentsName

Returns the attribute key for the given index. Index
values start at 0.

StringInteger indexgetAttributeKeyAt

Returns the attribute key namespace for the given
index. For more information, see XML Namespaces
on page 410.

StringInteger indexgetAttributeKeyNsAt

Returns the attribute value for the given key and
keyNamespace.

For example, for the <foo a:b="c:d" /> element:

StringString key

String keyNamespace

getAttributeValue

• getAttribute returns c:d
• getAttributeValue returns d

Returns the attribute value namespace for the given key
and keyNamespace. For more information, see XML
Namespaces.

StringString key

String keyNamespace

getAttributeValueNs

Returns the child element node for the node with the
given name and namespace.

Dom.XmlNodeString name

String namespace

getChildElement

Returns the child element nodes for this node. This
doesn't include child text or comment nodes. For more
information, see Node Types.

Dom.XmlNode[]getChildElements

Returns the child nodes for this node. This includes all
node types. For more information, see Node Types.

Dom.XmlNode[]getChildren

Returns the element name.StringgetName

Returns the namespace of the element. For more
information, see XML Namespaces.

StringgetNamespace

Returns the namespace of the element for the given
prefix. For more information, see XML Namespaces.

StringString prefixgetNamespaceFor

Returns the node type.Dom.XmlNodeTypegetNodeType

Returns the parent of this element.Dom.XmlNodegetParent

Returns the prefix of the given namespace. The
namespace argument can't have a null value. For
more information, see XML Namespaces.

StringString namespacegetPrefixFor

Returns the text for this node.StringgetText

Removes the attribute with the given key and
keyNamespace. Returns true if successful, false

BooleanString key

String keyNamespace

removeAttribute

otherwise. For more information, see XML
Namespaces.

Removes the given childNode.BooleanDom.XmlNode
childNode

removeChild

Sets the key attribute value.VoidString key

String value

setAttribute

413

Reference XML Classes

DescriptionReturn TypeArgumentsName

Sets the key attribute value. For more information, see
XML Namespaces.

VoidString key

String value

setAttributeNs

String keyNamespace

String
valueNamespace

Sets the namespace for the given prefix. For more
information, see XML Namespaces.

VoidString prefix

String namespace

setNamespace

XmlNode Example

This example shows how to use XmlNode methods and namespaces to create an XML request.

For a basic example using XmlNode methods, see Document Class on page 409.

public class DomNamespaceSample
{

public void sendRequest(String endpoint)
{

// Create the request envelope
DOM.Document doc = new DOM.Document();

String soapNS = 'http://schemas.xmlsoap.org/soap/envelope/';
String xsi = 'http://www.w3.org/2001/XMLSchema-instance';
String serviceNS = 'http://www.myservice.com/services/MyService/';

dom.XmlNode envelope
= doc.createRootElement('Envelope', soapNS, 'soapenv');

envelope.setNamespace('xsi', xsi);
envelope.setAttributeNS('schemaLocation', soapNS, xsi, null);

dom.XmlNode body
= envelope.addChildElement('Body', soapNS, null);

body.addChildElement('echo', serviceNS, 'req').
addChildElement('category', serviceNS, null).
addTextNode('classifieds');

System.debug(doc.toXmlString());

// Send the request
HttpRequest req = new HttpRequest();
req.setMethod('POST');
req.setEndpoint(endpoint);
req.setHeader('Content-Type', 'text/xml');

req.setBodyDocument(doc);

Http http = new Http();
HttpResponse res = http.send(req);

System.assertEquals(200, res.getStatusCode());

dom.Document resDoc = res.getBodyDocument();

envelope = resDoc.getRootElement();

String wsa = 'http://schemas.xmlsoap.org/ws/2004/08/addressing';

414

Reference XML Classes

dom.XmlNode header = envelope.getChildElement('Header', soapNS);
System.assert(header != null);

String messageId
= header.getChildElement('MessageID', wsa).getText();

System.debug(messageId);
System.debug(resDoc.toXmlString());
System.debug(resDoc);
System.debug(header);

System.assertEquals(
'http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous',
header.getChildElement(
'ReplyTo', wsa).getChildElement('Address', wsa).getText());

System.assertEquals(
envelope.getChildElement('Body', soapNS).

getChildElement('echo', serviceNS).
getChildElement('something', 'http://something.else').
getChildElement(
'whatever', serviceNS).getAttribute('bb', null),
'cc');

System.assertEquals('classifieds',
envelope.getChildElement('Body', soapNS).

getChildElement('echo', serviceNS).
getChildElement('category', serviceNS).getText());

}
}

Apex Interfaces
Apex provides the following system-defined interfaces:

• Auth.RegistrationHandler

Database.com provides the ability to use an authentication provider, such as Facebook© or Janrain©, for single sign-on
into Database.com. To set up single sign-on, you must create a class that implements Auth.RegistrationHandler.
Classes implementing the Auth.RegistrationHandler interface are specified as the Registration Handler in
authorization provider definitions, and enable single sign-on into Database.com organizations from third-party services
such as Facebook.

• Comparable

The Comparable interface adds sorting support for Lists that contain non-primitive types, that is, Lists of user-defined
types. To add List sorting support for your Apex class, you must implement the Comparable interface with its compareTo
method in your class.

• Database.Batchable

Batch Apex is exposed as an interface that must be implemented by the developer. Batch jobs can be programmatically
invoked at runtime using Apex.

• Iterator and Iterable

415

Reference Apex Interfaces

An iterator traverses through every item in a collection. For example, in a while loop in Apex, you define a condition for
exiting the loop, and you must provide some means of traversing the collection, that is, an iterator.

• Schedulable

To invoke Apex classes to run at specific times, first implement the Schedulable interface for the class, then specify the
schedule using either the Schedule Apex page in the Database.com user interface, or the System.schedule method.

Auth.RegistrationHandler Interface

Database.com provides the ability to use an authentication provider, such as Facebook© or Janrain©, for single sign-on into
Database.com. To set up single sign-on, you must create a class that implements Auth.RegistrationHandler. Classes
implementing the Auth.RegistrationHandler interface are specified as the Registration Handler in authorization
provider definitions, and enable single sign-on into Database.com organizations from third-party services such as Facebook.
Using information from the authentication providers, your class must perform the logic of creating and updating user data as
appropriate.

DescriptionReturn
Type

ArgumentsName

Returns a User object using the specified portal ID and user
information from the third party, such as the username and email
address.

The portalID value may be null or an empty key if there is no
portal configured with this provider.

UserID portalId

Auth.UserData userData

createUser

Updates the specified user’s information. This method is called if
the user has logged in before with the authorization provider and

VoidID userId

ID portalId

updateUser

then logs in again, or if your application is using the Existing
Auth.UserData userData User Linking URL. This URL is generated when you define

your authentication provider.

The portalID value may be null or an empty key if there is no
portal configured with this provider.

The Auth.UserData class is used to store user information for Auth.RegistrationHandler. The third-party authorization
provider can send back a large collection of data about the user, including their username, email address, locale, and so on.
Frequently used data is converted into a common format with the Auth.UserData class and sent to the sent to the registration
handler.

If the registration handler wants to use the rest of the data, the Auth.UserData class has an attributeMap variable. The
attribute map is a map of strings (Map<String, String>) for the raw values of all the data from the third party. Because
the map is <String, String>, values that the third party returns that are not strings (like an array of URLs or a map) are
converted into an appropriate string representation. The map includes everything returned by the third-party authorization
provider, including the items automatically converted into the common format.

The constructor for Auth.UserData has the following syntax:

Auth.UserData(String identifier,
String firstName,
String lastName,

416

Reference Auth.RegistrationHandler Interface

String fullName,
String email,
String link,
String userName,
String locale,
String provider,
String siteLoginUrl,
Map<String, String> attributeMap)

The parameters for Auth.UserData are:

DescriptionTypeParameter

An identifier from the third party for the authenticated user, such as the Facebook
user number or the Database.com user Id.

Stringidentifier

The first name of the authenticated user, according to the third party.StringfirstName

The last name of the authenticated user, according to the third party.StringlastName

The full name of the authenticated user, according to the third party.StringfullName

The email address of the authenticated user, according to the third party.Stringemail

A stable link for the authenticated user such as
https://www.facebook.com/MyUsername.

Stringlink

The username of the authenticated user in the third party.Stringusername

The standard locale string for the authenticated user.Stringlocale

The service used to log in, such as Facebook or Janrain.Stringprovider

The site login page URL passed in if used with a site; null otherwise.StringsiteLoginUrl

A map of data from the third party, in case the handler has to access non-standard
values. For example, when using Janrain as a provider, the fields Janrain returns in its

Map<String,
String>

attributeMap

accessCredentials dictionary are placed into the attributeMap These fields
vary by provider.

Note: You can only perform DML operations on additional sObjects in the same transaction with User objects under
certain circumstances. For more information, see sObjects That Cannot Be Used Together in DML Operations on
page 251.

For all authentication providers except Janrain, after a user is authenticated using a provider, the access token associated with
that provider for this user can be obtained in Apex using the Auth.AuthToken Apex class. Auth.AuthToken provides a
single method, getAccessToken, to obtain this access token. For more information about authentication providers, see
“About External Authentication Providers” in the Database.com online help.

When using Janrain as an authentication provider, you need to use the Janrain accessCredentials dictionary values to
retrieve the access token or its equivalent. Only some providers supported by Janrain provide an access token, while other
providers use other fields. The Janrain accessCredentials fields are returned in the attributeMap variable of the
Auth.UserData class. See the Janrain auth_info documentation for more information on accessCredentials.

Note: Not all Janrain account types return accessCredentials. You may need to change your account type to
receive the information.

417

Reference Auth.RegistrationHandler Interface

http://developers.janrain.com/documentation/api/auth_info/

DescriptionReturn
Type

ArgumentsName

Returns an access token for the current user using the specified
18-character identifier of an Auth. Provider definition in your

StringString authProviderId

String providerName

getAccessToken

organization and the name of the provider, such as
Database.com or Facebook.

Example Implementations
This example implements the Auth.RegistrationHandler interface that creates as well as updates a standard user based
on data provided by the authorization provider. Error checking has been omitted to keep the example simple.

global class StandardUserRegistrationHandler implements Auth.RegistrationHandler{
global User createUser(Id portalId, Auth.UserData data){

User u = new User();
Profile p = [SELECT Id FROM profile WHERE name='Standard User'];
u.username = data.username + '@salesforce.com';
u.email = data.email;
u.lastName = data.lastName;
u.firstName = data.firstName;
String alias = data.username;
if(alias.length() > 8) {

alias = alias.substring(0, 8);
}
u.alias = alias;
u.languagelocalekey = data.locale;
u.localesidkey = data.locale;
u.emailEncodingKey = 'UTF-8';
u.timeZoneSidKey = 'America/Los_Angeles';
u.profileId = p.Id;
return u;

}

global void updateUser(Id userId, Id portalId, Auth.UserData data){
User u = new User(id=userId);
u.username = data.username + '@salesforce.com';
u.email = data.email;
u.lastName = data.lastName;
u.firstName = data.firstName;
String alias = data.username;
if(alias.length() > 8) {

alias = alias.substring(0, 8);
}
u.alias = alias;
u.languagelocalekey = data.locale;
u.localesidkey = data.locale;
update(u);

}
}

The following example tests the above code.

@isTest
private class StandardUserRegistrationHandlerTest {
static testMethod void testCreateAndUpdateUser() {

StandardUserRegistrationHandler handler = new StandardUserRegistrationHandler();
Auth.UserData sampleData = new Auth.UserData('testId', 'testFirst', 'testLast',

'testFirst testLast', 'testuser@example.org', null, 'testuserlong', 'en_US',
'facebook',

null, new Map<String, String>{});

418

Reference Auth.RegistrationHandler Interface

User u = handler.createUser(null, sampleData);
System.assertEquals('testuserlong@salesforce.com', u.userName);
System.assertEquals('testuser@example.org', u.email);
System.assertEquals('testLast', u.lastName);
System.assertEquals('testFirst', u.firstName);
System.assertEquals('testuser', u.alias);
insert(u);
String uid = u.id;

sampleData = new Auth.UserData('testNewId', 'testNewFirst', 'testNewLast',
'testNewFirst testNewLast', 'testnewuser@example.org', null, 'testnewuserlong',

'en_US', 'facebook',
null, new Map<String, String>{});

handler.updateUser(uid, null, sampleData);

User updatedUser = [SELECT userName, email, firstName, lastName, alias FROM user WHERE
id=:uid];

System.assertEquals('testnewuserlong@salesforce.com', updatedUser.userName);
System.assertEquals('testnewuser@example.org', updatedUser.email);
System.assertEquals('testNewLast', updatedUser.lastName);
System.assertEquals('testNewFirst', updatedUser.firstName);
System.assertEquals('testnewu', updatedUser.alias);

}
}

Comparable Interface

The Comparable interface adds sorting support for Lists that contain non-primitive types, that is, Lists of user-defined types.

To add List sorting support for your Apex class, you must implement the Comparable interface with its compareTo method
in your class.

The Comparable interface contains the following method.

DescriptionReturn
Type

ArgumentsName

Returns an Integer value that is the result of the comparison. The
implementation of this method should return the following values:

IntegerObject objectToCompareTocompareTo

• 0 if this instance and objectToCompareTo are equal
• > 0 if this instance is greater than objectToCompareTo
• < 0 if this instance is less than objectToCompareTo

To implement the Comparable interface, you must first declare a global class with the implements keyword as follows:

global class Employee implements Comparable {

Next, your class must provide an implementation for the following method:

global Integer compareTo(Object compareTo) {
// Your code here

}

419

Reference Comparable Interface

This is an example implementation of the Comparable interface. The compareTo method in this example compares the
employee of this class instance with the employee passed in the argument. The method returns an Integer value based on the
comparison of the employee IDs.

global class Employee implements Comparable {

public Long id;
public String name;
public String phone;

// Constructor
public Employee(Long i, String n, String p) {

id = i;
name = n;
phone = p;

}

// Implement the compareTo() method
global Integer compareTo(Object compareTo) {

Employee compareToEmp = (Employee)compareTo;
if (id == compareToEmp.id) return 0;
if (id > compareToEmp.id) return 1;
return -1;

}
}

This example tests the sort order of a list of Employee objects.

@isTest
private class EmployeeSortingTest {

static testmethod void test1() {
List<Employee> empList = new List<Employee>();
empList.add(new Employee(101,'Joe Smith', '4155551212'));
empList.add(new Employee(101,'J. Smith', '4155551212'));
empList.add(new Employee(25,'Caragh Smith', '4155551000'));
empList.add(new Employee(105,'Mario Ruiz', '4155551099'));

// Sort using the custom compareTo() method
empList.sort();

// Write list contents to the debug log
System.debug(empList);

// Verify list sort order.
System.assertEquals('Caragh Smith', empList[0].Name);
System.assertEquals('Joe Smith', empList[1].Name);
System.assertEquals('J. Smith', empList[2].Name);
System.assertEquals('Mario Ruiz', empList[3].Name);

}
}

See Also:
List Methods

420

Reference Comparable Interface

Chapter 13

Deploying Apex

You can't develop Apex in your Database.com production organization. Live
users accessing the system while you're developing can destabilize your data or

In this chapter ...

• Using Change Sets To Deploy Apex corrupt your application. Instead, we recommend that you do all your development
work in a test database organization.• Using the Force.com IDE to Deploy

Apex You can deploy Apex using:
• Using the Force.com Migration Tool

• Change Sets• Using SOAP API to Deploy Apex
• the Force.com IDE
• the Force.com Migration Tool
• SOAP API

Any deployment of Apex is limited to 5,000 code units of classes and triggers.

421

Using Change Sets To Deploy Apex

Available in Enterprise, Unlimited, and Database.com Editions

You can deploy Apex classes and triggers between connected organizations, for example, from a test database organization to
your production organization. You can create an outbound change set in the Database.com user interface and add the Apex
components that you would like to upload and deploy to the target organization. To learn more about change sets, see “Change
Sets” in the Database.com online help.

Using the Force.com IDE to Deploy Apex
The Force.com IDE is a plug-in for the Eclipse IDE. The Force.com IDE provides a unified interface for building and
deploying Force.com applications. Designed for developers and development teams, the IDE provides tools to accelerate
Force.com application development, including source code editors, test execution tools, wizards and integrated help. This tool
includes basic color-coding, outline view, integrated unit testing, and auto-compilation on save with error message display.

Note: The Force.com IDE is a free resource provided by salesforce.com to support its users and partners but isn't
considered part of our services for purposes of the salesforce.com Master Subscription Agreement.

To deploy Apex from a local project in the Force.com IDE to a Database.com organization, use the Deploy to Server wizard.

Note: If you deploy to a production organization:

• 75% of your Apex code must be covered by unit tests, and all of those tests must complete successfully.

Note the following:

◊ When deploying to a production organization, every unit test in your organization namespace is executed.

◊ Calls to System.debug are not counted as part of Apex code coverage.

◊ Test methods and test classes are not counted as part of Apex code coverage.

◊ While only 75% of your Apex code must be covered by tests, your focus shouldn't be on the percentage of code
that is covered. Instead, you should make sure that every use case of your application is covered, including
positive and negative cases, as well as bulk and single record. This should lead to 75% or more of your code
being covered by unit tests.

• Every trigger has some test coverage.

• All classes and triggers compile successfully.

For more information on how to use the Deploy to Server wizard, see “Deploying to Another Database.com Organization”
in the Force.com IDE documentation, which is available within Eclipse.

Using the Force.com Migration Tool
In addition to the Force.com IDE, you can also use a script to deploy Apex.

422

Deploying Apex Using Change Sets To Deploy Apex

http://wiki.developerforce.com/index.php/Force.com_IDE

Download the Force.com Migration Tool if you want to use a script for deploying Apex from a test database organization to
a Database.com production organization using Apache's Ant build tool.

Note: The Force.com Migration Tool is a free resource provided by salesforce.com to support its users and partners
but isn't considered part of our services for purposes of the salesforce.com Master Subscription Agreement.

To use the Force.com Migration Tool, do the following:

1. Visit http://java.sun.com/javase/downloads/index.jsp and install Java JDK, Version 6.1 or greater on the
deployment machine.

2. Visit http://ant.apache.org/ and install Apache Ant, Version 1.6 or greater on the deployment machine.
3. Set up the environment variables (such as ANT_HOME, JAVA_HOME, and PATH) as specified in the Ant Installation Guide

at http://ant.apache.org/manual/install.html.
4. Verify that the JDK and Ant are installed correctly by opening a command prompt, and entering ant –version. Your

output should look something like this:

Apache Ant version 1.7.0 compiled on December 13 2006

5. Log in to Database.com on your deployment machine. Click Develop > Tools, then click Force.com Migration Tool.
6. Unzip the downloaded file to the directory of your choice. The Zip file contains the following:

• A Readme.html file that explains how to use the tools
• A Jar file containing the ant task: ant-salesforce.jar
• A sample folder containing:

◊ A codepkg\classes folder that contains SampleDeployClass.cls and SampleFailingTestClass.cls
◊ A codepkg\triggers folder that contains SampleAccountTrigger.trigger
◊ A mypkg\objects folder that contains the custom objects used in the examples
◊ A removecodepkg folder that contains XML files for removing the examples from your organization
◊ A sample build.properties file that you must edit, specifying your credentials, in order to run the sample ant

tasks in build.xml
◊ A sample build.xml file, that exercises the deploy and retrieve API calls

7. Copy the ant-salesforce.jar file from the unzipped file into the ant lib directory. The ant lib directory is located in
the root folder of your Ant installation.

8. Open the sample subdirectory in the unzipped file.
9. Edit the build.properties file:

a. Enter your Database.com production organization username and password for the sf.user and sf.password fields,
respectively.

Note: The username you specify should have the authority to edit Apex.

b. If you are deploying to a test database organization, change the sf.serverurl field to
https://test.salesforce.com.

10. Open a command window in the sample directory.

423

Deploying Apex Using the Force.com Migration Tool

http://java.sun.com/javase/downloads/index.jsp
http://ant.apache.org/
http://ant.apache.org/manual/install.html

11. Enter ant deployCode. This runs the deploy API call, using the sample class and Account trigger provided with the
Force.com Migration Tool.

The ant deployCode calls the Ant target named deploy in the build.xml file.

<!-- Shows deploying code & running tests for package 'codepkg' -->
<target name="deployCode">
<!-- Upload the contents of the "codepkg" package, running the tests for just 1

class -->
<sf:deploy username="${sf.username}" password="${sf.password}"

serverurl="${sf.serverurl}" deployroot="codepkg">
<runTest>SampleDeployClass</runTest>

</sf:deploy>
</target>

For more information on deploy, see Understanding deploy on page 424.

12. To remove the test class and trigger added as part of the execution of ant deployCode, enter the following in the
command window: ant undeployCode.

ant undeployCode calls the Ant target named undeployCode in the build.xml file.

<target name="undeployCode">
<sf:deploy username="${sf.username}" password="${sf.password}" serverurl=

"${sf.serverurl}" deployroot="removecodepkg"/>
</target>

Understanding deploy

The deploy call completes successfully only if all of the following are true:

• 75% of your Apex code must be covered by unit tests, and all of those tests must complete successfully.

Note the following:

◊ When deploying to a production organization, every unit test in your organization namespace is executed.

◊ Calls to System.debug are not counted as part of Apex code coverage.

◊ Test methods and test classes are not counted as part of Apex code coverage.

◊ While only 75% of your Apex code must be covered by tests, your focus shouldn't be on the percentage of code that is
covered. Instead, you should make sure that every use case of your application is covered, including positive and negative
cases, as well as bulk and single record. This should lead to 75% or more of your code being covered by unit tests.

• Every trigger has some test coverage.

• All classes and triggers compile successfully.

You cannot run more than one deploy Metadata API call at the same time.

The Force.com Migration Tool provides the task deploy which can be incorporated into your deployment scripts. You can
modify the build.xml sample to include your organization's classes and triggers. The properties of the deploy task are as
follows:

username

The username for logging into the Database.com production organization.

424

Deploying Apex Understanding deploy

password

The password associated for logging into the Database.com production organization.

serverURL

The URL for the Database.com server you are logging into. If you do not specify a value, the default is
www.salesforce.com.

deployRoot

The local directory that contains the Apex classes and triggers, as well as any other metadata, that you want to deploy.
The best way to create the necessary file structure is to retrieve it from your organization or test database. See
Understanding retrieveCode on page 426 for more information.

• Apex class files must be in a subdirectory named classes. You must have two files for each class, named as follows:

◊ classname.cls
◊ classname.cls-meta.xml

For example, MyClass.cls and MyClass.cls-meta.xml. The -meta.xml file contains the API version and the
status (active/inactive) of the class.

• Apex trigger files must be in a subdirectory named triggers. You must have two files for each trigger, named as
follows:

◊ triggername.trigger
◊ triggername.trigger-meta.xml

For example, MyTrigger.trigger and MyTrigger.trigger-meta.xml. The -meta.xml file contains the API
version and the status (active/inactive) of the trigger.

• The root directory contains an XML file package.xml that lists all the classes, triggers, and other objects to be
deployed.

• The root directory optionally contains an XML file destructiveChanges.xml that lists all the classes, triggers,
and other objects to be deleted from your organization.

checkOnly

Specifies whether the classes and triggers are deployed to the target environment or not. This property takes a Boolean
value: true if you do not want to save the classes and triggers to the organization, false otherwise. If you do not specify
a value, the default is false.

runTests

The name of the class that contains the unit tests that you want to run.

Note: This parameter is ignored when deploying to a Database.com production organization. Every unit test
in your organization namespace is executed.

runAllTests

This property takes a Boolean value: true if you want run all tests in your organization, false if you do not. You should
not specify a value for runTests if you specify true for runAllTests.

Note: This parameter is ignored when deploying to a Database.com production organization. Every unit test
in your organization namespace is executed.

425

Deploying Apex Understanding deploy

Understanding retrieveCode

Use the retrieveCode call to retrieve classes and triggers from your test database or production organization. During the
normal deploy cycle, you would run retrieveCode prior to deploy, in order to obtain the correct directory structure for
your new classes and triggers. However, for this example, deploy is used first, to ensure that there is something to retrieve.

To retrieve classes and triggers from an existing organization, use the retrieve ant task as illustrated by the sample build target
ant retrieveCode:

<target name="retrieveCode">
<!-- Retrieve the contents listed in the file codepkg/package.xml into the codepkg

directory -->
<sf:retrieve username="${sf.username}" password="${sf.password}"

serverurl="${sf.serverurl}" retrieveTarget="codepkg"
unpackaged="codepkg/package.xml"/>
</target>

The file codepkg/package.xml lists the metadata components to be retrieved. In this example, it retrieves two classes and
one trigger. The retrieved files are put into the directory codepkg, overwriting everything already in the directory.

The properties of the retrieve task are as follows:

username

The username for logging into the Database.com production organization.

password

The password associated for logging into the Database.com production organization.

serverURL

The URL for the Database.com server you are logging into. If you do not specify a value, the default is
www.salesforce.com.

apiversion

Which version of the Metadata API at which the files should be retrieved.

retrieveTarget

The directory into which the files should be copied.

unpackaged

The name of file that contains the list of files that should be retrieved. You should either specify this parameter or
packageNames.

packageNames

The name of the package or packages that should be retrieved.

Table 3: build.xml retrieve target field settings

DescriptionField

Required. The Database.com username for login.username

Required. The username you use to log into the organization
associated with this project. If you are using a security token,

password

426

Deploying Apex Understanding retrieveCode

DescriptionField

paste the 25-digit token value to the end of your password.
The username associated with this connection must have the
“Modify All Data” permission. Typically, this is only enabled
for System Administrator users.

Optional. The salesforce server URL (if blank, defaults to
www.salesforce.com). For a test database, use
test.salesforce.com.

serverurl

Optional, defaults to 5000. The number of milliseconds to
wait between each poll of salesforce.com to retrieve the results.

pollWaitMillis

Optional, defaults to 10. The number of times to poll
salesforce.com for the results of the report.

maxPoll

Required. The root of the directory structure to retrieve the
metadata files into.

retrieveTarget

Optional. The name of a file manifest that specifies the
components to retrieve.

unpackaged

Optional, defaults to false. Specifies whether the contents
being retrieved are a single package.

singlePackage

Optional. A list of the names of the packages to retrieve.packageNames

Optional. A list of file names to retrieve.specificFiles

Understanding runTests()

In addition to using deploy() with the Force.com Migration Tool, you can also use the runTests() API call. This call
takes the following properties:

class

The name of the class that contains the unit tests. You can specify this property more than once.

alltests

Specifies whether to run all tests. This property takes a Boolean value: true if you want to run all tests, false otherwise.

namespace

The namespace that you would like to test. If you specify a namespace, all the tests in that namespace are executed.

Using SOAP API to Deploy Apex
If you do not want to use the Force.com IDE, change sets, or the Force.com Migration Tool to deploy Apex, you can use the
following SOAP API to deploy your Apex to a test database organization:

• compileAndTest()

427

Deploying Apex Understanding runTests()

• compileClasses()

• compileTriggers()

All these calls take Apex code that contains the class or trigger, as well as the values for any fields that need to be set.

428

Deploying Apex Using SOAP API to Deploy Apex

APPENDICES

Appendix

A
Shipping Invoice Example

This appendix provides an example of an Apex application. This is a more complex example than the Hello World example.

• Shipping Invoice Example Walk-Through on page 429
• Shipping Invoice Example Code on page 432

Shipping Invoice Example Walk-Through
The sample application in this section includes traditional Database.com functionality blended with Apex. Many of the
syntactic and semantic features of Apex, along with common idioms, are illustrated in this application.

Note: The shipping invoice example requires custom objects and fields that you must create first.

Scenario
In this sample application, the user creates a new shipping invoice, or order, and then adds items to the invoice. The total
amount for the order, including shipping cost, is automatically calculated and updated based on the items added or deleted
from the invoice.

Data and Code Models
This sample application uses two new objects: Item and Shipping_invoice.

The following assumptions are made:

• Item A cannot be in both orders shipping_invoice1 and shipping_invoice2. Two customers cannot obtain the same (physical)
product.

• The tax rate is 9.25%.
• The shipping rate is 75 cents per pound.
• Once an order is over $100, the shipping discount is applied (shipping becomes free).

429

The fields in the Item custom object include:

DescriptionTypeName

The name of the itemStringName

The price of the itemCurrencyPrice

The number of items in the orderNumberQuantity

The weight of the item, used to calculate shipping costsNumberWeight

The order this item is associated withMaster-Detail
(shipping_invoice)

Shipping_invoice

The fields in the Shipping_invoice custom object include:

DescriptionTypeName

The name of the shipping invoice/orderStringName

The subtotalCurrencySubtotal

The total amount, including tax and shippingCurrencyGrandTotal

The amount charged for shipping (assumes $0.75 per pound)CurrencyShipping

Only applied once when subtotal amount reaches $100CurrencyShippingDiscount

The amount of tax (assumes 9.25%)CurrencyTax

The total weight of all itemsNumberTotalWeight

All of the Apex for this application is contained in triggers. This application has the following triggers:

DescriptionWhen RunsTrigger NameObject

Updates the shipping invoice, calculates the totals and
shipping

after insert, after update, after
delete

CalculateItem

Updates the shipping invoice, calculating if there is a
shipping discount

after updateShippingDiscountShipping_invoice

The following is the general flow of user actions and when triggers run:

430

Appendix A: Shipping Invoice Example Shipping Invoice Example Walk-Through

Figure 11: Flow of user action and triggers for the shopping cart application

1. User clicks Orders > New, names the shipping invoice and clicks Save.
2. User clicks New Item, fills out information, and clicks Save.
3. Calculate trigger runs. Part of the Calculate trigger updates the shipping invoice.
4. ShippingDiscount trigger runs.
5. User can then add, delete or change items in the invoice.

In Shipping Invoice Example Code both of the triggers and the test class are listed. The comments in the code explain the
functionality.

Testing the Shipping Invoice Application
Before an application can be included as part of a package, 75% of the code must be covered by unit tests. Therefore, one piece
of the shipping invoice application is a class used for testing the triggers.

The test class verifies the following actions are completed successfully:

• Inserting items
• Updating items
• Deleting items
• Applying shipping discount
• Negative test for bad input

431

Appendix A: Shipping Invoice Example Shipping Invoice Example Walk-Through

Shipping Invoice Example Code
The following triggers and test class make up the shipping invoice example application:

• Calculate trigger

• ShippingDiscount trigger

• Test class

Calculate Trigger

trigger calculate on Item__c (after insert, after update, after delete) {

// Use a map because it doesn't allow duplicate values

Map<ID, Shipping_Invoice__C> updateMap = new Map<ID, Shipping_Invoice__C>();

// Set this integer to -1 if we are deleting
Integer subtract ;

// Populate the list of items based on trigger type
List<Item__c> itemList;

if(trigger.isInsert || trigger.isUpdate){
itemList = Trigger.new;
subtract = 1;

}
else if(trigger.isDelete)
{

// Note -- there is no trigger.new in delete
itemList = trigger.old;
subtract = -1;

}

// Access all the information we need in a single query
// rather than querying when we need it.
// This is a best practice for bulkifying requests

set<Id> AllItems = new set<id>();

for(item__c i :itemList){
// Assert numbers are not negative.
// None of the fields would make sense with a negative value

System.assert(i.quantity__c > 0, 'Quantity must be positive');
System.assert(i.weight__c >= 0, 'Weight must be non-negative');
System.assert(i.price__c >= 0, 'Price must be non-negative');

// If there is a duplicate Id, it won't get added to a set
AllItems.add(i.Shipping_Invoice__C);
}

// Accessing all shipping invoices associated with the items in the trigger
List<Shipping_Invoice__C> AllShippingInvoices = [SELECT Id, ShippingDiscount__c,

SubTotal__c, TotalWeight__c, Tax__c, GrandTotal__c
FROM Shipping_Invoice__C WHERE Id IN :AllItems];

// Take the list we just populated and put it into a Map.
// This will make it easier to look up a shipping invoice
// because you must iterate a list, but you can use lookup for a map,
Map<ID, Shipping_Invoice__C> SIMap = new Map<ID, Shipping_Invoice__C>();

for(Shipping_Invoice__C sc : AllShippingInvoices)
{

432

Appendix A: Shipping Invoice Example Shipping Invoice Example Code

SIMap.put(sc.id, sc);
}

// Process the list of items
if(Trigger.isUpdate)
{

// Treat updates like a removal of the old item and addition of the
// revised item rather than figuring out the differences of each field
// and acting accordingly.
// Note updates have both trigger.new and trigger.old
for(Integer x = 0; x < Trigger.old.size(); x++)
{

Shipping_Invoice__C myOrder;
myOrder = SIMap.get(trigger.old[x].Shipping_Invoice__C);

// Decrement the previous value from the subtotal and weight.
myOrder.SubTotal__c -= (trigger.old[x].price__c *

trigger.old[x].quantity__c);
myOrder.TotalWeight__c -= (trigger.old[x].weight__c *

trigger.old[x].quantity__c);

// Increment the new subtotal and weight.
myOrder.SubTotal__c += (trigger.new[x].price__c *

trigger.new[x].quantity__c);
myOrder.TotalWeight__c += (trigger.new[x].weight__c *

trigger.new[x].quantity__c);
}

for(Shipping_Invoice__C myOrder : AllShippingInvoices)
{

// Set tax rate to 9.25% Please note, this is a simple example.
// Generally, you would never hard code values.
// Leveraging Custom Settings for tax rates is a best practice.
// See Custom Settings in the Apex Developer's guide
// for more information.
myOrder.Tax__c = myOrder.Subtotal__c * .0925;

// Reset the shipping discount
myOrder.ShippingDiscount__c = 0;

// Set shipping rate to 75 cents per pound.
// Generally, you would never hard code values.
// Leveraging Custom Settings for the shipping rate is a best practice.
// See Custom Settings in the Apex Developer's guide
// for more information.
myOrder.Shipping__c = (myOrder.totalWeight__c * .75);
myOrder.GrandTotal__c = myOrder.SubTotal__c + myOrder.tax__c +

myOrder.Shipping__c;
updateMap.put(myOrder.id, myOrder);

}
}
else
{

for(Item__c itemToProcess : itemList)
{

Shipping_Invoice__C myOrder;

// Look up the correct shipping invoice from the ones we got earlier
myOrder = SIMap.get(itemToProcess.Shipping_Invoice__C);
myOrder.SubTotal__c += (itemToProcess.price__c *

itemToProcess.quantity__c * subtract);
myOrder.TotalWeight__c += (itemToProcess.weight__c *

itemToProcess.quantity__c * subtract);
}

for(Shipping_Invoice__C myOrder : AllShippingInvoices)

433

Appendix A: Shipping Invoice Example Shipping Invoice Example Code

{

// Set tax rate to 9.25% Please note, this is a simple example.
// Generally, you would never hard code values.
// Leveraging Custom Settings for tax rates is a best practice.
// See Custom Settings in the Apex Developer's guide
// for more information.
myOrder.Tax__c = myOrder.Subtotal__c * .0925;

// Reset shipping discount
myOrder.ShippingDiscount__c = 0;

// Set shipping rate to 75 cents per pound.
// Generally, you would never hard code values.
// Leveraging Custom Settings for the shipping rate is a best practice.
// See Custom Settings in the Apex Developer's guide
// for more information.
myOrder.Shipping__c = (myOrder.totalWeight__c * .75);
myOrder.GrandTotal__c = myOrder.SubTotal__c + myOrder.tax__c +

myOrder.Shipping__c;

updateMap.put(myOrder.id, myOrder);

}
}

// Only use one DML update at the end.
// This minimizes the number of DML requests generated from this trigger.
update updateMap.values();

}

ShippingDiscount Trigger

trigger ShippingDiscount on Shipping_Invoice__C (before update) {
// Free shipping on all orders greater than $100

for(Shipping_Invoice__C myShippingInvoice : Trigger.new)
{

if((myShippingInvoice.subtotal__c >= 100.00) &&
(myShippingInvoice.ShippingDiscount__c == 0))

{
myShippingInvoice.ShippingDiscount__c =

myShippingInvoice.Shipping__c * -1;
myShippingInvoice.GrandTotal__c += myShippingInvoice.ShippingDiscount__c;

}
}

}

Shipping Invoice Test

@IsTest
private class TestShippingInvoice{

// Test for inserting three items at once
public static testmethod void testBulkItemInsert(){

// Create the shipping invoice. It's a best practice to either use defaults
// or to explicitly set all values to zero so as to avoid having
// extraneous data in your test.
Shipping_Invoice__C order1 = new Shipping_Invoice__C(subtotal__c = 0,

totalweight__c = 0, grandtotal__c = 0,
ShippingDiscount__c = 0, Shipping__c = 0, tax__c = 0);

// Insert the order and populate with items
insert Order1;

434

Appendix A: Shipping Invoice Example Shipping Invoice Example Code

List<Item__c> list1 = new List<Item__c>();
Item__c item1 = new Item__C(Price__c = 10, weight__c = 1, quantity__c = 1,

Shipping_Invoice__C = order1.id);
Item__c item2 = new Item__C(Price__c = 25, weight__c = 2, quantity__c = 1,

Shipping_Invoice__C = order1.id);
Item__c item3 = new Item__C(Price__c = 40, weight__c = 3, quantity__c = 1,

Shipping_Invoice__C = order1.id);
list1.add(item1);
list1.add(item2);
list1.add(item3);
insert list1;

// Retrieve the order, then do assertions
order1 = [SELECT id, subtotal__c, tax__c, shipping__c, totalweight__c,

grandtotal__c, shippingdiscount__c
FROM Shipping_Invoice__C
WHERE id = :order1.id];

System.assert(order1.subtotal__c == 75,
'Order subtotal was not $75, but was '+ order1.subtotal__c);

System.assert(order1.tax__c == 6.9375,
'Order tax was not $6.9375, but was ' + order1.tax__c);

System.assert(order1.shipping__c == 4.50,
'Order shipping was not $4.50, but was ' + order1.shipping__c);

System.assert(order1.totalweight__c == 6.00,
'Order weight was not 6 but was ' + order1.totalweight__c);

System.assert(order1.grandtotal__c == 86.4375,
'Order grand total was not $86.4375 but was '
+ order1.grandtotal__c);

System.assert(order1.shippingdiscount__c == 0,
'Order shipping discount was not $0 but was '
+ order1.shippingdiscount__c);

}

// Test for updating three items at once
public static testmethod void testBulkItemUpdate(){

// Create the shipping invoice. It's a best practice to either use defaults
// or to explicitly set all values to zero so as to avoid having
// extraneous data in your test.
Shipping_Invoice__C order1 = new Shipping_Invoice__C(subtotal__c = 0,

totalweight__c = 0, grandtotal__c = 0,
ShippingDiscount__c = 0, Shipping__c = 0, tax__c = 0);

// Insert the order and populate with items.
insert Order1;
List<Item__c> list1 = new List<Item__c>();
Item__c item1 = new Item__C(Price__c = 1, weight__c = 1, quantity__c = 1,

Shipping_Invoice__C = order1.id);
Item__c item2 = new Item__C(Price__c = 2, weight__c = 2, quantity__c = 1,

Shipping_Invoice__C = order1.id);
Item__c item3 = new Item__C(Price__c = 4, weight__c = 3, quantity__c = 1,

Shipping_Invoice__C = order1.id);
list1.add(item1);
list1.add(item2);
list1.add(item3);
insert list1;

// Update the prices on the 3 items
list1[0].price__c = 10;
list1[1].price__c = 25;
list1[2].price__c = 40;
update list1;

// Access the order and assert items updated
order1 = [SELECT id, subtotal__c, tax__c, shipping__c, totalweight__c,

grandtotal__c, shippingdiscount__c

435

Appendix A: Shipping Invoice Example Shipping Invoice Example Code

FROM Shipping_Invoice__C
WHERE Id = :order1.Id];

System.assert(order1.subtotal__c == 75,
'Order subtotal was not $75, but was '+ order1.subtotal__c);

System.assert(order1.tax__c == 6.9375,
'Order tax was not $6.9375, but was ' + order1.tax__c);

System.assert(order1.shipping__c == 4.50,
'Order shipping was not $4.50, but was '
+ order1.shipping__c);

System.assert(order1.totalweight__c == 6.00,
'Order weight was not 6 but was ' + order1.totalweight__c);

System.assert(order1.grandtotal__c == 86.4375,
'Order grand total was not $86.4375 but was '
+ order1.grandtotal__c);

System.assert(order1.shippingdiscount__c == 0,
'Order shipping discount was not $0 but was '
+ order1.shippingdiscount__c);

}

// Test for deleting items
public static testmethod void testBulkItemDelete(){

// Create the shipping invoice. It's a best practice to either use defaults
// or to explicitly set all values to zero so as to avoid having
// extraneous data in your test.
Shipping_Invoice__C order1 = new Shipping_Invoice__C(subtotal__c = 0,

totalweight__c = 0, grandtotal__c = 0,
ShippingDiscount__c = 0, Shipping__c = 0, tax__c = 0);

// Insert the order and populate with items
insert Order1;
List<Item__c> list1 = new List<Item__c>();
Item__c item1 = new Item__C(Price__c = 10, weight__c = 1, quantity__c = 1,

Shipping_Invoice__C = order1.id);
Item__c item2 = new Item__C(Price__c = 25, weight__c = 2, quantity__c = 1,

Shipping_Invoice__C = order1.id);
Item__c item3 = new Item__C(Price__c = 40, weight__c = 3, quantity__c = 1,

Shipping_Invoice__C = order1.id);
Item__c itemA = new Item__C(Price__c = 1, weight__c = 3, quantity__c = 1,

Shipping_Invoice__C = order1.id);
Item__c itemB = new Item__C(Price__c = 1, weight__c = 3, quantity__c = 1,

Shipping_Invoice__C = order1.id);
Item__c itemC = new Item__C(Price__c = 1, weight__c = 3, quantity__c = 1,

Shipping_Invoice__C = order1.id);
Item__c itemD = new Item__C(Price__c = 1, weight__c = 3, quantity__c = 1,

Shipping_Invoice__C = order1.id);
list1.add(item1);
list1.add(item2);
list1.add(item3);
list1.add(itemA);
list1.add(itemB);
list1.add(itemC);
list1.add(itemD);
insert list1;

// Seven items are now in the shipping invoice.
// The following deletes four of them.
List<Item__c> list2 = new List<Item__c>();
list2.add(itemA);
list2.add(itemB);
list2.add(itemC);
list2.add(itemD);
delete list2;

// Retrieve the order and verify the deletion

436

Appendix A: Shipping Invoice Example Shipping Invoice Example Code

order1 = [SELECT id, subtotal__c, tax__c, shipping__c, totalweight__c,
grandtotal__c, shippingdiscount__c
FROM Shipping_Invoice__C
WHERE Id = :order1.Id];

System.assert(order1.subtotal__c == 75,
'Order subtotal was not $75, but was '+ order1.subtotal__c);

System.assert(order1.tax__c == 6.9375,
'Order tax was not $6.9375, but was ' + order1.tax__c);

System.assert(order1.shipping__c == 4.50,
'Order shipping was not $4.50, but was ' + order1.shipping__c);

System.assert(order1.totalweight__c == 6.00,
'Order weight was not 6 but was ' + order1.totalweight__c);

System.assert(order1.grandtotal__c == 86.4375,
'Order grand total was not $86.4375 but was '
+ order1.grandtotal__c);

System.assert(order1.shippingdiscount__c == 0,
'Order shipping discount was not $0 but was '
+ order1.shippingdiscount__c);

}
// Testing free shipping
public static testmethod void testFreeShipping(){

// Create the shipping invoice. It's a best practice to either use defaults
// or to explicitly set all values to zero so as to avoid having
// extraneous data in your test.
Shipping_Invoice__C order1 = new Shipping_Invoice__C(subtotal__c = 0,

totalweight__c = 0, grandtotal__c = 0,
ShippingDiscount__c = 0, Shipping__c = 0, tax__c = 0);

// Insert the order and populate with items.
insert Order1;
List<Item__c> list1 = new List<Item__c>();
Item__c item1 = new Item__C(Price__c = 10, weight__c = 1,

quantity__c = 1, Shipping_Invoice__C = order1.id);
Item__c item2 = new Item__C(Price__c = 25, weight__c = 2,

quantity__c = 1, Shipping_Invoice__C = order1.id);
Item__c item3 = new Item__C(Price__c = 40, weight__c = 3,

quantity__c = 1, Shipping_Invoice__C = order1.id);
list1.add(item1);
list1.add(item2);
list1.add(item3);
insert list1;

// Retrieve the order and verify free shipping not applicable
order1 = [SELECT id, subtotal__c, tax__c, shipping__c, totalweight__c,

grandtotal__c, shippingdiscount__c
FROM Shipping_Invoice__C
WHERE Id = :order1.Id];

// Free shipping not available on $75 orders
System.assert(order1.subtotal__c == 75,

'Order subtotal was not $75, but was '+ order1.subtotal__c);
System.assert(order1.tax__c == 6.9375,

'Order tax was not $6.9375, but was ' + order1.tax__c);
System.assert(order1.shipping__c == 4.50,

'Order shipping was not $4.50, but was ' + order1.shipping__c);
System.assert(order1.totalweight__c == 6.00,

'Order weight was not 6 but was ' + order1.totalweight__c);
System.assert(order1.grandtotal__c == 86.4375,

'Order grand total was not $86.4375 but was '
+ order1.grandtotal__c);

System.assert(order1.shippingdiscount__c == 0,
'Order shipping discount was not $0 but was '
+ order1.shippingdiscount__c);

// Add items to increase subtotal

437

Appendix A: Shipping Invoice Example Shipping Invoice Example Code

item1 = new Item__C(Price__c = 25, weight__c = 20, quantity__c = 1,
Shipping_Invoice__C = order1.id);

insert item1;

// Retrieve the order and verify free shipping is applicable
order1 = [SELECT id, subtotal__c, tax__c, shipping__c, totalweight__c,

grandtotal__c, shippingdiscount__c
FROM Shipping_Invoice__C
WHERE Id = :order1.Id];

// Order total is now at $100, so free shipping should be enabled
System.assert(order1.subtotal__c == 100,

'Order subtotal was not $100, but was '+ order1.subtotal__c);
System.assert(order1.tax__c == 9.25,

'Order tax was not $9.25, but was ' + order1.tax__c);
System.assert(order1.shipping__c == 19.50,

'Order shipping was not $19.50, but was '
+ order1.shipping__c);

System.assert(order1.totalweight__c == 26.00,
'Order weight was not 26 but was ' + order1.totalweight__c);

System.assert(order1.grandtotal__c == 109.25,
'Order grand total was not $86.4375 but was '
+ order1.grandtotal__c);

System.assert(order1.shippingdiscount__c == -19.50,
'Order shipping discount was not -$19.50 but was '
+ order1.shippingdiscount__c);

}

// Negative testing for inserting bad input
public static testmethod void testNegativeTests(){

// Create the shipping invoice. It's a best practice to either use defaults
// or to explicitly set all values to zero so as to avoid having
// extraneous data in your test.
Shipping_Invoice__C order1 = new Shipping_Invoice__C(subtotal__c = 0,

totalweight__c = 0, grandtotal__c = 0,
ShippingDiscount__c = 0, Shipping__c = 0, tax__c = 0);

// Insert the order and populate with items.
insert Order1;
Item__c item1 = new Item__C(Price__c = -10, weight__c = 1, quantity__c = 1,

Shipping_Invoice__C = order1.id);
Item__c item2 = new Item__C(Price__c = 25, weight__c = -2, quantity__c = 1,

Shipping_Invoice__C = order1.id);
Item__c item3 = new Item__C(Price__c = 40, weight__c = 3, quantity__c = -1,

Shipping_Invoice__C = order1.id);
Item__c item4 = new Item__C(Price__c = 40, weight__c = 3, quantity__c = 0,

Shipping_Invoice__C = order1.id);

try{
insert item1;

}
catch(Exception e)
{

system.assert(e.getMessage().contains('Price must be non-negative'),
'Price was negative but was not caught');

}

try{
insert item2;

}
catch(Exception e)
{

system.assert(e.getMessage().contains('Weight must be non-negative'),
'Weight was negative but was not caught');

}

438

Appendix A: Shipping Invoice Example Shipping Invoice Example Code

try{
insert item3;

}
catch(Exception e)
{

system.assert(e.getMessage().contains('Quantity must be positive'),
'Quantity was negative but was not caught');

}

try{
insert item4;

}
catch(Exception e)
{

system.assert(e.getMessage().contains('Quantity must be positive'),
'Quantity was zero but was not caught');

}
}

}

439

Appendix A: Shipping Invoice Example Shipping Invoice Example Code

440

Appendix A: Shipping Invoice Example Shipping Invoice Example Code

Appendix

B
Reserved Keywords

The following words can only be used as keywords.

Note: Keywords marked with an asterisk (*) are reserved for future use.

Table 4: Reserved Keywords

retrieve*having*abstract
returnhint*activate*
returning*ifand
rollbackimplementsany*
savepointimport*array
search*inner*as
selectinsertasc
setinstanceofautonomous*
short*interfacebegin*
sortinto*bigdecimal*
stat*intblob
superjoin*break
switch*last_90_daysbulk
synchronized*last_monthby
systemlast_n_daysbyte*
testmethodlast_weekcase*
then*likecast*
thislimitcatch
this_month*listchar*
this_weeklongclass
throwloop*collect*
todaymapcommit
tolabelmergeconst*
tomorrownewcontinue
transaction*next_90_daysconvertcurrency
triggernext_monthdecimal

441

truenext_n_daysdefault*
trynext_weekdelete
type*notdesc
undeletenulldo
updatenullselse
upsertnumber*end*
usingobject*enum
virtualof*exception
webserviceonexit*
when*orexport*
whereouter*extends
whileoverridefalse
yesterdaypackagefinal

parallel*finally
pragma*float*
privatefor
protectedfrom
publicfuture

global
goto*
group*

The following are special types of keywords that aren't reserved words and can be used as identifiers.

• after
• before
• count
• excludes
• first
• includes
• last
• order
• sharing
• with

442

Appendix B: Reserved Keywords

Appendix

C
SOAP API and SOAP Headers for Apex

This appendix details the SOAP API calls and objects that are available by default for Apex.

Note: Apex class methods can be exposed as custom SOAP Web service calls. This allows an external application to
invoke an Apex Web service to perform an action in Database.com. Use the webService keyword to define these
methods. For more information, see Considerations for Using the WebService Keyword on page 208.

Any Apex code saved using SOAP API calls uses the same version of SOAP API as the endpoint of the request. For example,
if you want to use SOAP API version 25.0, use endpoint 25.0:

https://na1-api.salesforce.com/services/Soap/s/25.0

For information on all other SOAP API calls, including those that can be used to extend or implement any existing Apex IDEs,
contact your salesforce.com representative.

The following API objects are available as a Beta release in API version 23.0 and later:

• ApexTestQueueItem
• ApexTestResult

The following are SOAP API calls:

• compileAndTest()

• compileClasses()

• compileTriggers()

• executeanonymous()

• runTests()

The following SOAP headers are available in SOAP API calls for Apex:

• DebuggingHeader

Also see the Metadata API Developer's Guide for two additional calls:

• deploy()

• retrieve()

443

http://www.salesforce.com/us/developer/docs/api_meta/index_CSH.htm#meta_deploy.htm
http://www.salesforce.com/us/developer/docs/api_meta/index_CSH.htm#meta_retreive.htm

ApexTestQueueItem
Note: The API for asynchronous test runs is a Beta release.

Represents a single Apex class in the Apex job queue. This object is available in API version 23.0 and later.

Supported Calls
create(), describeSObjects(), query(), retrieve(), update(), upsert()

Fields

DescriptionField Name

Type
reference

ApexClassId

Properties
Create, Filter, Group, Sort

Description

The Apex class whose tests are to be executed.

This field can't be updated.

Type
string

ExtendedStatus

Properties
Filter, Nillable, Sort

Description

The pass rate of the test run.

For example: “(4/6)”. This means that four out of a total of six tests passed.

If the class fails to execute, this field contains the cause of the failure.

Type
reference

ParentJobId

Properties
Filter, Group, Nillable, Sort

Description

Read-only. Points to the AsyncApexJob that represents the entire test
run.

If you insert multiple Apex test queue items in a single bulk operation,
the queue items will share the same parent job. This means that a test run

444

Appendix C: SOAP API and SOAP Headers for Apex ApexTestQueueItem

DescriptionField Name

can consist of the execution of the tests of several classes if all the test
queue items are inserted in the same bulk operation.

Type
picklist

Status

Properties
Filter, Group, Restricted picklist, Sort, Update

Description
The status of the job. Valid values are:

• Queued

• Processing

• Aborted

• Completed

• Failed

• Preparing

Usage
Insert an ApexTestQueueItem object to place its corresponding Apex class in the Apex job queue for execution. The Apex
job executes the test methods in the class.

To abort a class that is in the Apex job queue, perform an update operation on the ApexTestQueueItem object and set its
Status field to Aborted.

If you insert multiple Apex test queue items in a single bulk operation, the queue items will share the same parent job. This
means that a test run can consist of the execution of the tests of several classes if all the test queue items are inserted in the
same bulk operation.

ApexTestResult
Note: The API for asynchronous test runs is a Beta release.

Represents the result of an Apex test method execution. This object is available in API version 23.0 and later.

Supported Calls
describeSObjects(), query(), retrieve()

445

Appendix C: SOAP API and SOAP Headers for Apex ApexTestResult

Fields

DetailsField Name

Type
reference

ApexClassId

Properties
Filter, Group, Sort

Description

The Apex class whose test methods were executed.

Type
reference

ApexLogId

Properties
Filter, Group, Nillable, Sort

Description

Points to the ApexLog for this test method execution if debug logging is
enabled; otherwise, null.

Type
reference

AsyncApexJobId

Properties
Filter, Group, Nillable, Sort

Description

Read-only. Points to the AsyncApexJob that represents the entire test
run.

This field points to the same object as
ApexTestQueueItem.ParentJobId.

Type
string

Message

Properties
Filter, Nillable, Sort

Description

The exception error message if a test failure occurs; otherwise, null.

Type
string

MethodName

Properties
Filter, Group, Nillable, Sort

446

Appendix C: SOAP API and SOAP Headers for Apex ApexTestResult

DetailsField Name

Description

The test method name.

Type
picklist

Outcome

Properties
Filter, Group, Restricted picklist, Sort

Description

The result of the test method execution. Can be one of these values:

• Pass
• Fail
• CompileFail

Type
reference

QueueItemId

Properties
Filter, Group, Nillable, Sort

Description

Points to the ApexTestQueueItem which is the class that this test method
is part of.

Type
string

StackTrace

Properties
Filter, Nillable, Sort

Description

The Apex stack trace if the test failed; otherwise, null.

Type
dateTime

TestTimestamp

Properties
Filter, Sort

Description

The start time of the test method.

Usage
You can query the fields of the ApexTestResult record that corresponds to a test method executed as part of an Apex class
execution.

447

Appendix C: SOAP API and SOAP Headers for Apex ApexTestResult

Each test method execution is represented by a single ApexTestResult record. For example, if an Apex test class contains
six test methods, six ApexTestResult records are created. These records are in addition to the ApexTestQueueItem
record that represents the Apex class.

compileAndTest()
Compile and test your Apex in a single call.

Syntax

CompileAndTestResult[] = compileAndTest(CompileAndTestRequest request);

Usage
Use this call to both compile and test the Apex you specify with a single call. Production organizations (not a test database
organization) must use this call instead of compileClasses() or compileTriggers().

This call supports the DebuggingHeader and the SessionHeader. For more information about the SOAP headers in the API,
see the SOAP API Developer's Guide.

All specified tests must pass, otherwise data is not saved to the database. If this call is invoked in a production organization,
the RunTestsRequest property of the CompileAndTestRequest is ignored, and all unit tests defined in the organization are
run and must pass.

Sample Code—Java
Note that the following example sets checkOnly to true so that this class is compiled and tested, but the classes are not
saved to the database.

{
CompileAndTestRequest request;
CompileAndTestResult result = null;

String triggerBody = "trigger t1 on Invoice_Statement__c (before insert){ " +
" for(Invoice_Statement__c a:Trigger.new){ " +
" a.Description__c = 't1_UPDATE';}" +
"}";

String classToTestTriggerBody = "public class TestT1{" +
" public static testmethod void test1(){" +
" Invoice_Statement__c a = new Invoice_Statement__c(" +
" Description__c='TEST');" +
" insert(a);" +
" a = [SELECT Id,Description__c FROM Invoice_Statement__c WHERE Id=:a.Id];" +
" System.assert(a.Description__c.contains('t1_UPDATE'));" +
" }" +
"}";

String classBody = "public class c1{" +
" public static String s ='HELLO';" +
" public static testmethod void test1(){" +
" System.assert(s=='HELLO');" +
" }" +
"}";

// TEST
// Compile only one class which meets all test requirements for checking

448

Appendix C: SOAP API and SOAP Headers for Apex compileAndTest()

http://www.salesforce.com/apidoc

request = new CompileAndTestRequest();

request.setClasses(new String[]{classBody, classToTestTriggerBody});
request.setTriggers(new String[]{triggerBody});
request.setCheckOnly(true);

try {
result = apexBinding.compileAndTest(request);

} catch (RemoteException e) {
System.out.println("An unexpected error occurred: " + e.getMessage());

}
assert (result.isSuccess());

}

Arguments

DescriptionTypeName

A request that includes the Apex and the values for any fields that
need to be set for this request.

CompileAndTestRequestrequest

Response
CompileAndTestResult

CompileAndTestRequest

The compileAndTest() call contains this object, a request with information about the Apex to be compiled.

A CompileAndTestRequest object has the following properties:

DescriptionTypeName

If set to true, the Apex classes and triggers submitted are not saved to your
organization, whether or not the code successfully compiles and unit tests pass.

booleancheckOnly

Content of the class or classes to be compiled.stringclasses

Name of the class or classes to be deleted.stringdeleteClasses

Name of the trigger or triggers to be deleted.stringdeleteTriggers

Specifies information about the Apex to be tested. If this request is sent in a
production organization, this property is ignored and all unit tests are run for
your entire organization.

RunTestsRequestrunTestsRequest

Content of the trigger or triggers to be compiled.stringtriggers

Note the following about this object:

• This object contains the RunTestsRequest property. If the request is run in a production organization, the property is
ignored and all tests are run.

• If any errors occur during compile, delete, testing, or if the goal of 75% code coverage is missed, no classes or triggers are
saved to your organization.

• All triggers must have code coverage. If a trigger has no code coverage, no classes or triggers are saved to your organization.

449

Appendix C: SOAP API and SOAP Headers for Apex CompileAndTestRequest

CompileAndTestResult

The compileAndTest() call returns information about the compile and unit test run of the specified Apex, including
whether it succeeded or failed.

A CompileAndTestResult object has the following properties:

DescriptionTypeName

Information about the success or failure of the compileAndTest()
call if classes were being compiled.

CompileClassResultclasses

Information about the success or failure of the compileAndTest()
call if classes were being deleted.

DeleteApexResultdeleteClasses

Information about the success or failure of the compileAndTest()
call if triggers were being deleted.

DeleteApexResultdeleteTriggers

Information about the success or failure of the Apex unit tests, if any
were specified.

RunTestsResultrunTestsResult

If true, all of the classes, triggers, and unit tests specified ran
successfully. If any class, trigger, or unit test failed, the value is false,
and details are reported in the corresponding result object:

boolean*success

• CompileClassResult

• CompileTriggerResult

• DeleteApexResult

• RunTestsResult

Information about the success or failure of the compileAndTest()
call if triggers were being compiled.

CompileTriggerResulttriggers

* Link goes to the SOAP API Developer's Guide.

CompileClassResult

This object is returned as part of a compileAndTest() or compileClasses() call. It contains information about whether
or not the compile and run of the specified Apex was successful.

A CompileClassResult object has the following properties:

DescriptionTypeName

The CRC (cyclic redundancy check) of the class or trigger file.int*bodyCrc

The column number where an error occurred, if one did.int*column

An ID is created for each compiled class. The ID is unique within an
organization.

ID*id

The line number where an error occurred, if one did.int*line

The name of the class.string*name

450

Appendix C: SOAP API and SOAP Headers for Apex CompileAndTestResult

http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435021
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435108
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435108
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#field_types.htm#i1435330
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435108
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435116

DescriptionTypeName

The description of the problem if an error occurred.string*problem

If true, the class or classes compiled successfully. If false, problems are
specified in other properties of this object.

boolean*success

* Link goes to the SOAP API Developer's Guide.

CompileTriggerResult

This object is returned as part of a compileAndTest() or compileTriggers() call. It contains information about whether
or not the compile and run of the specified Apex was successful.

A CompileTriggerResult object has the following properties:

DescriptionTypeName

The CRC (cyclic redundancy check) of the trigger file.int*bodyCrc

The column where an error occurred, if one did.int*column

An ID is created for each compiled trigger. The ID is unique within an
organization.

ID*id

The line number where an error occurred, if one did.int*line

The name of the trigger.string*name

The description of the problem if an error occurred.string*problem

If true, all the specified triggers compiled and ran successfully. If the
compilation or execution of any trigger fails, the value is false.

boolean*success

* Link goes to the SOAP API Developer's Guide.

DeleteApexResult

This object is returned when the compileAndTest() call returns information about the deletion of a class or trigger.

A DeleteApexResult object has the following properties:

DescriptionTypeName

ID of the deleted trigger or class. The ID is unique within an organization.ID*id

The description of the problem if an error occurred.string*problem

If true, all the specified classes or triggers were deleted successfully. If any
class or trigger is not deleted, the value is false.

boolean*success

* Link goes to the SOAP API Developer's Guide.

451

Appendix C: SOAP API and SOAP Headers for Apex CompileAndTestResult

http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435116
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435021
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435108
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435108
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#field_types.htm#i1435330
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435108
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435116
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435116
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435021
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#field_types.htm#i1435330
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435116
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435021

compileClasses()
Compile your Apex in a test database organization.

Syntax

CompileClassResult[] = compileClasses(string[] classList);

Usage
Use this call to compile Apex classes in a test database organization. Production organizations must use compileAndTest().

This call supports the DebuggingHeader and the SessionHeader. For more information about the SOAP headers in the API,
see the SOAP API Developer's Guide.

Sample Code—Java

public void compileClassesSample() {
String p1 = "public class p1 {\n"
+ "public static Integer var1 = 0;\n"
+ "public static void methodA() {\n"
+ " var1 = 1;\n" + "}\n"
+ "public static void methodB() {\n"
+ " p2.MethodA();\n" + "}\n"
+ "}";

String p2 = "public class p2 {\n"
+ "public static Integer var1 = 0;\n"
+ "public static void methodA() {\n"
+ " var1 = 1;\n" + "}\n"
+ "public static void methodB() {\n"
+ " p1.MethodA();\n" + "}\n"
+ "}";

CompileClassResult[] r = new CompileClassResult[0];
try {

r = apexBinding.compileClasses(new String[]{p1, p2});
} catch (RemoteException e) {

System.out.println("An unexpected error occurred: "
+ e.getMessage());

}
if (!r[0].isSuccess()) {

System.out.println("Couldn't compile class p1 because: "
+ r[0].getProblem());

}
if (!r[1].isSuccess()) {

System.out.println("Couldn't compile class p2 because: "
+ r[1].getProblem());

}
}

Arguments

DescriptionTypeName

A request that includes the Apex classes and the values for any fields that need
to be set for this request.

string*scripts

* Link goes to the SOAP API Developer's Guide.

452

Appendix C: SOAP API and SOAP Headers for Apex compileClasses()

http://www.salesforce.com/apidoc
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435116

Response
CompileClassResult

compileTriggers()
Compile your Apex triggers in a test database organization.

Syntax

CompileTriggerResult[] = compileTriggers(string[] triggerList);

Usage
Use this call to compile the specified Apex triggers in a test database organization. Production organizations must use
compileAndTest().

This call supports the DebuggingHeader and the SessionHeader. For more information about the SOAP headers in the API,
see the SOAP API Developer's Guide.

Arguments

DescriptionTypeName

A request that includes the Apex trigger or triggers and the values for any fields
that need to be set for this request.

string*scripts

* Link goes to the SOAP API Developer's Guide.

Response
CompileTriggerResult

executeanonymous()
Executes a block of Apex.

Syntax

ExecuteAnonymousResult[] = binding.executeanonymous(string apexcode);

Usage
Use this call to execute an anonymous block of Apex. This call can be executed from AJAX.

This call supports the API DebuggingHeader and SessionHeader.

Apex classes and triggers saved (compiled) using API version 15.0 and higher produce a runtime error if you assign a String
value that is too long for the field.

453

Appendix C: SOAP API and SOAP Headers for Apex compileTriggers()

http://www.salesforce.com/apidoc
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435116

Arguments

DescriptionTypeName

A block of Apex.string*apexcode

* Link goes to the SOAP API Developer's Guide.

SOAP API Developer's Guide contains information about security, access, and SOAP headers.

Response
ExecuteAnonymousResult[]

ExecuteAnonymousResult

The executeanonymous() call returns information about whether or not the compile and run of the code was successful.

An ExecuteAnonymousResult object has the following properties:

DescriptionTypeName

If compiled is False, this field contains the column number of the point where
the compile failed.

int*column

If compiled is False, this field contains a description of the problem that
caused the compile to fail.

string*compileProblem

If True, the code was successfully compiled. If False, the column, line, and
compileProblem fields are not null.

boolean*compiled

If success is False, this field contains the exception message for the failure.string*exceptionMessage

If success is False, this field contains the stack trace for the failure.string*exceptionStackTrace

If compiled is False, this field contains the line number of the point where
the compile failed.

int*line

If True, the code was successfully executed. If False, the exceptionMessage
and exceptionStackTrace values are not null.

boolean*success

* Link goes to the SOAP API Developer's Guide.

runTests()
Run your Apex unit tests.

Syntax

RunTestsResult[] = binding.runTests(RunTestsRequest request);

454

Appendix C: SOAP API and SOAP Headers for Apex ExecuteAnonymousResult

http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435116
http://www.salesforce.com/apidoc
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435108
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435116
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435021
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435116
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435116
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435108
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435021

Usage
To facilitate the development of robust, error-free code, Apex supports the creation and execution of unit tests. Unit tests are
class methods that verify whether a particular piece of code is working properly. Unit test methods take no arguments, commit
no data to the database, send no emails, and are flagged with the testMethod keyword in the method definition. Use this
call to run your Apex unit tests.

This call supports the DebuggingHeader and the SessionHeader. For more information about the SOAP headers in the API,
see the SOAP API Developer's Guide.

Sample Code—Java

public void runTestsSample() {
String sessionId = "sessionID goes here";
String url = "url goes here";
// Set the Apex stub with session ID received from logging in with the partner API
_SessionHeader sh = new _SessionHeader();
apexBinding.setHeader(

new ApexServiceLocator().getServiceName().getNamespaceURI(),
"SessionHeader", sh);

// Set the URL received from logging in with the partner API to the Apex stub
apexBinding._setProperty(ApexBindingStub.ENDPOINT_ADDRESS_PROPERTY, url);

// Set the debugging header
_DebuggingHeader dh = new _DebuggingHeader();
dh.setDebugLevel(LogType.Profiling);
apexBinding.setHeader(

new ApexServiceLocator().getServiceName().getNamespaceURI(),
"DebuggingHeader", dh);

long start = System.currentTimeMillis();
RunTestsRequest rtr = new RunTestsRequest();
rtr.setAllTests(true);
RunTestsResult res = null;
try {

res = apexBinding.runTests(rtr);
} catch (RemoteException e) {

System.out.println("An unexpected error occurred: " + e.getMessage());
}

System.out.println("Number of tests: " + res.getNumTestsRun());
System.out.println("Number of failures: " + res.getNumFailures());
if (res.getNumFailures() > 0) {

for (RunTestFailure rtf : res.getFailures()) {
System.out.println("Failure: " + (rtf.getNamespace() ==
null ? "" : rtf.getNamespace() + ".")
+ rtf.getName() + "." + rtf.getMethodName() + ": "
+ rtf.getMessage() + "\n" + rtf.getStackTrace());

}
}
if (res.getCodeCoverage() != null) {

for (CodeCoverageResult ccr : res.getCodeCoverage()) {
System.out.println("Code coverage for " + ccr.getType() +
(ccr.getNamespace() == null ? "" : ccr.getNamespace() + ".")
+ ccr.getName() + ": "
+ ccr.getNumLocationsNotCovered()
+ " locations not covered out of "
+ ccr.getNumLocations());

if (ccr.getNumLocationsNotCovered() > 0) {
for (CodeLocation cl : ccr.getLocationsNotCovered())

System.out.println("\tLine " + cl.getLine());
}

}

455

Appendix C: SOAP API and SOAP Headers for Apex runTests()

http://www.salesforce.com/apidoc

}
System.out.println("Finished in " +
(System.currentTimeMillis() - start) + "ms");

}

Arguments

DescriptionTypeName

A request that includes the Apex unit tests and the values for any fields
that need to be set for this request.

RunTestsRequestrequest

Response
RunTestsResult

RunTestsRequest

The compileAndTest() call contains a request, CompileAndTestRequest with information about the Apex to be compiled.
The request also contains this object which specifies information about the Apex to be tested. You can specify the same or
different classes to be tested as being compiled. Since triggers cannot be tested directly, they are not included in this object.
Instead, you must specify a class that calls the trigger.

If the request is sent in a production organization, this request is ignored and all unit tests defined for your organization are
run.

A CompileAndTestRequest object has the following properties:

DescriptionTypeName

If allTests is True, all unit tests defined for your organization are run.boolean*allTests

An array of one or more objects.string*[]classes

If specified, the namespace that contains the unit tests to be run. Do not use
this property if you specify allTests as true. Also, if you execute

stringnamespace

compileAndTest() in a production organization, this property is ignored,
and all unit tests defined for the organization are run.

Do not use after version 10.0. For earlier, unsupported releases, the content of
the package to be tested.

string*[]packages

Note: Packages are not supported in Database.com.

* Link goes to the SOAP API Developer's Guide.

RunTestsResult

The call returns information about whether or not the compilation of the specified Apex was successful and if the unit tests
completed successfully.

456

Appendix C: SOAP API and SOAP Headers for Apex RunTestsRequest

http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435021
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435116
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435116
http://www.salesforce.com/us/developer/docs/api/index_CSH.htm#primitive_data_types.htm#i1435116

A RunTestsResult object has the following properties:

DescriptionTypeName

An array of one or more CodeCoverageResult objects that
contains the details of the code coverage for the specified unit
tests.

CodeCoverageResult[]codeCoverage

An array of one or more code coverage warnings for the test
run. The results include both the total number of lines that

CodeCoverageWarning[]codeCoverageWarnings

could have been executed, as well as the number, line, and
column positions of code that was not executed.

An array of one or more RunTestFailure objects that contain
information about the unit test failures, if there are any.

RunTestFailure[]failures

The number of failures for the unit tests.intnumFailures

The number of unit tests that were run.intnumTestsRun

An array of one or more RunTestSuccesses objects that contain
information about successes, if there are any.

RunTestSuccess[]successes

The total cumulative time spent running tests. This can be
helpful for performance monitoring.

doubletotalTime

CodeCoverageResult

The RunTestsResult object contains this object. It contains information about whether or not the compile of the specified
Apex and run of the unit tests was successful.

A CodeCoverageResult object has the following properties:

DescriptionTypeName

For each class or trigger tested, for each portion of code tested, this property
contains the DML statement locations, the number of times the code was

CodeLocation[]dmlInfo

executed, and the total cumulative time spent in these calls. This can be helpful
for performance monitoring.

The ID of the CodeLocation. The ID is unique within an organization.IDid

For each class or trigger tested, if any code is not covered, the line and column
of the code not tested, and the number of times the code was executed.

CodeLocation[]locationsNotCovered

457

Appendix C: SOAP API and SOAP Headers for Apex RunTestsResult

DescriptionTypeName

For each class or trigger tested, the method invocation locations, the number
of times the code was executed, and the total cumulative time spent in these
calls. This can be helpful for performance monitoring.

CodeLocation[]methodInfo

The name of the class or trigger covered.stringname

The namespace that contained the unit tests, if one is specified.stringnamespace

The total number of code locations.intnumLocations

For each class or trigger tested, the location of SOQL statements in the code,
the number of times this code was executed, and the total cumulative time
spent in these calls. This can be helpful for performance monitoring.

CodeLocation[]soqlInfo

For each class tested, the location of SOSL statements in the code, the number
of times this code was executed, and the total cumulative time spent in these
calls. This can be helpful for performance monitoring.

CodeLocation[]soslInfo

Do not use. In early, unsupported releases, used to specify class.stringtype

CodeCoverageWarning

The RunTestsResult object contains this object. It contains information about the Apex class which generated warnings.

This object has the following properties:

DescriptionTypeName

The ID of the class which generated warnings.IDid

The message of the warning generated.stringmessage

The name of the class that generated a warning. If the warning applies to the
overall code coverage, this value is null.

stringname

The namespace that contains the class, if one was specified.stringnamespace

RunTestFailure

The RunTestsResult object returns information about failures during the unit test run.

This object has the following properties:

458

Appendix C: SOAP API and SOAP Headers for Apex RunTestsResult

DescriptionTypeName

The ID of the class which generated failures.IDid

The failure message.stringmessage

The name of the method that failed.stringmethodName

The name of the class that failed.stringname

The namespace that contained the class, if one was specified.stringnamespace

The stack trace for the failure.stringstackTrace

The time spent running tests for this failed operation. This can be helpful for
performance monitoring.

doubletime

Do not use. In early, unsupported releases, used to specify class or package.stringtype

* Link goes to the SOAP API Developer's Guide.

RunTestSuccess

The RunTestsResult object returns information about successes during the unit test run.

This object has the following properties:

DescriptionTypeName

The ID of the class which generated the success.IDid

The name of the method that succeeded.stringmethodName

The name of the class that succeeded.stringname

The namespace that contained the class, if one was specified.stringnamespace

The time spent running tests for this operation. This can be helpful for
performance monitoring.

doubletime

CodeLocation

The RunTestsResult object contains this object in a number of fields.

This object has the following properties:

459

Appendix C: SOAP API and SOAP Headers for Apex RunTestsResult

DescriptionTypeName

The column location of the Apex tested.intcolumn

The line location of the Apex tested.intline

The number of times the Apex was executed in the test run.intnumExecutions

The total cumulative time spent at this location. This can be helpful for
performance monitoring.

doubletime

DebuggingHeader
Specifies that the response will contain the debug log in the return header, and specifies the level of detail in the debug header.

API Calls
compileAndTest()executeanonymous()runTests()

Fields

DescriptionTypeElement Name

This field has been deprecated and is only provided for backwards compatibility.
Specifies the type of information returned in the debug log. The values are listed

logtypedebugLevel

from the least amount of information returned to the most information returned.
Valid values include:
• NONE

• DEBUGONLY

• DB

• PROFILING

• CALLOUT

• DETAIL

Specifies the type, as well as the amount of information returned in the debug log.LogInfo[]categories

LogInfo
Specifies the type, as well as the amount of information, returned in the debug log. The categories field takes a list of these
objects.

460

Appendix C: SOAP API and SOAP Headers for Apex DebuggingHeader

Fields

DescriptionTypeElement Name

Specify the type of information returned in the debug log. Valid values are:stringLogCategory

• Db

• Workflow

• Validation

• Callout

• Apex_code

• Apex_profiling

• All

Specifies the amount of information returned in the debug log. Only the
Apex_code LogCategory uses the log category levels.

Valid log levels are (listed from lowest to highest):

stringLogCategoryLevel

• ERROR

• WARN

• INFO

• DEBUG

• FINE

• FINER

• FINEST

461

Appendix C: SOAP API and SOAP Headers for Apex DebuggingHeader

462

Appendix C: SOAP API and SOAP Headers for Apex DebuggingHeader

Glossary

A |B |C |D |E |F |G |H |I |J |K |L |M |N |O |P |Q |R |S |T |U |V |W |X |Y |Z

A
Administrator (System Administrator)

One or more individuals in your organization who can configure and customize the application. Users assigned to the
System Administrator profile have administrator privileges.

AJAX Toolkit
A JavaScript wrapper around the API that allows you to execute any API call and access any object you have permission
to view from within JavaScript code. For more information, see the AJAX Toolkit Developer's Guide.

Anti-Join
An anti-join is a subquery on another object in a NOT IN clause in a SOQL query. You can use anti-joins to create
advanced queries. See also Semi-Join.

Anonymous Block, Apex
Apex code that does not get stored in Database.com, but that can be compiled and executed through the use of the
ExecuteAnonymousResult() API call, or the equivalent in the AJAX Toolkit.

Apex
Apex is a strongly typed, object-oriented programming language that allows developers to execute flow and transaction
control statements on Database.com in conjunction with calls to the Force.com API. Using syntax that looks like Java
and acts like database stored procedures, Apex enables developers to add business logic to most system events. Apex code
can be initiated by Web service requests and from triggers on objects.

Apex-Managed Sharing
Enables developers to programmatically manipulate sharing to support their application’s behavior. Apex-managed sharing
is only available for custom objects.

Application Programming Interface (API)
The interface that a computer system, library, or application provides to allow other computer programs to request services
from it and exchange data.

Asynchronous Calls
A call that does not return results immediately because the operation may take a long time. Calls in the Metadata API
and Bulk API are asynchronous.

463

http://www.salesforce.com/us/developer/docs/ajax/index.htm
http://www.salesforce.com/us/developer/docs/ajax/index.htm

B
Batch Apex

The ability to perform long, complex operations on many records at a scheduled time using Apex.

C
Callout, Apex

An Apex callout enables you to tightly integrate your Apex with an external service by making a call to an external Web
service or sending a HTTP request from Apex code and then receiving the response.

Child Relationship
A relationship that has been defined on an sObject that references another sObject as the “one” side of a one-to-many
relationship. For example, a line item has a child relationship with an invoice statement.

See also sObject.

Class, Apex
A template or blueprint from which Apex objects are created. Classes consist of other classes, user-defined methods,
variables, exception types, and static initialization code. In most cases, Apex classes are modeled on their counterparts in
Java.

Client App
An app that runs outside the Database.com user interface and uses only the Force.com API or Bulk API. It typically runs
on a desktop or mobile device. These apps treat the platform as a data source, using the development model of whatever
tool and platform for which they are designed. See also Composite App and Native App.

Code Coverage
A way to identify which lines of code are exercised by a set of unit tests, and which are not. This helps you identify sections
of code that are completely untested and therefore at greatest risk of containing a bug or introducing a regression in the
future.

Component, Metadata
A component is an instance of a metadata type in the Metadata API. For example, CustomObject is a metadata type for
custom objects, and the MyCustomObject__c component is an instance of a custom object. A component is described
in an XML file and it can be deployed or retrieved using the Metadata API, or tools built on top of it, such as the Force.com
IDE or the Force.com Migration Tool.

Custom Object
Custom records that allow you to store information unique to your organization.

Custom Settings
Custom settings are similar to custom objects and enable application developers to create custom sets of data, as well as
create and associate custom data for an organization, profile, or specific user. All custom settings data is exposed in the
application cache, which enables efficient access without the cost of repeated queries to the database. This data can then
be used by formula fields, validation rules, Apex, and the SOAP API.

See also Hierarchy Custom Settings and List Custom Settings.

D
Database

An organized collection of information. The underlying architecture of Database.com includes a database where your data
is stored.

464

Glossary

Database Table
A list of information, presented with rows and columns, about the person, thing, or concept you want to track. See also
Object.

Database.com Certificate and Key Pair
Database.com certificates and key pairs are used for signatures that verify a request is coming from your organization.
They are used for authenticated SSL communications with an external web site, or when using your organization as an
Identity Provider. You only need to generate a Database.com certificate and key pair if you're working with an external
website that wants verification that a request is coming from a Database.com organization.

Data Loader
A Force.com platform tool used to import and export data from your Database.com organization.

Data Manipulation Language (DML)
An Apex method or operation that inserts, updates, or deletes records from Database.com.

Data State
The structure of data in an object at a particular point in time.

Date Literal
A keyword in a SOQL or SOSL query that represents a relative range of time such as last month or next year.

Decimal Places
Parameter for number, currency, and percent custom fields that indicates the total number of digits you can enter to the
right of a decimal point, for example, 4.98 for an entry of 2. Note that the system rounds the decimal numbers you enter,
if necessary. For example, if you enter 4.986 in a field with Decimal Places of 2, the number rounds to 4.99.
Database.com uses the round half-up rounding algorithm. Half-way values are always rounded up. For example, 1.45 is
rounded to 1.5. –1.45 is rounded to –1.5.

Dependency
A relationship where one object's existence depends on that of another. There are a number of different kinds of
dependencies including mandatory fields, dependent objects (parent-child), file inclusion (referenced images, for example),
and ordering dependencies (when one object must be deployed before another object).

Dependent Field
Any custom picklist or multi-select picklist field that displays available values based on the value selected in its corresponding
controlling field.

Deploy
The process by which an application or other functionality is moved from development to production.

To move metadata components from a local file system to a Database.com organization.

For installed apps, deployment makes any custom objects in the app available to users in your organization. Before a
custom object is deployed, it is only available to administrators and any users with the “Customize Application” permission.

Developer Force
The Developer Force website at developer.force.com provides a full range of resources for platform developers, including
sample code, toolkits, an online developer community, and the ability to obtain limited Force.com platform environments.

Development as a Service (DaaS)
An application development model where all development is on the Web. This means that source code, compilation, and
development environments are not on local machines, but are Web-based services.

465

Glossary

http://developer.force.com

Development Environment
A Database.com organization where you can make configuration changes that will not affect users on the production
organization.For Database.com, the development environment is your test database organization.

E
Enterprise WSDL

A strongly-typed WSDL for customers who want to build an integration with their Database.com organization only, or
for partners who are using tools like Tibco or webMethods to build integrations that require strong typecasting. The
downside of the Enterprise WSDL is that it only works with the schema of a single Database.com organization because
it is bound to all of the unique objects and fields that exist in that organization's data model.

Entity Relationship Diagram (ERD)
A data modeling tool that helps you organize your data into entities (or objects, as they are called in the Force.com platform)
and define the relationships between them. ERD diagrams for key Database.com objects are published in the SOAP API
Developer's Guide.

Enumeration Field
An enumeration is the WSDL equivalent of a picklist field. The valid values of the field are restricted to a strict set of
possible values, all having the same data type.

F
Field

A part of an object that holds a specific piece of information, such as a text or currency value.

Field Dependency
A filter that allows you to change the contents of a picklist based on the value of another field.

Field-Level Security
Settings that determine whether fields are hidden, visible, read only, or editable for users.

Force.com
The salesforce.com platform for building applications in the cloud. Force.com combines a powerful user interface, operating
system, and database to allow you to customize and deploy applications in the cloud for your entire enterprise.

Force.com IDE
An Eclipse plug-in that allows developers to manage, author, debug and deploy Force.com applications in the Eclipse
development environment.

Force.com Migration Tool
A toolkit that allows you to write an Apache Ant build script for migrating Force.com components between a local file
system and a Database.com organization.

Foreign key
A field whose value is the same as the primary key of another table. You can think of a foreign key as a copy of a primary
key from another table. A relationship is made between two tables by matching the values of the foreign key in one table
with the values of the primary key in another.

466

Glossary

G
Getter Methods

Methods that enable developers to display database and other computed values in page markup.

Methods that return values. See also Setter Methods.

Global Variable
A special merge field that you can use to reference data in your organization.

A method access modifier for any method that needs to be referenced outside of the application, either in the SOAP API
or by other Apex code.

Governor limits
Apex execution limits that prevent developers who write inefficient code from monopolizing the resources of other
Database.com users.

Gregorian Year
A calendar based on a twelve month structure used throughout much of the world.

H
Hierarchy Custom Settings

A type of custom setting that uses a built-in hierarchical logic that lets you “personalize” settings for specific profiles or
users. The hierarchy logic checks the organization, profile, and user settings for the current user and returns the most
specific, or “lowest,” value. In the hierarchy, settings for an organization are overridden by profile settings, which, in turn,
are overridden by user settings.

HTTP Debugger
An application that can be used to identify and inspect SOAP requests that are sent from the AJAX Toolkit. They behave
as proxy servers running on your local machine and allow you to inspect and author individual requests.

I
ID

See Record ID.

IdeaExchange
A forum where salesforce.com customers can suggest new product concepts, promote favorite enhancements, interact
with product managers and other customers, and preview what salesforce.com is planning to deliver in future releases.
Visit IdeaExchange at ideas.salesforce.com.

Instance
The cluster of software and hardware represented as a single logical server that hosts an organization's data and runs their
applications. Database.com runs on multiple instances, but data for any single organization is always consolidated on a
single instance.

Integrated Development Environment (IDE)
A software application that provides comprehensive facilities for software developers including a source code editor, testing
and debugging tools, and integration with source code control systems.

Integration User
A Database.com user defined solely for client apps or integrations. Also referred to as the logged-in user in a SOAP API
context.

467

Glossary

http://ideas.salesforce.com/

ISO Code
The International Organization for Standardization country code, which represents each country by two letters.

J
Junction Object

A custom object with two master-detail relationships. Using a custom junction object, you can model a “many-to-many”
relationship between two objects. For example, you may have a custom object called “Bug” that relates to the standard
case object such that a bug could be related to multiple cases and a case could also be related to multiple bugs.

K
Key Pair

See Database.com Certificate and Key Pair.

Keyword
Keywords are terms that you purchase in Google AdWords. Google matches a search phrase to your keywords, causing
your advertisement to trigger on Google. You create and manage your keywords in Google AdWords.

L
Length

Parameter for custom text fields that specifies the maximum number of characters (up to 255) that a user can enter in the
field.

Parameter for number, currency, and percent fields that specifies the number of digits you can enter to the left of the
decimal point, for example, 123.98 for an entry of 3.

List Custom Settings
A type of custom setting that provides a reusable set of static data that can be accessed across your organization. If you
use a particular set of data frequently within your application, putting that data in a list custom setting streamlines access
to it. Data in list settings does not vary with profile or user, but is available organization-wide. Examples of list data include
two-letter state abbreviations, international dialing prefixes, and catalog numbers for products. Because the data is cached,
access is low-cost and efficient: you don't have to use SOQL queries that count against your governor limits.

Local Name
The value stored for the field in the user’s language. The local name for a field is associated with the standard name for
that field.

Locale
The country or geographic region in which the user is located. The setting affects the format of date and number fields,
for example, dates in the English (United States) locale display as 06/30/2000 and as 30/06/2000 in the English (United
Kingdom) locale.

In Professional, Enterprise, Unlimited, and Developer Edition organizations, a user’s individual Locale setting overrides
the organization’s Default Locale setting. In Personal and Group Editions, the organization-level locale field is called
Locale, not Default Locale.

Long Text Area
Data type of custom field that allows entry of up to 32,000 characters on separate lines.

468

Glossary

Lookup Relationship
A relationship between two records so you can associate records with each other. For example, cases have a lookup
relationship with assets that lets you associate a particular asset with a case. On one side of the relationship, a lookup field
allows users to click a lookup icon and select another record from a popup window. On the associated record, you can
then display a related list to show all of the records that have been linked to it. If a lookup field references a record that
has been deleted, by default Database.com clears the lookup field. Alternatively, you can prevent records from being deleted
if they’re in a lookup relationship.

M
Manual Sharing

Record-level access rules that allow record owners to give read and edit permissions to other users who might not have
access to the record any other way.

Many-to-Many Relationship
A relationship where each side of the relationship can have many children on the other side. Many-to-many relationships
are implemented through the use of junction objects.

Master-Detail Relationship
A relationship between two different types of records that associates the records with each other. For example, invoice
statements have a master-detail relationship with line items. This type of relationship affects record deletion and security.

Metadata
Information about the structure, appearance, and functionality of an organization and any of its parts. Force.com uses
XML to describe metadata.

Metadata-Driven Development
An app development model that allows apps to be defined as declarative “blueprints,” with no code required. Apps built
on the platform—their data models, objects, forms, workflows, and more—are defined by metadata.

Metadata WSDL
A WSDL for users who want to use the Force.com Metadata API calls.

Multitenancy
An application model where all users and apps share a single, common infrastructure and code base.

MVC (Model-View-Controller)
A design paradigm that deconstructs applications into components that represent data (the model), ways of displaying
that data in a user interface (the view), and ways of manipulating that data with business logic (the controller).

N
Native App

An app that is built exclusively with setup (metadata) configuration on Force.com. Native apps do not require any external
services or infrastructure.

O
Object-Level Help

Custom help text that you can provide for any custom object. It displays on custom object record home (overview), detail,
and edit pages, as well as list views and related lists.

469

Glossary

Object-Level Security
Settings that allow an administrator to hide whole objects from users so that they don't know that type of data exists.
Object-level security is specified with object permissions.

One-to-Many Relationship
A relationship in which a single object is related to many other objects. For example, an invoice statement may have one
or more line items.

Organization
A deployment of Database.com with a defined set of licensed users. An organization is the virtual space provided to an
individual customer of . Your organization includes all of your data and applications, and is separate from all other
organizations.

Organization-Wide Defaults
Settings that allow you to specify the baseline level of data access that a user has in your organization. For example, you
can set organization-wide defaults so that any user can see any record of a particular object that is enabled via their object
permissions, but they need extra permissions to edit one.

Owner
Individual user to which a record is assigned.

P
PaaS

See Platform as a Service.

Parameterized Typing
Parameterized typing allows interfaces to be implemented with generic data type parameters that are replaced with actual
data types upon construction.

Partner WSDL
A loosely-typed WSDL for customers, partners, and ISVs who want to build an integration or an app that can work across
multiple Database.com organizations. With this WSDL, the developer is responsible for marshaling data in the correct
object representation, which typically involves editing the XML. However, the developer is also freed from being dependent
on any particular data model or Database.com organization. Contrast this with the Enterprise WSDL, which is strongly
typed.

Personal Edition
Product designed for individual sales representatives and single users.

Platform as a Service (PaaS)
An environment where developers use programming tools offered by a service provider to create applications and deploy
them in a cloud. The application is hosted as a service and provided to customers via the Internet. The PaaS vendor
provides an API for creating and extending specialized applications. The PaaS vendor also takes responsibility for the
daily maintenance, operation, and support of the deployed application and each customer's data. The service alleviates the
need for programmers to install, configure, and maintain the applications on their own hardware, software, and related
IT resources. Services can be delivered using the PaaS environment to any market segment.

Platform Edition
A Database.com edition based on either Enterprise Edition or Unlimited Edition that does not include any of the standard
Salesforce CRM apps, such as Sales or Service & Support.

470

Glossary

Primary Key
A relational database concept. Each table in a relational database has a field in which the data value uniquely identifies
the record. This field is called the primary key. The relationship is made between two tables by matching the values of
the foreign key in one table with the values of the primary key in another.

Production Organization
A Database.com organization that has live users accessing data.

Prototype
The classes, methods and variables that are available to other Apex code.

Q
Query Locator

A parameter returned from the query() or queryMore() API call that specifies the index of the last result record that
was returned.

Query String Parameter
A name-value pair that's included in a URL, typically after a '?' character.

R
Record

A single instance of a Database.com object.

Record ID
A unique 15- or 18-character alphanumeric string that identifies a single record in Database.com.

Record-Level Security
A method of controlling data in which you can allow a particular user to view and edit an object, but then restrict the
records that the user is allowed to see.

Record Locking
Record locking is the process of preventing users from editing a record, regardless of field-level security or sharing settings.
Database.com automatically locks records that are pending approval. Users must have the “Modify All” object-level
permission for the given object, or the “Modify All Data” permission, to edit locked records. The Initial Submission
Actions, Final Approval Actions, Final Rejection Actions, and Recall Actions related lists contain Record Lock actions
by default. You cannot edit this default action for initial submission and recall actions.

Record Name
A standard field on all Database.com objects. A record name can be either free-form text or an autonumber field. Record
Name does not have to be a unique value.

Relationship
A connection between two objects, used to create related lists in page layouts and detail levels in reports. Matching values
in a specified field in both objects are used to link related data; for example, if one object stores data about companies and
another object stores data about people, a relationship allows you to find out which people work at the company.

Relationship Query
In a SOQL context, a query that traverses the relationships between objects to identify and return results. Parent-to-child
and child-to-parent syntax differs in SOQL queries.

471

Glossary

Role Hierarchy
A record-level security setting that defines different levels of users such that users at higher levels can view and edit
information owned by or shared with users beneath them in the role hierarchy, regardless of the organization-wide sharing
model settings.

Roll-Up Summary Field
A field type that automatically provides aggregate values from child records in a master-detail relationship.

Running User
Each dashboard has a running user, whose security settings determine which data to display in a dashboard. If the running
user is a specific user, all dashboard viewers see data based on the security settings of that user—regardless of their own
personal security settings. For dynamic dashboards, you can set the running user to be the logged-in user, so that each
user sees the dashboard according to his or her own access level.

S
SaaS

See Software as a Service (SaaS).

Salesforce SOA (Service-Oriented Architecture)
A powerful capability of Force.com that allows you to make calls to external Web services from within Apex.

Semi-Join
A semi-join is a subquery on another object in an IN clause in a SOQL query. You can use semi-joins to create advanced
queries. See also Anti-Join.

Session ID
An authentication token that is returned when a user successfully logs in to Database.com. The Session ID prevents a
user from having to log in again every time he or she wants to perform another action in Database.com. Different from
a record ID or Database.com ID, which are terms for the unique ID of a Database.com record.

Session Timeout
The period of time after login before a user is automatically logged out. Sessions expire automatically after a predetermined
length of inactivity, which can be configured in Database.com by clicking Security Controls. The default is 120 minutes
(two hours). The inactivity timer is reset to zero if a user takes an action in the Web interface or makes an API call.

Setter Methods
Methods that assign values. See also Getter Methods.

Sharing
Allowing other users to view or edit information you own. There are different ways to share data:

• Sharing Model—defines the default organization-wide access levels that users have to each other’s information and
whether to use the hierarchies when determining access to data.

• Role Hierarchy—defines different levels of users such that users at higher levels can view and edit information owned
by or shared with users beneath them in the role hierarchy, regardless of the organization-wide sharing model settings.

• Sharing Rules—allow an administrator to specify that all information created by users within a given group or role is
automatically shared to the members of another group or role.

• Manual Sharing—allows individual users to share records with other users or groups.
• Apex-Managed Sharing—enables developers to programmatically manipulate sharing to support their application’s

behavior. See Apex-Managed Sharing.

472

Glossary

Sharing Model
Behavior defined by your administrator that determines default access by users to different types of records.

Sharing Rule
Type of default sharing created by administrators. Allows users in a specified group or role to have access to all information
created by users within a given group or role.

SOAP (Simple Object Access Protocol)
A protocol that defines a uniform way of passing XML-encoded data.

sObject
Any object that can be stored in Database.com.

Software as a Service (SaaS)
A delivery model where a software application is hosted as a service and provided to customers via the Internet. The SaaS
vendor takes responsibility for the daily maintenance, operation, and support of the application and each customer's data.
The service alleviates the need for customers to install, configure, and maintain applications with their own hardware,
software, and related IT resources. Services can be delivered using the SaaS model to any market segment.

SOQL (Salesforce Object Query Language)
A query language that allows you to construct simple but powerful query strings and to specify the criteria that should be
used to select data from the Force.com database.

SOSL (Salesforce Object Search Language)
A query language that allows you to perform text-based searches using the Force.com API.

System Log
Part of the Developer Console, a separate window console that can be used for debugging code snippets. Enter the code
you want to test at the bottom of the window and click Execute. The body of the System Log displays system resource
information, such as how long a line took to execute or how many database calls were made. If the code did not run to
completion, the console also displays debugging information.

T
Tag

A word or short phrases that can be associated with records to describe and organize their data in a personalized way.
Administrators can enable tags for any custom objects. Tags can also be accessed through the SOAP API.

Test Case Coverage
Test cases are the expected real-world scenarios in which your code will be used. Test cases are not actual unit tests, but
are documents that specify what your unit tests should do. High test case coverage means that most or all of the real-world
scenarios you have identified are implemented as unit tests. See also Code Coverage and Unit Test.

Test Database
A nearly identical copy of a Database.com production organization. You can create a test database for a variety of purposes,
such as testing and training, without compromising the data and applications in your production environment.

Test Method
An Apex class method that verifies whether a particular piece of code is working properly. Test methods take no arguments,
commit no data to the database, and can be executed by the runTests() system method either through the command
line or in an Apex IDE, such as the Force.com IDE.

473

Glossary

Test Organization
A Database.com organization used strictly for testing. See also Test Database.

Trigger
A piece of Apex that executes before or after records of a particular type are inserted, updated, or deleted from the database.
Every trigger runs with a set of context variables that provide access to the records that caused the trigger to fire, and all
triggers run in bulk mode—that is, they process several records at once, rather than just one record at a time.

Trigger Context Variable
Default variables that provide access to information about the trigger and the records that caused it to fire.

U
Unit Test

A unit is the smallest testable part of an application, usually a method. A unit test operates on that piece of code to make
sure it works correctly. See also Test Method.

URL (Uniform Resource Locator)
The global address of a website, document, or other resource on the Internet. For example, http://www.salesforce.com.

User Acceptance Testing (UAT)
A process used to confirm that the functionality meets the planned requirements. UAT is one of the final stages before
deployment to production.

V
Validation Rule

A rule that prevents a record from being saved if it does not meet the standards that are specified.

Version
A number value that indicates the release of an item. Items that can have a version include API objects, fields and calls;
Apex classes and triggers.

W
Web Service

A mechanism by which two applications can easily exchange data over the Internet, even if they run on different platforms,
are written in different languages, or are geographically remote from each other.

WebService Method
An Apex class method or variable that can be used by external systems, like a mash-up with a third-party application.
Web service methods must be defined in a global class.

Web Services API
A Web services application programming interface that provides access to your Database.com organization's information.
See also SOAP API and Bulk API.

Wrapper Class
A class that abstracts common functions such as logging in, managing sessions, and querying and batching records. A
wrapper class makes an integration more straightforward to develop and maintain, keeps program logic in one place, and
affords easy reuse across components. Examples of wrapper classes in Database.com include theAJAX Toolkit, which is

474

Glossary

a JavaScript wrapper around the Database.com SOAP API or wrapper classes created as part of a client integration
application that accesses Database.com using the SOAP API.

WSDL (Web Services Description Language) File
An XML file that describes the format of messages you send and receive from a Web service. Your development
environment's SOAP client uses the Database.com Enterprise WSDL or Partner WSDL to communicate with
Database.com using the SOAP API.

X
XML (Extensible Markup Language)

A markup language that enables the sharing and transportation of structured data. All Force.com components that are
retrieved or deployed through the Metadata API are represented by XML definitions.

Y
No Glossary items for this entry.

Z
No Glossary items for this entry.

475

Glossary

Index

A

Abstract definition modifier 100
Access modifiers 108
addError(), triggers 88
After triggers 78
Aggregate functions 67
AJAX support 96
ALL ROWS keyword 73
Anchoring bounds 380
Annotations

future 125
HttpDelete 130
HttpGet 130
HttpPatch 130
HttpPost 130
HttpPut 130
isTest 126
ReadOnly 128
RestResource 129
understanding 124

Anonymous blocks
transaction control 74
understanding 95

Ant tool 422
AnyType data type 30
Apex

designing 89
from WSDL 226, 229
how it works 11
introducing 9
invoking 77
managed sharing 176
overview 10
testing 140–141
when to use 15

Apex REST
methods 346

Apex REST API methods
exposing data 216

ApexTestQueueItem object 444
ApexTestResult object 445
API calls, Web services

available for Apex 443
compileAndTest 422, 427, 448
compileClasses 427, 452
compileTriggers 427, 453
custom 208
executeanonymous 453
executeAnonymous 95
retrieveCode 426
runTests 150, 454
transaction control 74
when to use 15

API objects, Web services
ApexTestQueueItem 148
ApexTestResult 148

Arrays and lists 38
Assignment statements 57
Async Apex 125
Asynchronous callouts 125
Auth.AuthToken class

getAccessToken method 416
Auth.RegistrationHandler interface

createUser method 416
updateUser method 416

Auth.UserData class 416

B

Batch Apex
database object 320
interfaces 167
schedule 90
using 167

Batch size, SOQL query for loop 62
Before triggers 78
Best practices

Apex 89
Apex scheduler 95
batch Apex 174
programming 89
SOQL queries 70
testing 150
triggers 89
WebService keywords 208

Binds 71
Blob

data type 30
methods 254

Boolean
data type 30
methods 254

Bounds, using with regular expressions 380
Bulk processing and triggers

retry logic and inserting records 84
understanding 83

C

Callouts
asynchronous 125
defining from a WSDL 222
execution limits 203
HTTP 231
invoking 221
limit methods 339
limits 234
remote site settings 222
timeouts 234

Calls
runTests 150

Capturing groups 380, 382
Case sensitivity 48

476

Index

Casting
collections 132
understanding 130

Certificates
generating 232
HTTP requests 234
SOAP 233
using 232

Chaining, constructor 122
Change sets 422
Character escape sequences 30
Chatter 87
Chunk size, SOQL query for loop 62
Class

step by step walkthrough 22, 24–25, 27
Classes

annotations 124
Apex 375
API version 139
AuthToken 416
casting 130
collections 132
constructors 106
Crypto 395
declaring variables 103
defining 99, 133
defining from a WSDL 222
defining methods 104
differences with Java 132
Document 409
EncodingUtil 401
example 100
exception 376
from WSDL 226, 229
Http 389
HttpRequest 389
HttpResponse 392
interfaces 114
IsValid flag 133
matcher 378
methods 104
naming conventions 134
pattern 378
precedence 137
properties 112
security 135
shadowing names 135
type resolution 138
understanding 99
UserData 416
using constructors 106
variables 103
with sharing 123
without sharing 123
XmlNode 411

Client certificates 232
Code

system context 123
using sharing 123

Code Samples
Warehouse Schema 16

Collections
casting 132
classes 132
iterating 44
iteration for loops 62
lists 37
maps 37
sets 37
size limits 203

Comments 57
Comparable Interface

compareTo method 419
compileAndTest call

See also deploy call 424
compileClasses call 427, 452
compileTriggers call 427
Compound expressions 50
Constants

about 48
defining 120–121

Constructors
chaining 122
using 106

Context variables
considerations 82
trigger 80

Controllers
maintaining view state 122
transient keyword 122

Conventions 17
Conversions 46
Crypto class 395
Custom labels 33
Custom settings

examples 308
methods 305

D

Data Categories
methods 291

Data types
converting 46
primitive 30
sObject 32
understanding 30

Database
EmptyRecycleBinResult 321
error object methods 321

Database methods
delete 237
insert 239
system static 311
undelete 242
update 244
upsert 247

Database objects
methods 320
understanding 320

Database.Batchable 167, 183
Database.BatchableContext 168

477

Index

Date
data type 30
methods 254

Datetime
data type 30
methods 257

Deadlocks, avoiding 74
Debug console 193
Debug log, retaining 189
Debugging

API calls 201
classes created from WSDL documents 231
log 189

Decimal
data type 30
methods 262
rounding modes 266

Declaring variables 47
Defining a class from a WSDL 222
Delete database method 237
Delete statement 237
DeleteResult object 238
deploy call 424
Deploying

additional methods 427
Force.com IDE 422
understanding 421
using change sets 422
using Force.com Migration Tool 422

Describe field result, methods 298
Describe information

access all fields 161
access all sObjects 160
permissions 158
understanding 157

Describe results
fields 159, 298
sObjects 158

Developer Console
anonymous blocks 95
using 193

Development
process 11

DML operations
behavior 251
error object 321
exception handling 252
execution limits 203
limit methods 339
understanding 237
unsupported sObjects 250

DML statements
delete 237
insert 239
undelete 242
update 244
upsert 247

DMLException methods 375
DMLOptions

methods 320
Do-while loops 60
Document class 409

Documentation typographical conventions 17
DOM 409
Double

data type 30
methods 267

Dynamic Apex
foreign keys 163
understanding 156

Dynamic DML 163
Dynamic SOQL 161
Dynamic SOSL 162

E

Eclipse, deploying Apex 427
EmailException methods 375
EmptyRecycleBinResult

methods 321
EncodingUtil class 401
Encryption 395
Enterprise Edition, deploying Apex 421
Enums

methods 291
understanding 44

Error object
DML 321
methods 321

Escape sequences, character 30
Events, triggers 79
Exceptions

class 376
constructing 376
DML 252
methods 374
throw statements 75
trigger 88
try-catch-finally statements 75
types 75, 373
uncaught 203
understanding 75
variables 377

executeanonymous call 95, 453
Execution governors

email warnings 206
understanding 203

Execution order, triggers 86
Expressions

extending sObject and list 57
operators 50
overview 49
regular 378, 381
understanding 49

F

Features, new 16
Field-level security and custom API calls 208, 216
Fields

access all 161
accessing 33
accessing through relationships 35
describe results 159, 298

478

Index

Fields (continued)
see also sObjects 66
that cannot be modified by triggers 88
tokens 159
validating 36

final keyword 48, 120
For loops

list or set iteration 62
SOQL locking 73
SOQL queries 62
traditional 62
understanding 61

FOR UPDATE keyword 73
Force.com

managed sharing 176
Force.com IDE, deploying Apex 422
Force.com Migration Tool

additional deployment methods 427
deploying Apex 422

Foreign keys and SOQL queries 71
Formula fields, dereferencing 66
Functional tests

for SOSL queries 145
running 146
understanding 142

Future annotation 125

G

Get accessors 112
Global access modifier 100, 108
Governors

email warnings 206
execution 203
limit methods 339

Groups, capturing 380

H

Heap size
execution limits 203
limit methods 339

Hello World example
understanding 22, 24–25, 27

Hierarchy custom settings
examples 309

How to invoke Apex 77
Http class

testing 393
HTTP requests

using certificates 234
HttpDelete annotation 130
HttpGet annotation 130
HttpPatch annotation 130
HttpPost annotation 130
HttpPut annotation 130
HttpRequest class 389
HttpResponse class 392

I

ID
data type 30

Identifiers, reserved 441
IDEs 14
If-else statements 59
In clause, SOQL query 71
Initialization code

instance 109, 111
static 109, 111
using 111

Inline SOQL queries
locking rows for 73
returning a single record 70

Insert database method 239
Insert statement 239
Instance

initialization code 109, 111
methods 109–110
variables 109–110

instanceof keyword 120
Integer

data type 30
methods 269

Interfaces
Apex 415
Auth.RegistrationHandler 416
Comparable 419
Iterable 118
Iterator 118
parameterized typing 115
Schedulable 90

Invoking Apex 77
isAfter trigger variable 80
isBefore trigger variable 80
isDelete trigger variable 80
isExecuting trigger variable 80
isInsert trigger variable 80
IsTest annotation 126
isUndeleted trigger variable 80
isUpdate trigger variable 80
IsValid flag 84, 133
Iterators

custom 118
Iterable 118
using 118

J

JSON
deserialization 322
methods 322
serialization 322

JSONGenerator
methods 326

JSONParser
methods 329

479

Index

K

Keywords
ALL ROWS 73
final 48, 120
FOR UPDATE 73
instanceof 120
reserved 441
super 121
testMethod 142
this 122
transient 122
webService 208
with sharing 123
without sharing 123

L

L-value expressions 49
Language

concepts 17
constructs 29

Limit clause, SOQL query 71
Limitations, Apex 15
Limits

code execution 203
code execution email warnings 206
determining at runtime 339
methods 145, 339

List iteration for loops 62
List size, SOQL query for loop 62
Lists

about 37
array notation 38
defining 37
expressions 57
iterating 44
methods 276
sObject 38
sorting 39

Literal expressions 49
Local variables 109
Locking statements 73
Log, debug 189
Long

data type 30
methods 269

Loops
do-while 60
execution limits 203
see also For loops 61
understanding 60
while 60

M

Managed packages
AppExchange 137
version settings 139

Managed sharing 175
Manual sharing 176

Maps
creating from sObject arrays 44
iterating 44
methods 283
understanding 42

Matcher class
bounds 380
capturing groups 380
example 380
methods 382
regions 379
searching 379
understanding 378
using 378

Matcher methods
See also Pattern methods 382

Math methods 342
Metadata API call

deploy 424
Methods

access modifiers 108
Apex REST 346
blob 254
boolean 254
custom settings 305
data Categories 291
date 254
datetime 257
decimal 262
DescribeSObjectResult object 296
DMLOptions 320
double 267
enum 291
error object 321
exception 373
field describe results 298
instance 109–110
integer 269
JSON 322
JSONGenerator 326
JSONParser 329
limits 339
list 276
long 269
map 42, 283
matcher 382
math 342
passing-by-value 104
pattern 381
QueryLocator 320
recursive 104
RestContext 346
RestRequest 347
RestResponse 349
schema 291
search 351
set 41, 287
setFixedSearchResults 145
sObject 292
standard 253
static 109
string 270

480

Index

Methods (continued)
system 352
test 362
time 275
Type 364
URL 367
user-defined 104
userInfo 370
using with classes 104
Version 371
void with side effects 104
XML Reader 402
XmlStreamWriter 407

N

Namespace
precedence 137
prefixes 137
type resolution 138

Nested lists 37
New features in this release 16
new trigger variable 80
newMap trigger variable 80
Not In clause, SOQL query 71

O

Object
lists 38

Objects
ApexTestQueueItem 444
ApexTestResult 445

old trigger variable 80
oldMap trigger variable 80
Opaque bounds 380
Operations

DML 237
DML exceptions 252

Operators
precedence 56
understanding 50

Order of trigger execution 86
Overloading custom API calls 209

P

Packages, namespaces 137
Parameterized typing 115
Parent-child relationships

SOQL queries 71
understanding 49

Passed by value, primitives 30
Passing-by-value 104
Pattern class

example 380
understanding 378
using 378

Pattern methods 381
Permissions

enforcing using describe methods 136
Permissions and custom API calls 208, 216

Person account triggers 87
Polymorphic, methods 104
Precedence, operator 56
Primitive data types

passed by value 30
Private access modifier 100, 108
Processing, triggers and bulk 78
Production organizations, deploying Apex 421
Programming patterns

triggers 89
Properties 112
Protected access modifier 100, 108
Public access modifier 100, 108

Q

Queries
execution limits 203
SOQL and SOSL 64
SOQL and SOSL expressions 49
working with results 66

Quick start 16
Quickstart tutorial

understanding 21

R

ReadOnly annotation 128
Reason field values 177
Recalculating sharing 183
Record ownership 176
Recovered records 85
Recursive

methods 104
triggers 78

Regions and regular expressions 379
Regular expressions

bounds 380
grouping 382
regions 379
searching 382
splitting 381
understanding 378

Relationships, accessing fields through 35
Release notes 16
Remote site settings 222
Requests 74
Reserved keywords 441
REST Web Services

Apex REST code samples 217
Apex REST introduction 211
Apex REST methods 211
exposing Apex classes 210

RestContext
methods 346

RestRequest
methods 347

RestResource annotation 129
RestResponse

methods 349
retrieveCode call 426
Role hierarchy 176 481

Index

rollback method 74
Rounding modes 266
RowCause field values 177
runAs method

using 144
runTests call 150, 454

S

Salesforce.com version 139
Sample application

code 432
data model 429
overview 429
tutorial 429

SaveResult object 240, 245
Schedulable interface 90
Schedule Apex 90
Scheduler

best practices 95
schedulable interface 90
testing 91

Schema methods 291
Search methods 351
Security

and custom API calls 208, 216
certificates 232
class 135

Set accessors 112
setFixedSearchResults method 145
Sets

iterating 44
iteration for loops 62
methods 287
understanding 41

setSavepoint method 74
Sharing

access levels 177
and custom API calls 208, 216
Apex managed 175
reason field values 177
recalculating 183
rules 176
understanding 176

Sharing reasons
database object 320
recalculating 183
understanding 178

size trigger variable 80
SOAP and overloading 209
SOAP API calls

compileAndTest 422, 427
compileClasses 427
compileTriggers 427
custom 208
executeAnonymous 95
retrieveCode 426
runTests 150
transaction control 74
when to use 15

SOAP API objects
ApexTestQueueItem 148

SOAP API objects (continued)
ApexTestResult 148

sObjects
access all 160
accessing fields through relationships 35
data types 30, 32
dereferencing fields 66
describe result methods 296
describe results 158
expressions 57
fields 33
formula fields 66
lists 38
methods 292
sorting 39
that cannot be used together 251
that do not support DML operations 250
tokens 158
validating 36

SOQL injection 162
SOQL queries

aggregate functions 67
Apex variables in 71
dynamic 161
execution limits 203
expressions 49
for loops 62, 73
foreign key 71
inline, locking rows for 73
large result lists 67
limit methods 339
locking 73
null values 70
parent-child relationship 71
preventing injection 162
querying all records 73
understanding 64
working with results 66

Sorting
lists 39

SOSL injection 162
SOSL queries

Apex variables in 71
dynamic 162
execution limits 203
expressions 49
limit methods 339
preventing injection 162
testing 145
understanding 64
working with results 66

Special characters 30
SSL authentication 232
Standard methods

understanding 253
Start and stop test 145
Statements

assignment 57
execution limits 203
if-else 59
locking 73
method invoking 104

482

Index

Statements (continued)
see also Exceptions 75

Static
initialization code 109, 111
methods 109
variables 109

Strings
data type 30
methods 270

super keyword 121
Syntax

case sensitivity 48
comments 57
variables 47

System architecture, Apex 11
System Log console

using 193
System methods

static 352
System validation 86

T

Test
methods 362

Test database organization 12
Test database organizations, deploying Apex 421
Testing

best practices 150
example 151
governor limits 145
runAs 144
using start and stop test 145
what to test 141

testMethod keyword 142
Tests

data access 143
for SOSL queries 145
isTest annotation 126
running 146
understanding 140–141

this keyword 122
Throw statements 75
Time

data type 30
methods 275

Tokens
fields 159
reserved 441
sObjects 158

Tools 422
Traditional for loops 62
Transaction control statements

triggers and 79
understanding 74

transient keyword 122
Transparent bounds 380
Trigger

step by step walkthrough 22, 24–25, 27
Trigger-ignoring operations 87
Triggers

API version 139

Triggers (continued)
bulk exception handling 252
bulk processing 78
bulk queries 83
Chatter 87
common idioms 83
context variable considerations 82
context variables 80
defining 84
design pattern 89
events 79
exceptions 88
execution order 86
fields that cannot be modified 88
ignored operations 87
isValid flag 84
maps and sets, using 83
recovered records 85
syntax 79
transaction control 74
transaction control statements 79
undelete 85
understanding 78
unique fields 84

Try-catch-finally statements 75
Tutorial 16, 429
Type

methods 364
Type resolution 138
Types

Primitive 30
sObject 32
understanding 30

Typographical conventions 17

U

Uncaught exception handling 203
Undelete database method 242
Undelete statement 242
Undelete triggers 85
UndeleteResult object 243
Unit tests

for SOSL queries 145
running 146
understanding 142

Unlimited Edition, deploying Apex 421
Update database method 244
Update statement 244
Upsert database method 247
Upsert statement 247
UpsertResult object 248
URL

methods 367
User managed sharing 176
User-defined methods, Apex 104
UserInfo methods 370

V

Validating sObject and field names 36
Validation, system 86

483

Index

Variables
access modifiers 108
declaring 47
in SOQL and SOSL queries 71
instance 109–110
local 109
precedence 137
static 109
trigger context 80
using with classes 103

Version
Methods 371

Version settings
API version 139
understanding 139

Very large SOQL queries 67
Virtual definition modifier 100

W

Walk-through, sample application 429
Web services API calls

available for Apex 443
compileAndTest 448
compileClasses 452
compileTriggers 453
executeanonymous 453
runTests 454

WebService methods
considerations 208
exposing data 208
overloading 209
understanding 208

Where clause, SOQL query 71
While loops 60
with sharing keywords 123
without sharing keywords 123
Workflow 86
Writing Apex 11
WSDLs

creating an Apex class from 222
debugging 231
example 226
generating 208
mapping headers 230
overloading 209
runtime events 230
testing 229

X

XML reader methods 402
XML writer methods 407
XmlNode class 411
XmlStreamReader class, methods 402
XmlStreamWriter class, methods 407

484

Index

	Introducing Apex
	What is Apex?
	How Does Apex Work?
	What is the Apex Development Process?
	Developing in a Test Database Organization
	Writing Apex
	Writing Tests
	Deploying Apex to a Database.com Production Organization

	When Should I Use Apex?
	What are the Limitations of Apex?
	Warehouse Objects for Code Samples

	What's New?
	Apex Quick Start
	Documentation Typographical Conventions
	Understanding Apex Core Concepts
	Writing Your First Apex Class and Trigger
	Creating a Custom Object
	Adding an Apex Class
	Adding an Apex Trigger
	Adding a Test Class
	Deploying Components to Production

	Language Constructs
	Data Types
	Primitive Data Types
	sObject Types
	Accessing sObject Fields
	Accessing sObject Fields Through Relationships
	Validating sObjects and Fields

	Collections
	Lists
	Using Array Notation for One-Dimensional Lists of Primitives or sObjects
	Lists of sObjects
	List Sorting

	Sets
	Maps
	Maps from SObject Arrays
	Iterating Collections
	Adding Elements During Iteration
	Removing Elements During Iteration

	Enums
	Understanding Rules of Conversion

	Variables
	Case Sensitivity
	Constants

	Expressions
	Understanding Expressions
	Understanding Expression Operators
	Understanding Operator Precedence
	Extending sObject and List Expressions
	Using Comments

	Assignment Statements
	Conditional (If-Else) Statements
	Loops
	Do-While Loops
	While Loops
	For Loops
	Traditional For Loops
	List or Set Iteration For Loops
	SOQL For Loops
	SOQL For Loops Versus Standard SOQL Queries
	SOQL For Loop Formats

	SOQL and SOSL Queries
	Working with SOQL and SOSL Query Results
	Working with SOQL Aggregate Functions
	Working with Very Large SOQL Queries
	Using SOQL Queries That Return One Record
	Improving Performance by Not Searching on Null Values
	Understanding Foreign Key and Parent-Child Relationship SOQL Queries
	Using Apex Variables in SOQL and SOSL Queries
	Querying All Records with a SOQL Statement

	Locking Statements
	Locking in a SOQL For Loop
	Avoiding Deadlocks

	Transaction Control
	Exception Statements
	Throw Statements
	Try-Catch-Finally Statements

	Invoking Apex
	Triggers
	Bulk Triggers
	Trigger Syntax
	Trigger Context Variables
	Context Variable Considerations
	Common Bulk Trigger Idioms
	Using Maps and Sets in Bulk Triggers
	Correlating Records with Query Results in Bulk Triggers
	Using Triggers to Insert or Update Records with Unique Fields

	Defining Triggers
	Triggers and Recovered Records
	Triggers and Order of Execution
	Operations That Don't Invoke Triggers
	Fields that Aren’t Available or Can’t Be Updated in Triggers
	Trigger Exceptions
	Trigger and Bulk Request Best Practices

	Apex Scheduler
	Anonymous Blocks
	Apex in AJAX

	Classes, Objects, and Interfaces
	Understanding Classes
	Defining Apex Classes
	Extended Class Example
	Declaring Class Variables
	Defining Class Methods
	Using Constructors
	Access Modifiers
	Static and Instance
	Using Static Methods and Variables
	Using Instance Methods and Variables
	Using Initialization Code

	Apex Properties

	Interfaces and Extending Classes
	Parameterized Typing and Interfaces
	Custom Iterators

	Keywords
	Using the final Keyword
	Using the instanceof Keyword
	Using the super Keyword
	Using the this Keyword
	Using the transient Keyword
	Using the with sharing or without sharing Keywords

	Annotations
	Future Annotation
	IsTest Annotation
	ReadOnly Annotation
	Apex REST Annotations
	RestResource Annotation
	HttpDelete Annotation
	HttpGet Annotation
	HttpPatch Annotation
	HttpPost Annotation
	HttpPut Annotation

	Classes and Casting
	Classes and Collections
	Collection Casting

	Differences Between Apex Classes and Java Classes
	Class Definition Creation
	Naming Conventions
	Name Shadowing

	Class Security
	Enforcing Object and Field Permissions
	Namespace Prefix
	Namespace, Class, and Variable Name Precedence
	Type Resolution and System Namespace for Types

	Version Settings
	Setting the Database.com API Version for Classes and Triggers

	Testing Apex
	Understanding Testing in Apex
	Why Test Apex?
	What to Test in Apex

	Unit Testing Apex
	Isolation of Test Data from Organization Data in Unit Tests
	Using the runAs Method
	Using Limits, startTest, and stopTest
	Adding SOSL Queries to Unit Tests

	Running Unit Test Methods
	Testing Best Practices
	Testing Example

	Dynamic Apex
	Understanding Apex Describe Information
	Dynamic SOQL
	Dynamic SOSL
	Dynamic DML

	Batch Apex
	Using Batch Apex
	Understanding Apex Managed Sharing
	Understanding Sharing
	Sharing a Record Using Apex
	Recalculating Apex Managed Sharing

	Debugging Apex
	Understanding the Debug Log
	Using the Developer Console
	Debugging Apex API Calls

	Handling Uncaught Exceptions
	Understanding Execution Governors and Limits
	Using Governor Limit Email Warnings

	Exposing Apex Methods as SOAP Web Services
	WebService Methods
	Exposing Data with WebService Methods
	Considerations for Using the WebService Keyword
	Overloading Web Service Methods

	Exposing Apex Classes as REST Web Services
	Introduction to Apex REST
	Apex REST Annotations
	Apex REST Methods
	Exposing Data with Apex REST Web Service Methods
	Apex REST Code Samples
	Apex REST Basic Code Sample
	Apex REST Code Sample Using RestRequest

	Invoking Callouts Using Apex
	Adding Remote Site Settings
	SOAP Services: Defining a Class from a WSDL Document
	Invoking an External Service
	HTTP Header Support
	Supported WSDL Features
	Understanding the Generated Code
	Test Coverage for the Generated Code
	Considerations Using WSDLs
	Mapping Headers
	Understanding Runtime Events
	Understanding Unsupported Characters in Variable Names
	Debugging Classes Generated from WSDL Files

	Invoking HTTP Callouts
	Using Certificates
	Generating Certificates
	Using Certificates with SOAP Services
	Using Certificates with HTTP Requests

	Callout Limits

	Reference
	Apex Data Manipulation Language (DML) Operations
	Delete Operation
	Insert Operation
	Undelete Operation
	Update Operation
	Upsert Operation
	sObjects That Do Not Support DML Operations
	sObjects That Cannot Be Used Together in DML Operations
	Bulk DML Exception Handling

	Apex Standard Classes and Methods
	Apex Primitive Methods
	Blob Methods
	Boolean Methods
	Date Methods
	Datetime Methods
	Decimal Methods
	Double Methods
	Integer Methods
	Long Methods
	String Methods
	Time Methods

	Apex Collection Methods
	List Methods
	Map Methods
	Set Methods

	Enum Methods
	Apex sObject Methods
	Schema Methods
	sObject Methods
	sObject Describe Result Methods
	Describe Field Result Methods
	Custom Settings Methods

	Apex System Methods
	Database Methods
	Database Batch Apex Objects and Methods
	Database DMLOptions Properties
	Database EmptyRecycleBinResult Methods
	Database Error Object Methods

	JSON Support
	JSON Methods
	JSONGenerator Methods
	JSONParser Methods

	Limits Methods
	Math Methods
	Apex REST
	RestContext Methods
	RestRequest Methods
	RestResponse Methods

	Search Methods
	System Methods
	Test Methods
	Type Methods
	URL Methods
	UserInfo Methods
	Version Methods

	Using Exception Methods

	Apex Classes
	Exception Class
	Constructing an Exception
	Using Exception Variables

	Pattern and Matcher Classes
	Using Patterns and Matchers
	Using Regions
	Using Match Operations
	Using Bounds
	Understanding Capturing Groups
	Pattern and Matcher Example
	Pattern Methods
	Matcher Methods

	HTTP (RESTful) Services Classes
	HTTP Classes
	Http Class
	HttpRequest Class
	HttpResponse Class
	Testing HTTP Callouts

	Crypto Class
	EncodingUtil Class

	XML Classes
	XmlStream Classes
	XmlStreamReader Class
	XmlStreamWriter Class

	DOM Classes
	Document Class
	XmlNode Class

	Apex Interfaces
	Auth.RegistrationHandler Interface
	Comparable Interface

	Deploying Apex
	Using Change Sets To Deploy Apex
	Using the Force.com IDE to Deploy Apex
	Using the Force.com Migration Tool
	Understanding deploy
	Understanding retrieveCode
	Understanding runTests()

	Using SOAP API to Deploy Apex

	Appendices
	Shipping Invoice Example
	Shipping Invoice Example Walk-Through
	Shipping Invoice Example Code

	Reserved Keywords
	SOAP API and SOAP Headers for Apex
	ApexTestQueueItem
	ApexTestResult
	compileAndTest()
	CompileAndTestRequest
	CompileAndTestResult
	CompileClassResult
	CompileTriggerResult
	DeleteApexResult

	compileClasses()
	compileTriggers()
	executeanonymous()
	ExecuteAnonymousResult

	runTests()
	RunTestsRequest
	RunTestsResult
	CodeCoverageResult
	CodeCoverageWarning
	RunTestFailure
	RunTestSuccess
	CodeLocation

	DebuggingHeader

	Glossary
	Index

