
Version 22.0: Summer '11

Apex REST Developer's Guide

Note: Any unreleased services or features referenced in this or other press releases or public statements are not currently available and may
not be delivered on time or at all. Customers who purchase our services should make their purchase decisions based upon features that are

currently available.

Last updated: July 22, 2011

© Copyright 2000-2011 salesforce.com, inc. All rights reserved. Salesforce.com is a registered trademark of salesforce.com, inc., as are other
names and marks. Other marks appearing herein may be trademarks of their respective owners.

Table of Contents

Apex REST...3

Chapter 1: Implementing a REST API in Apex...3

Chapter 3: RestRequest Object...9

Chapter 3: RestResponse Object...10

i

Table of Contents

ii

Table of Contents

APEX REST

Chapter 1

Implementing a REST API in Apex

You can implement custom Web services in Apex and expose them via REST architecture. This document supplements the
Force.com REST API Developer's Guide and the Force.com Apex Developer's Guide.

Note: Apex REST is currently available through a pilot program. For information on enabling Apex REST for your
organization, contact salesforce.com.

Governor Limits
Calls to Apex REST classes count against the organization's API governor limits. All standard Apex governor limits apply to
Apex REST classes. For example, the maximum request or response size is 3 MB. For more information, see Understanding
Execution Governors and Limits.

Authentication
Apex REST supports these authentication mechanisms:

• OAuth 2.0
• Session ID

See Step Two: Set Up Authorization in the REST API Developer's Guide.

REST-Specific Annotations
Six new annotations have been added to Apex. They are used to annotate the Apex class you develop to implement your REST
API.

DescriptionAnnotation

Used to identify the Apex class that provides an implementation
for your REST API. The URL mapping is relative to

@RestResource(urlMapping='yourUrl')

https://instance.salesforce.com/services/apexrest/.
A wildcard character, *, may be used. Can only be used to
annotate a global class.

Used to identify the method to be called when an HTTP
DELETE request is sent. Used to delete the specified resource.
Can only be used to annotate a global static method.

@HttpDelete

3

http://www.salesforce.com/us/developer/docs/api_rest/index_Left.htm#StartTopic=Content/quickstart_oauth.htm

DescriptionAnnotation

Used to identify the method to be called when an HTTP GET1

request is sent. Used to get a representation of the specified
resource. Can only be used to annotate a global static method.

@HttpGet

Used to identify the method to be called when an HTTP
PATCH request is sent. Used to partially update the specified
resource. Can only be used to annotate a global static method.

@HttpPatch

Used to identify the method to be called when an HTTP POST
request is sent. Often used to create a new resource. Can only
be used to annotate a global static method.

@HttpPost

Used to identify the method to be called when an HTTP PUT
request is sent. Often used to replace the specified resource.
Can only be used to annotate a global static method.

@HttpPut

Namespaced classes have their namespace injected into the URL. For example. If your class is in namespace abc, and the class
is being mapped to your_url, then the API URL mapping will be modified in this manner:
https://instance.salesforce.com/services/apexrest/abc/your_url/. In the case of a URL collision, the
namespaced class will always win.

URL path mappings are as follows:

• the path must begin with a '/'
• if an '*' appears, it must be preceded by '/' and followed by '/', unless the '*' is the last character, in which case it need not be

followed by '/'

Any cookies that are set on the RestResponse are namespaced with a apex__ prefix to avoid name collisions with internal
Force.com cookies.

The rules for mapping URLs are:

• An exact match always wins.
• If no exact match is found, find all the patterns with wildcards that match, and then select the longest (by string length) of

those.
• If no wildcard match is found, an HTTP response status code 404 is returned.

Method Signatures and Deserialization of Resource Representations
Two formats are supported by the Apex REST API to mark up representations of resources: JSON and XML. JSON
representations are passed by default in the body of a request or response, and the format is indicated by Content-Type property
in the HTTP header. It is up to the developer to retrieve the body as a Blob from the HttpRequest object, but if parameters
are defined, an attempt will be made to deserialize the request body into those parameters. If the method has a non-void return
type, the resource representation will be serialized to the response body. Only the following return types and parameter types
are allowed:

• Apex primitives2

• SObjects
• List or Maps of the first two types3

1 Methods annotated with @HttpGet also are called if the HTTP request uses the HEAD request method.
2 Excluding SObject and Blob.
3 Only Maps keyed by String are allowed.

4

Implementing a REST API in Apex

Methods annotated with @HttpGet or @HttpDelete cannot include parameters other than RestRequest or RestResponse
(because GET and DELETE requests have no body, so there's nothing to deserialize). A single @RestResource class cannot
have multiple methods annotated with the same HTTP request method. Thus, two methods, both annotated with @HttpGet,
are not allowed.

Note: Apex REST currently does not support requests of Content-Type multipart/form-data.

Response Status Codes
The status code of a response is set automatically for you. The following are some HTTP status codes and what they mean in
the context of the HTTP request method:

DescriptionResponse Status CodeRequest Method

The request was successful.200GET

The request was successful and the return
type is non-void.

200PATCH

The request was successful and the return
type is void.

204PATCH

An unhandled Apex exception occurred.400DELETE, GET, PATCH, POST, PUT

Apex REST is currently in pilot and is
not enabled for your organization.

403DELETE, GET, PATCH, POST, PUT

You do not have access to the specified
Apex class.

403DELETE, GET, PATCH, POST, PUT

The URL is unmapped in an existing
RestResource annotation.

404DELETE, GET, PATCH, POST, PUT

Unsupported URL extension.404DELETE, GET, PATCH, POST, PUT

The Apex class with the specified
namespace could not be found.

404DELETE, GET, PATCH, POST, PUT

The request method does not have a
corresponding Apex method.

405DELETE, GET, PATCH, POST, PUT

The Content-Type property in the header
was set to a value other than JSON or
XML.

406DELETE, GET, PATCH, POST, PUT

Accept header specified in HTTP request
is not supported.

406DELETE, GET, PATCH, POST, PUT

Unsupported return type specified for
XML format.

406GET, PATCH, POST, PUT

Unsupported parameter type for XML.415DELETE, GET, PATCH, POST, PUT

The Content-Header Type specified in
HTTP request header not supported.

415DELETE, GET, PATCH, POST, PUT

5

Implementing a REST API in Apex

Runtime Implications
Here are a few important implications or non-obvious side-effects of the way a method is defined in Apex.

• If RestRequest is declared as a parameter in an Apex handler method, then the HTTP request body will be deserialized
into the RestRequest.requestBody property.

- Unless there are any declared parameters in an Apex handler method that are neither a RestRequest or a RestResponse
object, then an attempt to deserialize the data into those parameters will be made.

• If RestResponse is declared as a parameter in an Apex handler method, then the data stored in the
RestResponse.responseBody will be serialized into the HTTP response body.

- Unless the return type of the Apex handler method is non-void, in which case an attempt to serialize the data returned
by the method will be made.

• An attempt to deserialize data into Apex method parameters will be made in the order they are declared.
• The name of the Apex parameters matter. For example, valid requests in both XML and JSON would look like:

@HttpPost
global static void myPostMethod(String s1, Integer i1, String s2, Boolean b1)

{
"s1" : "my first string",
"i1" : 123,
"s2" : "my second string",
"b1" : false

}

<request>
<s1>my first string</s1>
<i1>123</i1>
<s2>my second string</s2>
<b1>false</b1>

</request>

• Certain parameter types or return types mean that the method cannot be used with XML as the Content-Type for the
request or as the accepted format for the response. Maps or collections of collections (for example,List<List<String>>)
are not supported. These types are usable with JSON, however. If the parameter list includes a type invalid for XML and
XML is sent, an HTTP 415 status code is returned. If the return type is a type invalid for XML and XML is the asked for
response format, an HTTP 406 status code is returned.

Apex REST API Sample
The following sample shows how to implement a simple REST API in Apex that handles three different HTTP request
methods. For more information about authenticating with cURL, see the Quick Start section of the REST API Developer's
Guide.

1. Create an Apex class in your instance, by clicking Your Name➤ Setup ➤ Develop ➤ Apex Classes and adding the
following code to your new class:

@RestResource(urlMapping='/Account/*')
global with sharing class MyRestResource {
@HttpDelete
global static void doDelete(RestRequest req, RestResponse res) {
String accountId = req.requestURI.substring(req.requestURI.lastIndexOf('/')+1);
Account account = [SELECT Id FROM Account WHERE Id = :accountId];
delete account;

}

6

Implementing a REST API in Apex

http://www.salesforce.com/us/developer/docs/api_rest/index_Left.htm#StartTopic=Content/quickstart.htm

@HttpGet
global static Account doGet(RestRequest req, RestResponse res) {
String accountId = req.requestURI.substring(req.requestURI.lastIndexOf('/')+1);
Account result = [SELECT Id, Name, Phone, Website FROM Account WHERE Id = :accountId];

return result;
}

@HttpPost
global static String doPost(RestRequest req, RestResponse res, String name,

String phone, String website) {
Account account = new Account();
account.Name = name;
account.phone = phone;
account.website = website;
insert account;
return account.Id;

}
}

2. Open a command-line window and execute the following cURL command to retrieve an Account by ID:

curl -H 'Authorization: OAuth sessionId'
'https://instance.salesforce.com/services/apexrest/Account/accountId'

Where instance is the portion of the <serverUrl> element , sessionId is the <sessionId> element that you noted
in the login response, and accountId is the ID of an Account which exists in your organization.

Salesforce returns a JSON response with data such as the following:

{
"attributes" :
{
"type" : "Account",
"url" : "/services/data/v22.0/sobjects/Account/accountId"

},
"Name" : "Acme",
"Id" : "accountId"

}

Note: The cURL examples in this section don't use a namespaced Apex class.

3. Create a file called account.txt to contain the data for the Account you will create in the next step.

{
"name" : "Wingo Ducks",
"phone" : "707-555-1234",
"website" : "www.wingo.ca.us"

}

4. Using a command-line window, execute the following cURL command to create an Account by ID:

curl -H 'Authorization: OAuth sessionId -H "Content-Type: application/json" ' —d
@account.txt 'https://instance.salesforce.com/services/apexrest/Account/'

Salesforce returns a String response with data such as the following:

"accountId"

Where accountId is the ID of the Account just created by the POST request.

7

Implementing a REST API in Apex

5. Using a command-line window, execute the following cURL command to delete an Account by ID:

curl —X DELETE —H 'Authorization: OAuth sessionId'
'https://instance.salesforce.com/services/apexrest/Account/accountId'

8

Implementing a REST API in Apex

Chapter 3

RestRequest Object

The following tables list the members for the RestRequest object.

Properties
The following are the properties on the RestRequest object:

DescriptionAccessibilityTypeName

read-only4List<Cookie>cookies

read-onlyMap<String, String>headers

One of the supported HTTP
request methods:

read-writeStringhttpMethod

• DELETE
• GET
• HEAD
• PATCH
• POST
• PUT

read-onlyMap<String, String>params

read-writeStringremoteAddress

read-writeBlogrequestBody

read-writeStringrequestURI

Methods
The following are the methods on the RestRequest object:

DescriptionReturn TypeArgumentsName

voidCookie cookieaddCookie

voidString name, String valueaddHeader

voidString name, String valueaddParameter

4 While List and Map properties themselves are read-only, their contents are read-write. You can either call methods directly
on the Collection or use one of the convenience methods below.

9

Chapter 3

RestResponse Object

The following tables list the members for the RestResponse object.

Properties
The following are the properties on the RestResponse object:

DescriptionAccessibilityTypeName

read-onlyList<Cookie>cookies

read-onlyMap<String, String>headers

read-writeBlobresponseBody

read-writeIntegerstatusCode

The following table lists the only valid response status codes:

Status Code

OK200

CREATED201

ACCEPTED202

NO_CONTENT204

PARTIAL_CONTENT206

MULTIPLE_CHOICES300

MOVED_PERMANENTLY301

FOUND302

NOT_MODIFIED304

BAD_REQUEST400

UNAUTHORIZED401

FORBIDDEN403

NOT_FOUND404

METHOD_NOT_ALLOWED405

NOT_ACCEPTABLE406

10

Status Code

CONFLICT409

GONE410

PRECONDITION_FAILED412

REQUEST_ENTITY_TOO_LARGE413

REQUEST_URI_TOO_LARGE414

UNSUPPORTED_MEDIA_TYPE415

EXPECTATION_FAILED417

INTERNAL_SERVER_ERROR500

SERVER_UNAVAILABLE503

If you set the RestResponse.statusCode to any value not in the table, an HTTP status of 500 is returned with the error
message "Invalid status code for HTTP response: X", where X is the invalid status code value.

Methods
The following are the methods on the RestResponse object:

DescriptionReturn TypeArgumentsName

voidCookie cookieaddCookie

voidString name, String valueaddHeader

11

RestResponse Object

	Apex REST
	Implementing a REST API in Apex
	RestRequest Object
	RestResponse Object

