
Git
Cheatsheet

Setup & Init
Git configuration, and repository initialization and cloning.

git config [key][value] set a config value in this repository

git config --global  
[key] [value] set a config value globally for this user

git init initialize an existing directory as a  
Git repository

git clone [url] clone a Git repository from a URL

git help [command] get help on any Git command

Stage & Snapshot
Working with snapshots and the Git staging area.

git status
show the status of what is staged for your 
next commit and what is modified in your 
working directory

git add [file] add a file as it looks now to your next 
commit (stage)

git reset [file] reset the staging area for a file so the change 
is not in your next commit (unstage)

git diff diff of what is changed but not staged

git diff --staged diff of what is staged but not yet committed

git commit commit your staged content as a new 
commit snapshot

git rm [file] remove a file from your working directory 
and unstage

git gui tcl/tk GUI program to make all of these 
commands simpler

Branch & Merge
Working with Git branches and the stash.

git branch list your branches. a * will appear next to 
the currently active branch

git branch  
[branch-name] create a new branch at the current commit

git checkout 
[branch]

switch to another branch and check it out 
into your working directory

git checkout -b 
[branch] create a branch and immediately switch to it

git merge 
[branch]

merge another branch into your currently
active one and record the merge as a commit

git log show commit logs

git stash
stash away the currently uncommitted
modifications in your working directory 
temporarily

git stash apply re-apply the last stashed changes

Basic Git Workflow Example

About Git, GitHub and Heroku.
Git is a free and open source, distributed version control system 
designed to handle everything from small to very large projects 
with speed and efficiency.

GitHub is the best way to collaborate around your code. Fork, send 
pull requests, and manage all your public and private git repositories.

Heroku is a cloud application platform that supports a number of 
different programming languages including Java, Ruby, Node.js, 
and Clojure—it’s a new way of building and deploying web apps.

Initialize a new git repository, then stage all the files in the directory 
and finally commit the initial snapshot.
$ git init 
$ git add . 
$ git commit -m ‘initial commit’

Create a new branch named featureA, then check it out so it is the 
active branch. then edit and stage some files and finally commit 
the new snapshot.
$ git branch featureA 
$ git checkout featureA 
$ (edit files) 
$ git add (files) 
$ git commit -m ‘add feature A’

Amend a commit
$ git commit –amend 
$ git push –f origin master

Switch back to the master branch, reverting the featureA changes 
you just made, then edit some files and commit your new changes 
directly in the master branch context.
$ git checkout master 
$ (edit files) 
$ git commit -a -m ‘change files’

Merge the featureA changes into the master branch context, 
combining all your work. Finally delete the featureA branch.
$ git merge featureA 
$ git branch -d featureA

Overview
When you first setup Git, set up your user name and email address so 
your first commits record them properly.
git config --global user.name “My Name”
git config --global user.email “user@email.com”

Share & Update
Fetching, merging and working with updates from another repository.

git remote add 
[alias] [url] add a git URL as an alias

git fetch [alias] fetch down all the branches from that  
Git remote

git merge  
[alias]/[branch]

merge a branch on the server into your
currently active branch to bring it up to date

git push  
[alias] [branch]

push the work on your branch to update 
that branch on the remote git repository

git pull
fetch from the URL tracked by the current
branch and immediately try to merge in  
the tracked branch



Git Cheatsheet

For other cheatsheets:  
http://developer.salesforce.com/cheatsheets 10042016

Inspect & Compare
Examining logs, diffs and object information.

git log show the commit history for the currently
active branch

git log branchB..
branchA

show the commits on branchA that are not
on branchB

git log --follow 
[file]

show the commits that changed file, even 
across renames

git diff 
branchB...branchA

show the diff of what is in branchA that is
not in branchB

git show [SHA] show any object in Git in human-readable
format

gitx gitx is only for MacOS

gitk Generic program for browsing commits

git-gui Gui tool for making commits

Contributing on GitHub
To contribute to a project hosted on GitHub you can fork the  
project on github.com, then clone your fork locally, make a change, 
push back to GitHub, and then send a pull request, which will 
email the maintainer.
fork project on github
$ git clone https://github.com/my-user/project 
$ cd project 
$ (edit files) 
$ git add (files) 
$ git commit -m ‘Explain what I changed’ 
$ git push origin master

go to github and click ‘pull request’ button

Get list of remotes configured 
$ git remote –v

Deploying to Heroku with Git
Use the heroku command-line tool to create an application and git remote: 
$ heroku login 
$ heroku create
[Creating glowing-dusk-965... done, stack is bamboo-mri-1.9.2 
http://glowing-dusk-965.heroku.com/ <http://glowing-dusk-965. 
heroku.com/> | git@heroku.com:glowing-dusk-965.git <x-msg://536/ 
git@heroku.com:glowing-dusk-965.git> Git remote heroku added] 
$ heroku create my-app Creates a heroku app with name “my-app”

Use SSH while creating a heroku app 
$ heroku create  --ssh-git

Use git to deploy the application. 
$ git push heroku master

Create an additional Heroku app for staging, and name the git remote “staging”. 
$ heroku create my-staging-app --remote staging

Use git to deploy the application via the staging remote. 
$ git push staging master

Rename an app 
$ heroku apps:rename newname

Clone an existing heroku app 
$ heroku git:clone -a myapp

Developing Apps in a Org 
heroku create --org my-org

Leave an App 
heroku apps:leave --app my-website

Specify Default Org 
export HEROKU_ORGANIZATION=my-org

Heroku Postgres Commands
Start a database 
$ heroku addons:add heroku-postgresql 
$ heroku pg:promote HEROKU_POSTGRESQL_PURPLE_URL

Enable backups for PostgreSQL 
$ heroku addons:add pgbackups:auto-month

See List of all Postgres DBs 
$ heroku pg:info

Establish psql session 
$ heroku pg:psql

The pg:ps command queries the pg_stat_statements table in Postgres 
to give a concise view into currently running queries 
$ heroku pg:ps

Configure Http Proxy for CLI
$ export HTTP_PROXY=http://proxy.server.com:portnumber 
or 
$ export HTTPS_PROXY=https://proxy.server.com:portnumber 
$ heroku login

Heroku Redis 
$ heroku plugins:install heroku-redis

Heroku Redis attached to an application 
$ heroku addons:create heroku-redis:hobby-dev -a sushi

Check REDIS_URL 
$ heroku config | grep REDIS

Set Primary Instance 
$ heroku redis:promote HEROKU_REDIS_JADE

Working with Private Spaces
Create a private space 
$heroku spaces:create my-space-name --org my-org-name

Private space in a specific region 
$ heroku spaces:create my-space-name --org my-org-
name --region tokyo

View info about Private space 
$ heroku spaces:info --space my-space-name

List of trusted IP Addresses 
$ heroku trusted-ips --space acme-prod

Destroy a Private Space 
$ heroku spaces:destroy --space my-space-name

Managing apps in private space 
Create an app in a private space 
$ heroku create my-space-app --space my-space-name

List apps in a private space 
$ heroku apps --space my-space-name

Destroy an App 
$ heroku apps:destroy -a my-space-app

For other cheatsheets: http://developer.force.com/cheatsheets 

Miscellaneous Commands
Transfer app to your org 
heroku apps:transfer my-org --app app-one

Get list of Heroku releases 
$ heroku releases

Run Terminal 
$ heroku run bash

Restart Dynos 
$ heroku restart


