salesforce

Summary

Configure your local dev
environment for integrating
with Salesforce using Java.

SETTING UP YOUR JAVA DEVELOPER
ENVIRONMENT

This tipsheet describes how to set up your local environment so that you can start using Salesforce APIs,
such as SOAP APl or REST API.

@ Nofte: If you're setting up a local environment to develop Salesforce applications using Apex and
custom Metadata APl components, take a look at the Force.com IDE.

This tipsheet focuses on tools and configurations you'll need to set up your local development system. It
assumes you already have a working Salesforce organization with the “API Enabled” permission. APl is
enabled by default on Developer Edition, Enterprise Edition, Unlimited Edition, and Performance Edition
organizations.

If you are not already a member of the Force.com developer community, go to
developer.salesforce.com/signupandfollow theinstructionsfor signing up fora Developer
Edition organization. Even if you already have Enterprise Edition, Unlimited Edition, or Performance Edition,
use Developer Edition for developing, staging, and testing your solutions against sample data to protect
your organization’s live data. This is especially true for applications that insert, update, or delete data (as
opposed to simply reading data).

If you have a Salesforce organization you can use for development but need to set up a sandbox for
development and testing, see Developer Environments in the Application Lifecycle Guide for instructions
on creating a developer sandbox.

Installing Java

You'll need the Java Developer Kit (JDK) version 5.0 or better to use Salesforce APIs. Java is a robust,
cross-platform, widely used language that integrates well with Salesforce.

To install the JDK, you'll need a Windows, Mac OS X or Linux system that has internet access. Depending
on your system, you might also need administrator level access to install the JDK.

@ Note: If you think you might already have the JDK installed, use the steps listed in Verifying your
JDK install to verify your version of Java. Most versions of Mac OS X and Linux come pre-installed
with a version of the JDK.

The JDK is a development kit required to build Java applications. The JDK includes the Java Runtime
Environment (JRE) which is required to run Java applications.

1. Navigate to http://www.oracle.com/technetwork/java/javase/downloads/index.html in your browser
on your local system. Download the latest version of the JDK for your operating system. Make sure
you are downloading the JDK, and not the JRE.

2. On Windows, double-click the installer executable and follow the steps to install the JDK and the
included JRE to your local machine. On Mac OS X, open the .dmg file and double-click on the installer
package. On Linux, if you downloaded an .rpm file, in a command prompt window type rpm —ivh
jdk install rpm file.|fyoudownloaded a tarfile, extract the files from the tar archive and
copy to a location of your choice.

3. Add the JDK executables to your path.

Last updated: July 18, 2017

https://developer.salesforce.com/page/Force.com_IDE
https://developer.salesforce.com/signup
https://developer.salesforce.com/docs/atlas.en-us.208.0.dev_lifecycle.meta/dev_lifecycle/dev.htm
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Setting Up Your Java Developer Environment Installing Eclipse

a. On Windows, click Start > Control Panel > System and Security > System > Advanced
system settings. Click Environment Variables and find the PATH variable in System variables.
Add the location of the bin folder of the JDK installation path to the end of your path value.
Your path might look something like:
$SystemRoot%$\system32; $SystemRoot%;C: \Program
Files\Java\jdkl.7.0 15\bin.Click Ok to apply the changes.

b. On Mac OS X or Linux, you'll need to update your $PATH environment variable. On Mac OS X
you can also use the java_home command to set your Java paths.
Verifying your JDK install
To verify your JDK install, in a command prompt window type java —version. You should see

something like:

java version "1.7.0 15"
Java (TM) SE Runtime Environment (build 1.7.0 15-b03)
Java HotSpot (TM) 64-Bit Server VM (build 23.7-b01, mixed mode)

You can also verify the Java compiler was properly installed by typing javac —version inacommand
prompt window. The output should look something like:

javac 1.7.0 15

If you get an error indicating that either java or javac is an unknown executable, your installation might
have failed, or you might not have set your path environment as described in Step 3.

Installing Eclipse

Eclipse is an integrated development environment (IDE) for Java development.
Eclipse requires a Java runtime environment to run.

While Eclipse is not required to develop integration applications for Salesforce, install Eclipse if you want
an easy to use IDE that works with Salesforce.

1. Navigate to http://www.eclipse.org/downloads in your browser. Download “Eclipse IDE for Java
Developers.” Choose either the 32-bit version or the 64-bit version, depending on the version of the
JDK you have installed.

2. Un-archive the downloaded file to a location of your choice. Eclipse does not have a special installation
application.

3. Launch the Eclipse executable in the ec1ipse folder you just un-archived. On Windows, this is
eclipse.exe,onMacOSX, thisis Eclipse.app,andon Linuxthisis eclipse. Eclipse will
ask for the location of a new eclipse workspace. Click Ok to accept the default workspace location.

4. Dismiss the welcome page by closing the welcome page window. You are now in the Eclipse
workbench, ready to create a new Java-based Salesforce integration project.

Picking a Path Based on Which API You Use

The next steps for setting up your development environment depend on which Salesforce APl you want
to use.

To use SOAP APl or CRUD-based Metadata API, or any other WSDL-based Salesforce API, complete the
steps in the following tasks.

http://www.eclipse.org/downloads

Setting Up Your Java Developer Environment Installing the Web Services Connector (WSDL-Based APIs)

e |Installing the Web Services Connector (WSDL-Based APIs) on page 3
e Download Developer WSDL Files (WSDL-Based APIs) on page 3

e Generating Java Stub Files (WSDL-Based APIs) on page 4

e Verify the WSDL Environment (WSDL-Based APls) on page 4

To use REST API, Bulk API, Chatter API, or any other REST-based Salesforce API, complete the steps in the
following tasks.

e |Installing HttpClient and JSON Frameworks (REST-Based APIs) on page 6
e Setting Up Connected App Access (REST-Based APIs) on page 6
e Verify the REST Environment (REST-Based APIs) on page 9

Tooling APl provides both SOAP and REST-based interfaces, so depending on your needs, you can set up
your environment by using one of the paths above.

Streaming APl requires installing additional Java frameworks for supporting push technology. See Example:
Subscribe to and Replay Events Using a Java Client in the Force.com Streaming API Developer's Guide.

Installing the Web Services Connector (WSDL-Based APIs)

The Force.com Web Services Connector (WSC) is a high-performance runtime framework that makes
using WSDL-based Salesforce APIs easier.

To use the WSC framework you'll need a working install of the Java JDK.

1. Navigate to http://mvnrepository.com/artifact/com force.api/force-wsc in your browser and download
the WSC pre-built jar file that matches the API version of Salesforce you're using. If you can't find a
pre-built version of WSC that works with the APl version you're using, you can build the jar file from
source. Navigate to https://github.com/forcedotcom/wsc and follow the instructions on “Building
WSC”

2. Savethe WSC jarfile in a known location. You'll use it to generate stub files with the WSDLs from your
Salesforce organization.

3. Dependingon the version of WSC you are using, you may need to also download additional frameworks.
Download the following frameworks and extract and copy the framework jar files to a location you'll
remember.

e Rhino JavaScript framework, available at
https://developer.mozilla.org/en-US/docs/Rhino/Download_Rhino

e StringTemplate engine framework, available at http://www stringtemplate.org/download.html

Download Developer WSDL Files (WSDL-Based APIs)

Salesforce Web Services Definition Language (WSDL) files provide API details that you use in your developer
environment to make API calls.

To download WSDL files directly from your Salesforce organization:
1. Log in to your Salesforce developer organization in your browser.
2. From Setup, enter APT inthe Quick Find box, then select API.

3. Download the appropriate WSDL files for the APl you want to use.

https://developer.salesforce.com/docs/atlas.en-us.208.0.api_streaming.meta/api_streaming/code_sample_java_client_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.208.0.api_streaming.meta/api_streaming/code_sample_java_client_intro.htm
http://mvnrepository.com/artifact/com.force.api/force-wsc
https://github.com/forcedotcom/wsc
https://developer.mozilla.org/en-US/docs/Rhino/Download_Rhino
http://www.stringtemplate.org/download.html

Setting Up Your Java Developer Environment Generating Java Stub Files (WSDL-Based APIs)

a. [fyou want to use SOAP APl you'll need either the Enterprise or Partner WSDL. See Choosing a
WSDL in the SOAP API Developer's Guide to determine which WSDL to download.

b. If you want to use Metadata APl you'll need the Metadata WSDL. To login and authenticate with
Salesforce you'll also need either the Enterprise or Partner WSDL.

c. Ifyou want to use Tooling APl you'll need the Tooling WSDL. To login and authenticate with
Salesforce you'll also need either the Enterprise or Partner WSDL.

Generating Java Stub Files (WSDL-Based APIs)

To use WSDL-based Salesforce APIs with Java, you need to generate jar stub files that you can use in your
Java projects.

You'll need the WSC jar file to generate stub files. You'll also need the appropriate WSDL files for the API
you plan to use.

1. Open a command prompt window and navigate to the location where your WSDL and WSC jar files
are.

2. Generate the Java stub forthe WSDL by using the following command in a command prompt window:
java -classpath path to WSC jar/WSC jar filename
com.sforce.ws.tools.wsdlc path to WSDL/WSDL filename path to
output stub jar and filename.You might need to alsoinclude additional jar files that
WSC needs, such as Rhino or StringTemplate, in the classpath list, separated by semi-colons (on
Windows) or colons (on Mac/Linux). See Installing the Web Services Connector (WSDL-Based APIs)
for more information on Rhino and StringTemplate.

An example Windows command for generating the stub .jar file “enterprise_stub.jar” using the APl version
29.0 WSC and the Enterprise WSDL might look something like this:

java -classpath \testWorkspace\wsc\force-wsc-29.0.0.jar;
\testWorkspace\rhinol 7R4\js.jar;
\testWorkspace\stringTemplate\ST-4.0.7.jar;
\jdk\jdkl.7.0 17\1lib\tools.jar
com.sforce.ws.tools.wsdlc
\testWorkspace\wsdl\enterprise.wsdl
\testWorkspace\stub\enterprise stub.jar

Note that this example includes the Rhino and StringTemplate dependent jar files in the classpath.

Verify the WSDL Environment (WSDL-Based APls)

You can verify your developer environment with a simple Java test application in Eclipse.

You should have the JDK, Eclipse, and WSC installed, and have generated the Java stub jar files for the
WSDL files that you need to use. You'll need the stub .jar file for either the Enterprise or Partner WSDL to
follow the verification steps.

1. Run Eclipse. Click File > New > Java Project and name the project SE-WSC-Test.

2. Add the WSC and stub jar files to your project. Click Project > Properties > Java Build Path >
Libraries, click Add External JARs, select the WSC, and stub jar files, and click OK.

3. Addanew folder to the src folder by right-clicking src, then select New > Folder and use wsc
as the folder name.

https://developer.salesforce.com/docs/atlas.en-us.208.0.api.meta/api/sforce_api_quickstart_intro.htm#choose_wsdl
https://developer.salesforce.com/docs/atlas.en-us.208.0.api.meta/api/sforce_api_quickstart_intro.htm#choose_wsdl

Setting Up Your Java Developer Environment Verify the WSDL Environment (WSDL-Based APls)

4. Create a new class by right-clicking wsc and selecting New > Class. Name the class Main.
5. Replace the code Eclipse generates for Main. java as described in the following section.

Use the following simple login example code for your Main.java class. Replace YOUR DEVORG
USERNAME with your developer organization username, and replace YOUR DEVORG PASSWORD
AND SECURITY TOKEN with your developer organization password appended with your security
token. If you did not set a security token in your organization, just provide your password. A GitHub Gist
of this code is available here: https://gist.github.com/anonymous/78864d2c4ccfe4e983ef.

package wsc;

import com.sforce.soap.enterprise.Connector;

import com.sforce.soap.enterprise.EnterpriseConnection;
import com.sforce.ws.ConnectionException;

import com.sforce.ws.ConnectorConfig;

public class Main {

static final String USERNAME = "YOUR DEVORG USERNAME";
static final String PASSWORD = "YOUR DEVORG PASSWORD AND SECURITY
TOKEN";

static EnterpriseConnection connection;
public static void main(String[] args) {
ConnectorConfig config = new ConnectorConfig();
config.setUsername (USERNAME) ;
config.setPassword (PASSWORD) ;
try {
connection = Connector.newConnection (config);
// display some current settings
System.out.println ("Auth EndPoint:

"t+config.getAuthEndpoint ());
System.out.println ("Service EndPoint:

"+config.getServiceEndpoint ());
System.out.println ("Username: "+config.getUsername());
System.out.println ("SessionId: "+config.getSessionId());

} catch (ConnectionException el) {
el.printStackTrace() ;

}
The following example output shows a typical successful run of this code.

Auth EndPoint: https://login.salesforce.com/services/Soap/c/27.0
Service EndPoint:
https://yourInstance.salesforce.com/services/Soap/c/27.0/00DUC000000L5£0
Username: testuser@testorg.com

SessionId: 00DU0O000000Q5£0!AROAQDjpkH.NReBp vBLZ124aDbgYM v7so9ciUu

https://gist.github.com/anonymous/78864d2c4ccfe4e983ef

Setting Up Your Java Developer Environment Installing HttpClient and JSON Frameworks (REST-Based APIs)

If the verification Java project runs and displays output that matches your organization, your developer
environment is set up and you can start developing Java applications that integrate with Salesforce.

Installing HitpClient and JSON Frameworks (REST-Based
APIs)

Toaccess REST resources, you'll need to install HttpClient and JSON frameworks. HttpClient lets you access
HTTP resources. The JSON framework lets you generate and parse JSON request and response data.

You'll need to have the JDK installed on your local system to use the HttpClient and JSON frameworks.

1. Navigate to http://hc.apache.org/downloads.cgiin your browser and download the binary archive of
the latest “GA" version of HttpClient. Un-archive the downloaded file and move the directory to a
location you'll remember.

2. Navigateto http://mvnrepository.com/artifact/org.json/json in your browser and download the latest
binary jar file. Copy this jar file to a location you'll remember.

Setting Up Connected App Access (REST-Based APIs)

Because Salesforce REST APIs use OAuth authentication, you'll need to create a connected app to integrate
your application with Salesforce.

A connected app integrates an application with Salesforce using APIs. Connected apps use standard SAML
and OAuth protocols to authenticate, provide single sign-on, and provide tokens for use with Salesforce
APIs. In addition to standard OAuth capabilities, connected apps allow Salesforce admins to set various
security policies and have explicit control over who can use the corresponding apps.

The New Connected App wizard walks you through creating a connected app.

e InSalesforce Classic, from Setup, enter Apps in the Quick Find box, then select App. Under Connected
Apps, click New.

e In Lightning Experience, you use the App Manager to create connected apps. From Setup, enter App
in the Quick Find box, then select App Manager. (1) Click New Connected App. (2)

Next, specify basic information about your app.

1. Enter the connected app name. This name is displayed in the App Manager and on its App Launcher
tile.

@ Note: The connected app name must be unique for the connected apps in your org. You can
reuse the name of a deleted connected app if the connected app was created using the Spring
"14 release or later.

2. Enter the APl name used when referring to your app from a program. It defaults to a version of the
name without spaces. Only letters, numbers, and underscores are allowed, so if the original app name
contains any other characters, edit the default name.

3. Enterthe contact email for Salesforce to use when contacting you or your support team. This address
isn't given to Salesforce admins who install the app.

4. Enter the contact phone for Salesforce to use in case we want contact you. This number isn't given
to Salesforce admins who install the app.

5. Enteralogoimage URL to display your logo on the App Launcher tile. It also appears on the consent
page that users see when authenticating. The URL must use HTTPS. Use a GIF, JPG, or PNG file format

http://hc.apache.org/downloads.cgi
http://mvnrepository.com/artifact/org.json/json

Setting Up Your Java Developer Environment

and a file size that's preferably under 20 KB, but at most 100 KB. We resize the image to 128 pixels by
128 pixels, so be sure that you like how it looks. If you don't supply a logo, Salesforce generates one
for you using the app’s initials.

e Youcan upload your own logo image by clicking Upload logo image. Select an image from your
local file system that meets the size requirements for the logo. When your upload is successful,
the URL to the logo appears in the Logo Image URL field. Otherwise, make sure that the logo
meets the size requirements.

e You can also select a logo from the Salesforce samples by clicking Choose one of our sample
logos. The logos include ones for Salesforce apps, third-party apps, and standards bodies. Click
the logo you want, and then copy and paste the URL into the Logo Image URL field.

e You can use a logo hosted publicly on Salesforce servers by uploading an image as a document
from the Documents tab. View the image to get the URL, and then enter the URL into the Logo
Image URL field.

e You can use alogo hosted publicly on Salesforce servers by uploading an image as a document
using the Documents tab. View the image to get the URL, and then enter the URL into the Logo
Image URL field.

Enter an icon URL to display a logo on the OAuth approval page that users see when they first use
your app. Use an icon that's 16 pixels high and wide and on a white background.

You can select an icon from the samples provided by Salesforce. Click Choose one of our sample
logos. Click the icon you want, and then copy and paste the displayed URL into the Icon URL field.
If you have a web page with more information about your app, provide an info URL.

Enter a description up to 256 characters to display on the connected app’s App Launcher tile. If you
don't supply a description, just the name appears on the tile.

Next, provide OAuth settings by selecting Enable OAuth Settings and providing the following information.

1.

Enter the callback URL (endpoint) that Salesforce calls back to your application during OAuth. It's the
OAuth redirect URI. Depending on which OAuth flow you use, the URL is typically the one that a user’s
browser is redirected to after successful authentication. Because this URL is used for some OAuth flows
to pass an access token, the URL must use secure HTTPS or a custom URI scheme. If you enter multiple
callback URLs, at run time Salesforce matches the callback URL value specified by the app with one
of the values in Callback URL. It must match one of the values to pass validation.

If you're using the JWT OAuth flow, select Use Digital Signatures. If the app uses a certificate, click
Choose File and select the certificate file.

Add all supported OAuth scopes to Selected OAuth Scopes. These scopes refer to permissions given
by the user running the connected app. The OAuth token name is in parentheses.

Access and manage your Chatter feed (chatter_api)
Allows access to Chatter REST API resources only.

Access and manage your data (api)
Allows access to the logged-in user's account using APIs, such as REST APland Bulk API. This value
alsoincludes chatter api, which allows access to Chatter REST APl resources.

Access your basic information (id, profile, email, address, phone)
Allows access to the Identity URL service.

Setting Up Connected App Access (REST-Based APIs)

Setting Up Your Java Developer Environment Setting Up Connected App Access (REST-Based APIs)

Access custom permissions (custom_permissions)
Allows access to the custom permissions in an org associated with the connected app. It shows
whether the current user has each permission enabled.

Allow access to your unique identifier (openid)
Allows access to the logged-in user's unique identifier for OpenlD Connect apps.

Full access (full)
Allows access to the logged-in user’s data, and encompasses all other scopes. full doesn't
return a refresh token. You must explicitly request the refresh token scope to get one.

Perform requests on your behalf at any time (refresh_token, offline_access)
Allows a refresh token to be returned if the app is eligible to receive one. This scope lets the app
interact with the user's data while the useris offline. The refresh token scope s synonymous
with offline access.

Provide access to custom applications (visualforce)
Allows access to Visualforce pages.

Provide access to your data via the Web (web)
Allows use of the access_token on the web. Itincludes visualforce, which allows
access to Visualforce pages.

4. |Ifyou're setting up OAuth for applications on devices with limited input or display capabilities, such
as TVs, appliances, or command-line applications, select Enable for Device Flow.

@ Note: When enabled, the value for the callback URL defaults to a placeholder unless you specify
your own URL. A callback URL isn't used in the device authentication flow. You can specify your
own callback URL as needed, such as when this same consumer is being used for a different
flow.

5. Ifyou're setting up OAuth for a client app that can't keep the client secret confidential and must use
the web server flow because it can't use the user-agent flow, deselect Require Secret for Web Server
Flow. We still generate a client secret for your app but this setting instructs the web server flow to
notrequire the client secret parameter in the access token request. If your app can use the
user-agent flow, we recommend user-agent as a more secure option than web server flow without
the secret.

6. Control how the OAuth request handles the ID token. If the OAuth request includes the openid
scope, the returned token can include the ID token.

e Toinclude the ID token in refresh token responses, select Include ID Token. It's always included
in access token responses.

e With the primary ID token setting enabled, configure the secondary settings that control the ID
token contents in both access and refresh token responses. Select at least one of these settings.

Include Standard Claims
Include the standard claims that contain information about the user, such as the user's name,
profile, phone_number, and address. The OpenlD Connect specifications define a set of
standard claims to be returned in the ID token.

Include Custom Attributes
If your app has specified custom attributes, include them in the ID token.

Include Custom Permissions
If your app has specified custom permissions, include them in the ID token.

Setting Up Your Java Developer Environment Verify the REST Environment (REST-Based APIs)

7. Ifyou're setting up your app to issue asset tokens for connected devices, configure the asset token
settings.

e Select Enable Asset Tokens. Then specify these settings.

Token Valid for
The length of time that the asset token is valid after it's issued.

Asset Signing Certificate
The self-signed certificate that you've already created for signing asset tokens.

Asset Audiences
The intended consumers of the asset token. For example, the backend service for your
connected device, suchas https://your device backend.com.

Include Custom Attributes
If your app has specified custom attributes, include them in the asset token.

Include Custom Permissions
If your app has specified custom permissions, include them in the asset token.
e Specify the callback URL (endpoint). For example,
https://your device backend.com/callback.
® Make sure that you add the OAuth scopes that are required for asset tokens.
— Access and manage your data (api)

- Allow access to your unique identifier (openid)

When you're finished entering the information, click Save. You can now publish your app, make further
edits, or delete it. If you're using OAuth, saving your app gives you two new values that the app uses to
communicate with Salesforce.

e Consumer Key: A value used by the consumer to identify itself to Salesforce. Referred to as
client id inOAuth20.

e Consumer Secret: A secret used by the consumer to establish ownership of the consumer key. Referred
toas client secret in OAuth 2.0.

See Create a Connected App in the Salesforce online help for more for more information on connected
apps.

Verify the REST Environment (REST-Based APIs)

You can verify your developer environment with a simple Java test application in Eclipse.
You should have the JDK, Eclipse, and the HttpClient and JSON frameworks installed.
1. Run Eclipse. Click File > New > Java Project and name the project “SF-REST-Test.”

2. C(lick Project > Properties > Java Build Path > Libraries and click Add External JARs. Add the
HttpClient jarfiles: httpclient, httpcore, commons-codec,and commons-logging
(the jar files will have version information in the filenames). Add the JSON Jjar file, which might also
have a version number in the jar filename.

3. Addanew folderto the src folder by right-clicking src, then select New > Folder and use
sfdc_rest asthe folder name.

4. Createanew classbyright-clicking sfdc_rest andselecting New > Class. Name the class Main.

Setting Up Your Java Developer Environment Verify the REST Environment (REST-Based APIs)

5. Replace the code Eclipse generates for Main. java as described in the following section.

Use the following simple login example code for your Main java class. Replace YOUR DEVORG
USERNAME with your developer organization username, and replace YOUR DEVORG PASSWORD
+ SECURITY TOKEN withyourdeveloperorganization password appended with your security token.
If you did not set a security token in your organization, just provide your password. Replace YOUR OAUTH
CONSUMER KEY withthe consumerkey from your development organization’s connected app. Replace
YOUR OAUTH CONSUMER SECRET with the consumer secret from your development organization's
connected app. A GitHub Gist of this code is available here:

https://gist.github.com/anonymous/fcb 1bc36ef50c0efbebs.

package sfdc rest;
import java.io.IOException;

import org.apache.http.client.methods.HttpPost;

import org.apache.http.impl.client.DefaultHttpClient;
import org.apache.http.HttpResponse;

import org.apache.http.HttpStatus;

import org.apache.http.util.EntityUtils;

import org.apache.http.client.ClientProtocolException;

import org.json.JSONObject;
import org.json.JSONTokener;

import org.json.JSONException;

public class Main {

static final String USERNAME = "YOUR DEVORG USERNAME";

static final String PASSWORD = "YOUR DEVORG PASSWORD + SECURITY
TOKEN";

static final String LOGINURL = "https://login.salesforce.com";

static final String GRANTSERVICE =
"/services/oauth2/token?grant type=password";

static final String CLIENTID = "YOUR OAUTH CONSUMER KEY";

static final String CLIENTSECRET = "YOUR OAUTH CONSUMER SECRET";

public static void main(String[] args) {
DefaultHttpClient httpclient = new DefaultHttpClient () ;

// Assemble the login request URL

String loginURL = LOGINURL +
GRANTSERVICE +
"§¢client id=" + CLIENTID +
"g¢client secret=" + CLIENTSECRET +
"&username=" + USERNAME +
"&password=" + PASSWORD;

// Login requests must be POSTs

HttpPost httpPost = new HttpPost (loginURL) ;
HttpResponse response = null;

10

https://gist.github.com/anonymous/fcb1bc36ef50c0efbeb5

Setting Up Your Java Developer Environment

Verify the REST Environment (REST-Based APIs)

try {
// Execute the login POST request
response = httpclient.execute (httpPost);

} catch (ClientProtocolException cpException) {
// Handle protocol exception

} catch
// Handle system IO exception

(IOException ioException) {

// verify response is HTTP OK
final int statusCode =

response.getStatusLine () .getStatusCode () ;

if (statusCode != HttpStatus.SC OK) {

System.out.println ("Error authenticating to Force.com:

"+statusCode) ;

// Error is in EntityUtils.toString(response.getEntity())

return;

String getResult = null;
try {

getResult = EntityUtils.toString(response.getEntity());
} catch (IOException ioException) {

// Handle system IO exception

}
JSONObject jsonObject =
String loginAccessToken

null;
null;
null;

String loginInstanceUrl =
try f
jsonObject =

(JSONObject) new

JSONTokener (getResult) .nextValue () ;

jsonObject.getString ("access token");
jsonObject.getString ("instance url");

loginAccessToken =
loginInstanceUrl =
} catch (JSONException
// Handle JSON exception

jsonException) {

}

System.
System.
System.
System.

out.println (response.getStatusLine());
"Successful login");
instance URL: "+loginInstanceUrl);

access token/session ID:

(
out.println (
out.println ("
(

out.println ("

"+loginAccessToken) ;

}

// release connection
httpPost.releaseConnection();

The following example output shows a typical successful run of this code.

HTTP/1.1 200 OK
Successful login
instance URL: https://yourInstance.salesforce.com
access token/session ID:
00DUO000000L5SPxalXFi0rwBl16YCQ.Xyv2nKiCT81IN9 nkKQJ3UUE

n

Setting Up Your Java Developer Environment Verify the REST Environment (REST-Based APIs)

If the verification Java project runs and displays output that matches your organization, your developer
environment is now set up and you can start developing Java applications that integrate with Salesforce
REST APIs.

12

