
Custom Metadata Types
Implementation Guide

Salesforce, Spring ’16

 @salesforcedocs
Last updated: February 10, 2016

https://twitter.com/salesforcedocs

© Copyright 2000–2016 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of salesforce.com, inc.,
as are other names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

CUSTOM METADATA TYPES . 1

CUSTOM METADATA TYPES LIMITATIONS . 3

CUSTOM METADATA LIMITS . 5

GET STARTED WITH THE SAMPLE APPLICATION . 6
Sample Application . 6
Deploy and Upload the Package for Picklists R Us . 8
Deploy and Upload an Extension Package for TravelApp, Inc. 9
Install and Use the Base Package and Extension for Galactic Tours . 9

CREATE, EDIT, AND DELETE CUSTOM METADATA TYPES AND
RECORDS . 11
Define a Custom Metadata Type Declaratively . 11
Add or Edit Custom Metadata Records Declaratively . 13
Load Records with the Custom Metadata Loader . 13

ACCESS CUSTOM METADATA TYPES, RECORDS, AND FIELDS 14
Access Custom Metadata Types and Records . 14
Access Custom Metadata Fields . 15

PACKAGE CUSTOM METADATA TYPES AND RECORDS 16
Considerations for Custom Metadata Type Packages . 17

CUSTOM METADATA TYPES

EDITIONS

Available in: Salesforce
Classic

Available in: Enterprise,
Performance, Unlimited,
Developer, and
Database.com Editions

You can create your own declarative developer frameworks for internal teams, partners, and
customers. Rather than building apps from data, you can build apps that are defined and driven by
their own types of metadata. Metadata is the information that describes the configuration of each
customer’s organization.

Custom metadata is customizable, deployable, packageable, and upgradeable application metadata.
First, you create a custom metadata type, which defines the form of the application metadata. Then
you build reusable functionality that determines the behavior based on metadata of that type.
Similar to a custom object or custom setting, a custom metadata type has a list of custom fields
that represent aspects of the metadata. After you create a public custom metadata type, you or
others can declaratively create custom metadata records that are defined by that type. When you
package a public custom metadata type, customers who install the package can add their own records to the metadata type. Your
reusable functionality reads your custom metadata and uses it to produce customized application behavior.

Custom metadata rows resemble custom object rows in structure. You create, edit, and delete custom metadata rows in the Metadata
API or in Setup. Because the records are metadata, you can migrate them using packages or Metadata API tools. Custom metadata
records are read-only in Apex and in the Enterprise and Partner APIs.

With custom metadata types, you can issue unlimited Salesforce Object Query Language (SOQL) queries for each Apex transaction.

Custom metadata types support the following custom field types.

• Checkbox

• Date

• Date and Time

• Email

• Number

• Percent

• Phone

• Picklist (Beta)

• Text

• Text Area

• URL

Note: This release contains a beta version of picklists on custom metadata types that is production quality but has known
limitations.

A subscriber to a managed package containing a custom metadata type can’t add their own fields to that type. Only the org that develops
the type can add custom fields to it.

Custom metadata fields are manageable, which means that the developer of a type can decide who can change field values after they
are deployed to a subscriber organization.

• Locked after release—For any record of the type, the value of the field is immutable after deployment, even on the developer
organization where the record was created.

• Subscriber editable—Anyone with the correct permissions can change the value of the field at will. Any changes the developer
deploys do not overwrite values in the subscriber's organization.

1

• Upgradable—The developer of a record can change the value of the field by releasing a new version of the custom metadata
package. The subscriber can’t change the value of the field.

Custom metadata types and records have names and labels. Type names must be unique within their namespace. Record names must
be unique within their custom metadata type and namespace.

Custom metadata records can be protected. If a developer releases protected records in a managed package, access to them is limited
in specific ways.

• Code that’s in the same managed package as custom metadata records can read the records.

• Code that’s in the same managed package as custom metadata types can read the records that belong to that type.

• Code that’s in a managed package that doesn’t contain either the type or the protected record can’t read the protected records.

• Code that the subscriber creates and code that’s in an unmanaged package can’t read the protected records.

• The developer can modify protected records only with a package upgrade. The subscriber can’t read or modify protected records.
The developer name of a protected record can’t be changed after release.

If you create a protected custom metadata record in your organization, then it’s accessible only by your code, code from unmanaged
packages, and code from the managed package that defines its type.

Custom metadata types can also be protected, providing the same access protection as protected records. If you change a type from
protected to public, its protected records remain protected and all other records become public. If you use Setup to create a new record
on a protected type, the Protected Component checkbox is checked by default. Once a type is public, you can’t convert it to protected.
The subscriber can’t create records of a protected type.

The custom metadata types documentation refers to a sample application and three fictional companies.

• Picklists R Us develops reusable enhancements to the Salesforce App Cloud that involve picklist-related functionality.

• TravelApp, Inc. develops an interplanetary travel application that uses picklist features from Picklists R Us.

• Galactic Tours is a customer of these organizations. Galactic Tours installs Picklists R Us’s package and TravelApp, Inc.’s extension
into its organization.

Visit the Custom Metadata Types community group at success.salesforce.com to get your own copy of the sample application
and discuss this functionality.

2

Custom Metadata Types

https://success.salesforce.com/_ui/core/chatter/groups/GroupProfilePage?g=0F9300000001t77CAA

CUSTOM METADATA TYPES LIMITATIONS

EDITIONS

Available in: Salesforce
Classic

Available in: Enterprise,
Performance, Unlimited,
Developer, and
Database.com Editions

When using custom metadata types, be aware of these special behaviors and limitations.

Updating Types and Records
You can’t update protected types and records in an installed managed package
programmatically. You can modify protected types and records only by performing a package
upgrade.

You can’t update public types and records by using Apex directly. To modify records from Apex,
you must make calls to the Metadata API.

Metadata relationships
Metadata relationships aren’t supported. However, you can simulate them using text fields that
contain the API name of the target object.

Application lifecycle management tools
Custom metadata types don’t support these application lifecycle management tools:

• Version control

• Tooling API

• Developer Console

Licenses
Licenses that are defined for an extension package aren’t enforced on custom metadata records in that package unless the types
are also in the package.

SOQL
Custom metadata types support the following SOQL query syntax.

SELECT fieldList [...]
FROM objectType

[USING SCOPE filterScope]
[WHERE conditionExpression]
[ORDER BY field {ASC|DESC} [NULLS {FIRST|LAST}]]

• The fieldList can include only non-relationship fields.

• FROM can include only one object.

• You can use the following operators.

– IN and NOT IN

– =, >, >=, <, <=, and !=

– LIKE, including wild cards

– AND

• You can use ORDER BY, ASC, and DESC with multiple fields.

• You can only use ORDER BY when the ordered field is a selected field.

Protected custom metadata types
Subscribers can't add custom metadata records to installed custom metadata types that are protected. To allow subscribers to create
custom metadata records that are defined by a custom metadata type, the type must be public.

3

Metadata API returns protected custom entity definitions (but not custom metadata records) in subscriber organizations.

Caching
Custom metadata records are cached at the type level after the first read request. This enhances performance on subsequent requests.
Requests that are in flight when metadata is updated won’t get the most recent metadata.

Global Picklists
Global picklists aren’t supported on custom metadata types. You can only use sObject picklists.

Picklists and Released Managed Packages
Subscribers to a released managed package that contains a custom metadata type with a picklist can’t add or remove values from
that picklist. Developers who release a managed packaged that contains a custom metadata type with a picklist can add values to
the picklist, but can’t delete them.

4

Custom Metadata Types Limitations

CUSTOM METADATA LIMITS

EDITIONS

Available in: Salesforce
Classic

Available in: Enterprise,
Performance, Unlimited,
Developer, and
Database.com Editions

Be aware of these requirements for custom metadata types and records.

Maximum amountDescription

UnlimitedSOQL queries per Apex transaction

10 MBCustom metadata per organization *

10 MBCustom metadata per certified managed
package *

Note: Custom metadata records in
certified managed packages that you’ve
installed don’t count toward your
organization’s limit. However, custom
metadata records that you create do
count toward the limit. This rule applies
regardless of whether you create records
in your own custom metadata type or in
a type from a certified managed package.

100Fields per custom metadata type or record

100. This number includes all types developed
in the organization and installed from managed
and unmanaged packages.

Custom metadata types per organization

1,000Characters per description field

50,000Records returned per transaction

200Custom metadata types in one call

* Record size is based on the maximum field size of each field type, not the actual storage that’s used in each field. When adding fields
to a custom metadata record, use the appropriate type and specify a length that doesn’t exceed what’s needed for your data. This action
helps you avoid reaching the cached data limit. For example, if you create a US social security number (SSN) field, select the Text data
type and specify a length of 9. If instead you selected Text Area, the field would add 255 characters to the usage count for each
record, regardless of the number of characters entered.

5

GET STARTED WITH THE SAMPLE APPLICATION

Sample Application

The sample application is based on a collaborative effort between two fictional organizations. Picklists R Us develops reusable enhancements
to the Salesforce App Cloud that involve picklist-related functionality. TravelApp, Inc. develops an interplanetary travel application that
uses picklist features from Picklists R Us. Galactic Tours is a customer of these organizations. Galactic Tours installs Picklists R Us’s package
and TravelApp, Inc.’s extension into its organization.

Sample Application Objects and Fields
The sample application is based on three imaginary companies.

• Picklists R Us creates reusable picklists by using custom metadata types.

• TravelApp uses picklists from Picklists R Us to build an application for travel agencies.

• Galactic Tours uses TravelApp to book tours in outer space.

Picklists R Us creates three custom metadata types.

• ReusablePicklist__mdt defines the picklists.

• ReusablePicklistOption__mdt defines items and associates them with picklists.

• PicklistUsage__mdt associates picklists with objects.

TravelApp populates the custom metadata types with custom metadata records that define picklists and how they are used in the
application. The following tables show how TravelApp uses the custom metadata types created by Picklists R Us.

Table 1: Reusable_Picklist__mdt

CommentsAlphaSort__cLabelDeveloper Name

Picklists R Us frameworkTrueAlpha Sorted Test PicklistTestPicklistAlpha

Picklists R Us frameworkFalseNon-Alpha Sorted Test PicklistTestPicklistNonAlpha

TravelApp applicationFalsePlanetsPlanets

TravelApp applicationTrueHotelsHotels

Table 2: Reusable_PicklistOption__mdt

CommentsSortOrder__cPicklist__cLabelDeveloper Name

Picklists R Us frameworkTestPicklistAlphaTest Value 1AlphaTestValue1

Picklists R Us frameworkTestPicklistAlphaTest Value 2AlphaTestValue2

Picklists R Us framework1TestPicklistNonAlphaB Test Value 1NonAlphaTestValue1

Picklists R Us framework2TestPicklistNonAlphaA Test Value 2NonAlphaTestValue2

TravelApp application1PlanetsMercuryMercury

6

CommentsSortOrder__cPicklist__cLabelDeveloper Name

TravelApp application2PlanetsVenusVenus

TravelApp applicationHotelsMotel 6Motel6

TravelApp applicationHotelsBellagioBellagio

Table 3: PicklistUsage__mdt

CommentsField__csObjectType__cPicklist__cLabelDeveloper Name

Picklists R Us
framework

AlphaTestField__cPicklistTestData__cTestPicklistAlphaAlpha Sorted Test
Picklist Usage

AlphaTestUsage

Picklists R Us
framework

NonAlphaTestField__cPicklistTestData__cTestPicklistAlphaNon-Alpha Sorted
Test Picklist Usage

NonAlphaTestUsage

TravelApp
application

Destination__cInterplanetaryBooking__cPlanetsInterplanetary
Booking:
Destination

BookingDestination

TravelApp
application

Hotel__cInterplanetaryBooking__cHotelsInterplanetary
Booking: Hotel

BookingHotel

TravelApp
application

PlanetVisited__cInterplanetaryGreeting__cPlanetsInterplanetary
Greeting: Planet
Visited

GreetingPlanetVisited

TravelApp creates the object InterplanetaryGreeting__c to contain greetings entered by travel agents. Galactic Tours uses
this object to greet visitors to different planets. The field Greeting__c is a formula that adds the word Hello to the name of the
planet the guest has visited. The following table shows how Galactic Tours populates the InterplanetaryGreeting__c object.
The InterplanetaryGreeting__c object uses the Planets picklist to populate the PlanetVisited__c field.

Table 4: InterplanetaryGreeting__c

CommentsGreeting__c (formula)PlanetVisited__cGuest__c (lookup)Name

TravelApp user dataHello Earth!EarthJohn Many JarsJohn’s Earth Greeting

TravelApp user dataHello Jupiter!JupiterSkip OrbitSkip’s Jupiter Greeting

TravelApp user dataHello Neptune!NeptuneLuna DarksideLuna’s Neptune Greeting

TravelApp creates the object InterplanetaryBooking__c to contain trips entered by travel agents. Galactic Tours uses this
object to store its bookings.

Table 5: InterplanetaryBooking__c

CommentsReturn__cDeparture__cHotel__cDestination__cTraveller__c
(lookup)

Name

TravelApp user data6/25/20156/15/2015Motel6EarthJohn Many JarsJohn’s Trip to Earth

7

Sample ApplicationGet Started with the Sample Application

CommentsReturn__cDeparture__cHotel__cDestination__cTraveller__c
(lookup)

Name

TravelApp user data8/21/20157/21/2015BellagioNeptuneLuna DarksideLuna’s Trip to
Neptune

Installing the Sample Application
Visit the Custom Metadata Types community group at success.salesforce.com to get your own copy of the sample application
and discuss this functionality. To explore the sample application’s functionality, you need separate test organizations for Picklists R Us
TravelApp, and Galactic Tours. The Picklists R Us and TravelApp organizations must be Developer Edition organizations.

The sample application is distributed as two metadata packages, picklistsRUs.zip and travelApp.zip, and a Perl script,
updateSampleAppWithNs.pl. All three are in the sampleApp.zip file. The Perl script updates the files in travelApp.zip
so that they correctly refer to the namespace of your Picklists R Us organization. The Perl script works in a UNIX-type shell, such as the
BASH shell in Linux or the Terminal utility in OS X. If you are installing the sample application under a Microsoft Windows operating
system, we recommend a UNIX-type shell such as Cygwin or Git BASH.

These directions are for deploying the application into your organizations and getting it working. The application components are
explained in this implementation guide and the Metadata API Developer Guide.

Deploy and Upload the Package for Picklists R Us

The foundation of the sample application is Picklists R Us’s package, picklistsRUs.zip. Deploy and upload Picklists R Us’s package
first.

1. Connect to one of your organizations (here referred to as the Picklists R Us organization) via the Workbench tool. (For more information,
see developer.salesforce.com/page/Workbench.) Verify that the API version of your connection is 34.0 or later.

2. From the Deploy page in Workbench (Migration > Deploy), stage and deploy the picklistsRUs.zip file. Select the Single
Package option. This action uploads all picklist package components and adds them to an unmanaged package that’s named
Picklists R Us.

3. Log in to your Picklists R Us organization.

4. From Setup, enter Packages in the Quick Find box, then select Packages.

5. In the Developer Settings section, click Edit.

6. Choose a namespace prefix for this organization, and then select the Picklists R Us package to manage. Click Review My Selections,
and then click Save.

7. In the Packages section, click Picklists R Us.

8. Click Upload, select Managed - Released—this option is required to upload extensions of the package—and then click Upload.

9. When the upload is complete, make a note of the package installation URL.

10. Log out of the Picklists R Us organization.

You’re now ready to install TravelApp’s package.

8

Deploy and Upload the Package for Picklists R UsGet Started with the Sample Application

https://success.salesforce.com/_ui/core/chatter/groups/GroupProfilePage?g=0F9300000001t77CAA
https://www.cygwin.com/
https://msysgit.github.io/
https://developer.salesforce.com/docs/atlas.en-us.200.0.api_meta.meta/api_meta/
https://developer.salesforce.com/page/Workbench

Deploy and Upload an Extension Package for TravelApp, Inc.

TravelApp, Inc. develops an interplanetary travel application that uses picklist features from Picklists R Us.. Install TravelApp’s extension
package.

Before you deploy TravelApp’s extension, be sure to deploy and upload the Picklists R Us package.

1. Log in to your second Developer Edition organization, referred to here as the TravelApp organization.

2. Go to the package installation URL that you noted in Deploy and Upload the Package for Picklists R Us. Follow the steps to install
the Picklists R Us package.

3. Verify that you have write permission on the travelApp.zip file.

4. In the directory that contains the travelApp.zip file, run the Perl script specifying the Picklists R Us package’s namespace as
an argument. For example, if the Picklists R Us namespace is picklist1234 and you’re in the directory with the Perl script and
travelApp.zip file, use the syntax: perl updateSampleAppWithNs.pl picklist1234.

Note: The Perl script works in a UNIX-type shell, such as the BASH shell in Linux or the Terminal utility in OS X. If you are
installing the sample application under a Microsoft Windows operating system, we recommend a UNIX-type shell such as
Cygwin or Git BASH.

5. Connect to the TravelApp organization via the Workbench tool.

6. From the Deploy page in Workbench (Migration > Deploy), stage and deploy the travelApp.zip file. Use the Single Package
option. This action uploads all travel application components.

7. Log in to the TravelApp organization.

8. From Setup, enter Packages in the Quick Find box, then select Packages.

9. In the Developer Settings section, click Edit.

10. Choose a namespace prefix for this organization, and then select the Travel App package to manage.

11. Click Review My Selections, and then click Save.

12. From Setup, enter Tabs in the Quick Find box, then select Tabs.

13. Edit the Interplanetary Bookings tab.

14. Move through the wizard to the Edit Tab page.

15. On the Edit Tab page, in the Button or Link URL field, change the type parameter to the namespace that you set for TravelApp, and
save your changes. This action ensures that the URL continues to work in organizations that install the tab. For example, if the Travel
App Package namespace is travelApp1234, change this URL to
/apex/picklist1234__GenericTab?type=travelApp1234__InterplanetaryBooking__c.

16. Repeat steps 11–14 for the Interplanetary Greetings tab.

17. Click Upload, and then follow the steps to upload a version of the package. This version can be released or beta. When the upload
is complete, make a note of the package installation URL.

18. Log out of the TravelApp organization.

You’re now ready to install and use the base package and extension for Galactic Tours.

Install and Use the Base Package and Extension for Galactic Tours

Galactic Tours is a customer of Picklists R Us and TravelApp. Install the base package and extension that was created by Galactic Tours.

9

Deploy and Upload an Extension Package for TravelApp, Inc.Get Started with the Sample Application

https://www.cygwin.com/
https://msysgit.github.io/

Before you install the Galactic Tours package, be sure to deploy and upload the Picklists R Us package and deploy and upload a TravelApp
extension package.

1. Verify that you’re logged out of your other two organizations. Then log in to your third organization, referred to here as the Galactic
Tours organization.

2. Go to the package installation URL that you noted in Deploy and Upload the Package for Picklists R Us, and then follow the steps to
install the Picklists R Us package.

3. Go to the package installation URL that you noted in Deploy and Upload an Extension Package for TravelApp, Inc., and then follow
the steps to install the TravelApp package.

4. From Setup in the TravelApp organization, enter Users in the Quick Find box, then select Users.

5. Click the link to open your user page.

6. Under Permission Set Assignments, click Edit Assignments.

7. Add “Travel App” and “Reusable Picklists End-User” to the Enabled Permission Sets list.

8. From the Force.com App menu, select the application TravelApp, Inc.

9. Click the Interplanetary Greetings tab.

10. When the tab opens, click New.

11. Fill in all fields, and then click Save. The Planet Visited picklist now contains a list of planets.

12. Repeat steps 9–11 for the Interplanetary Bookings tab.

The Destination picklist is populated with the same list of options as the Planet Visited picklist. The Hotel picklist is populated with
another set of options.

10

Install and Use the Base Package and Extension for Galactic
Tours

Get Started with the Sample Application

CREATE, EDIT, AND DELETE CUSTOM METADATA TYPES
AND RECORDS

EDITIONS

Available in: Salesforce
Classic

Available in: Professional,
Enterprise, Performance,
Unlimited, Developer, and
Database.com Editions

Professional Edition
organizations can create,
edit, and delete only custom
metadata records from
types in installed packages.

To create, update, and delete custom metadata types and records, use the Metadata API.

For more information, see “Custom Metadata Types (CustomObject)” in the Metadata API Developer
Guide

Define a Custom Metadata Type Declaratively

Use Salesforce UI to create and update custom metadata types declaratively.

Add or Edit Custom Metadata Records Declaratively

You can add, delete, or modify custom metadata declaratively from Setup.

Load Records with the Custom Metadata Loader

Use the custom metadata loader to bulk load records to your custom metadata types from a
.csv file.

Define a Custom Metadata Type Declaratively

EDITIONS

Available in:

USER PERMISSIONS

To create or edit custom
metadata types:
• “Author Apex”

Use Salesforce UI to create and update custom metadata types declaratively.

1. Search Setup for Custom Metadata Types.

2. On the All Custom Metadata Types page, click New Custom Metadata Type, or click Edit to
modify an existing custom metadata type.

3. Complete these fields.

DescriptionField

This name is used to refer to the type in a user interface page.Label

The plural name of the type. If you create a tab for this type, this name
is used for the tab.

Plural Label

If it is appropriate for your organization’s default language, indicate
whether the label is preceded by “an” instead of “a.”

Starts with
a vowel
sound

A unique name used to refer to the object when using the API. In
managed packages, this name prevents naming conflicts with package

Object Name

installations. Use only alphanumeric characters and underscores. The
name must begin with a letter and have no spaces. It cannot end with
an underscore nor have two consecutive underscores.

An optional description of the object. A meaningful description helps
you remember the differences between your custom objects when you
are viewing them in a list.

Description

11

https://developer.salesforce.com/docs/atlas.en-us.200.0.api_meta.meta/api_meta/
https://developer.salesforce.com/docs/atlas.en-us.200.0.api_meta.meta/api_meta/

DescriptionField

Defines what displays when a user clicks Help for this Page from the custom object record home
(overview), edit, and detail pages, list views, and related lists.

To display the standard Salesforce help available for any custom object record, select Open the
standard Salesforce Help & Training window.

Context-Sensitive
Help Setting

To display custom object-level help for your custom object, select Open a window using a
Visualforce page and then select the Visualforce page to use as the target of the context-sensitive
help link from that custom object’s pages.

Note: This setting doesn’t affect the Help & Training link at the top of a page. That link always
opens the Salesforce Help & Training window.

The name used in page layouts, list views, related lists, and search results.Content Name

Who should see the type:Visibility

• Public—anyone can see it.

• Protected—if the type is installed as part of a managed package, only Apex code in that managed
package can use it.

4. Click Save.

5. Under Custom Fields, click New to start adding fields to the custom metadata type. For each field, remember to choose a
Field Manageability value to determine who can change the field later.

Note: Custom metadata types that were created before the Winter '15 release don’t automatically get layouts. Before adding
records to this kind of custom metadata type using the UI, you must add a layout that contains all the fields that you want to make
editable for the custom metadata type. In the All Custom Metadata Types page, click the custom metadata type. Then click New
under Page Layouts. If you plan to release a custom metadata type as a managed package, make sure you add all the fields you
want to add first. After a customer downloads the managed package, any changes to the layout must be done manually because
you can’t add fields to a layout via an upgrade.

12

Define a Custom Metadata Type DeclarativelyCreate, Edit, and Delete Custom Metadata Types and Records

Add or Edit Custom Metadata Records Declaratively

EDITIONS

Available in: Professional,
Enterprise, Performance,
Unlimited, Developer, and
Database.com Editions

USER PERMISSIONS

To create or modify custom
metadata records:
• “CustomizeApplication”

You can add, delete, or modify custom metadata declaratively from Setup.

1. Search Setup for Custom Metadata Types.

2. Click Manage Records next to the type of custom metadata that you want to add or modify.

3. On the list of custom metadata records, click New, or click Edit to modify an existing custom
metadata record.

4. Fill out the fields. The Protected Component checkbox determines whether the record is
protected. A protected record is only accessible to code in the same namespace as either the
record or its associated custom metadata type: code you create, code in an unmanaged package,
and code in the same managed package as either the protected record or its custom metadata
type.

5. Click Save.

Load Records with the Custom Metadata Loader

EDITIONS

Available in: Enterprise,
Performance, Unlimited,
Developer, and
Database.com

USER PERMISSIONS

To create custom metadata
records:
• “Customize Application”

To use the custom metadata
loader:
• “Custom Metadata

Loader”

Use the custom metadata loader to bulk load records to your custom metadata types from a .csv
file.

The custom metadata loader lets you load up to 200 records with a single call.

1. Download the tool from GitHub. Deploy the package to your org via Workbench. Note that you
have to create a .zip file of the contents of the custom_md_loader directory instead
of zipping up the directory itself.

2. Create a .csv file with a header that contains the custom metadata type’s field API names.
Either the Label field or the Developer Name field is required. See sample.csv in
your download for an example. If your org is namespaced, be sure to include the namespace
prefix in your header.

3. From Setup, assign the Custom Metadata Loader permission set to the appropriate users,
including yourself.

4. Select Custom Metadata Loader from the App Picker.

5. Go to the Custom Metadata Loader tab. The app prompts you to configure your Remote Site
Settings if you haven’t already done so.

6. Select your .csv file and the corresponding custom metadata type.

7. Click Create custom metadata to bulk load the records from the .csv file.

13

Add or Edit Custom Metadata Records DeclarativelyCreate, Edit, and Delete Custom Metadata Types and Records

https://github.com/haripriyamurthy/CustomMetadataLoader

ACCESS CUSTOM METADATA TYPES, RECORDS, AND FIELDS

Access Custom Metadata Types and Records

EDITIONS

Available in: Salesforce
Classic

Available in: Professional,
Enterprise, Performance,
Unlimited, Developer, and
Database.com Editions

Professional Edition
organizations can access
only custom metadata
records from installed
custom metadata types.

Use SOQL to access your custom metadata types and to retrieve the API names of the records on
those types. DML operations aren’t allowed on custom metadata in Apex, the Partner APIs, and
Enterprise APIs.

For information about the Custom Metadata Type__mdt sObject, see Custom Metadata
Type__mdt in the Object Reference for Salesforce and Force.com..

For example, declare an Apex variable custMeta of the custom metadata type
MyCustomMetadataType__mdt, which is in your namespace, as follows.

MyCustomMetadataType__mdt custMeta;

Declare the custMeta variable of the custom metadata type TheirCustomMetadataType__mdt, which isn’t in your namespace
but is in the their_ns namespace, as follows.

their_ns__TheirCustomMetadataType__mdt custMeta;

To get the names of all objects of the MyMdt__mdt custom metadata type:

MyMdt__mdt[] allEntityNames = [select QualifiedApiName from MyMdt__mdt]

You can’t use queryMore() with custom metadata, but you can use the SOQL keywords LIMIT and OFFSET to page through
large numbers of records. For more information, see Paginating Data for Force.com Applications.

Alternatively, to provide an entity that looks more like a Schema.SObjectDescribeResult than SOQL, make the Apex class
Acme.MyMdtDescribeResult encapsulate the information queried from Acme__MyMdt. Then create the class Acme.Acme
with methods such as:

Acme.MyMdtDescribeResult describeMyMdt(String qualifiedApiName) {
///perform queries and create object

}

14

https://developer.salesforce.com/docs/atlas.en-us.200.0.object_reference.meta/object_reference/sforce_api_objects_custommetadatatype__mdt.htm
https://developer.salesforce.com/docs/atlas.en-us.200.0.object_reference.meta/object_reference/sforce_api_objects_custommetadatatype__mdt.htm
https://developer.salesforce.com/page/Paginating_Data_for_Force.com_Applications

Access Custom Metadata Fields

EDITIONS

Available in: Salesforce
Classic

Available in: Professional,
Enterprise, Performance,
Unlimited, Developer, and
Database.com Editions

Professional Edition
organizations can access
only custom metadata fields
from installed custom
metadata types.

Read-only access to the fields on your custom metadata types and records is available through
SOQL.

Custom fields on custom metadata types in SOQL are referred to in the same way as they are in the
Metadata API. For example, the following SOQL statement retrieves all Field__c and
Picklist__c values of any PicklistUsage__mdt related to any custom object named
InterplanetaryGreeting__c.

SELECT Field__c, Picklist__c
FROM PicklistUsage__mdt
WHERE SObjectType__c = 'InterplanetaryGreeting__c'

The information that’s common to all custom metadata is represented as standard fields. For more information, see “Custom Metadata
Type__mdt” in the Object Reference for Salesforce and Force.com.

The following Apex statement in the picklist1234 namespace retrieves the label and namespace for the custom metadata that’s
represented in the file-based Metadata API as picklist1234__ReusablePicklistOption.travelApp1234__Motel6.
This statement assigns the object to the variable motelEx.

ReusablePicklistOption__mdt motelEx = [SELECT MasterLabel, NamespacePrefix
FROM ReusablePicklistOption__mdt
WHERE NamespacePrefix = 'travelApp1234'
AND DeveloperName='Motel6'];

Note: Subscribers can run packaged Apex code that queries protected custom metadata types in the same package. However,
subscribers can’t query protected types in an installed package by using Apex code that they have written.

15

Access Custom Metadata FieldsAccess Custom Metadata Types, Records, and Fields

https://developer.salesforce.com/docs/atlas.en-us.200.0.object_reference.meta/object_reference/

PACKAGE CUSTOM METADATA TYPES AND RECORDS

EDITIONS

Available in: Salesforce
Classic

Available in: Enterprise,
Performance, Unlimited,
Developer, and
Database.com Editions

You can package custom metadata types and records in unmanaged packages, managed packages,
or managed package extensions. Your packages can then be installed in Professional, Developer,
Enterprise, Performance, Unlimited, and Database.com Edition organizations. Use change sets to
deploy custom metadata types and records from a sandbox.

You can add custom metadata types and records to packages using the Force.com user interface.
From Setup, enter Packages in the Quick Find box, then select Packages, click your
package name, and then click Add.

Then, to add custom metadata types:

1. Select the Custom Metadata Type component type.

2. Select the custom metadata type to add to your package.

3. Click Add to Package.

To add custom metadata records:

1. Select the custom metadata type’s label from the available component types—for example, ReusablePicklist__mdt, or
if the type is from a package that you’re extending, ReusablePicklist__mdt [picklist1234].

2. Select the records to add.

3. Click Add to Package.

If you add a record to your package, its corresponding type is added. If you add a record to a change set, its corresponding type is included
in the list of dependent components.

For information on change sets and deploying your package, see the Development Lifecycle Guide.

Note: You can’t uninstall a package with a custom metadata type if you’ve created your own records of that custom metadata
type.

As with all packageable metadata components, you can also add custom metadata types and records to a package by specifying the
package’s full name in your package.xml file. For example, we specify the package in this fragment from Picklists R Us’s
package.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">

<fullName>Picklists R Us</fullName>
...

Considerations for Custom Metadata Type Packages

Be aware of the following behaviors for packages that contain custom metadata types.

16

https://developer.salesforce.com/docs/atlas.en-us.200.0.dev_lifecycle.meta/dev_lifecycle/

Considerations for Custom Metadata Type Packages

EDITIONS

Available in: Salesforce
Classic

Available in: Enterprise,
Performance, Unlimited,
Developer, and
Database.com Editions

Be aware of the following behaviors for packages that contain custom metadata types.

Once you upload a Managed - Released package that contains a custom metadata type, you can’t:

• Add required fields to the custom metadata type

• Set any non-required fields to required

• Delete custom fields

17

Considerations for Custom Metadata Type PackagesPackage Custom Metadata Types and Records

	Custom Metadata Types
	Custom Metadata Types Limitations
	Custom Metadata Limits
	Get Started with the Sample Application
	Sample Application
	Deploy and Upload the Package for Picklists R Us
	Deploy and Upload an Extension Package for TravelApp, Inc.
	Install and Use the Base Package and Extension for Galactic Tours

	Create, Edit, and Delete Custom Metadata Types and Records
	Define a Custom Metadata Type Declaratively
	Add or Edit Custom Metadata Records Declaratively
	Load Records with the Custom Metadata Loader

	Access Custom Metadata Types, Records, and Fields
	Access Custom Metadata Types and Records
	Access Custom Metadata Fields

	Package Custom Metadata Types and Records
	Considerations for Custom Metadata Type Packages

