
A Guide to Sharing Architecture
Salesforce, Spring ’16

 @salesforcedocs
Last updated: January 18, 2016

https://twitter.com/salesforcedocs

© Copyright 2000–2016 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of salesforce.com, inc.,
as are other names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

A GUIDE TO SHARING ARCHITECTURE . 1
Introduction . 1
Types of Data Access . 1
Customer Implementation Scenarios . 7
Considerations . 9
Troubleshooting . 10

A GUIDE TO SHARING ARCHITECTURE

Introduction

The Salesforce sharing model is an essential element in your organization's ability to provide secure application data access. Therefore,
it's crucial to architect your sharing model correctly to meet your current and future data access requirements. In this document, we'll
review data accessibility components, sharing model use cases, and real customer sharing solutions, and we’ll provide some troubleshooting
guidelines.

Intended Audience and Prerequisites
This document is intended for advanced system administrators and architects. To understand the concepts, you must have a working
knowledge of the Salesforce security and sharing model. Prerequisites to this guide are:

• Security Implementation Guide

• Force.com Platform Fundamentals

• http://wiki.developerforce.com/page/An_Overview_of_Force.com_Security

Data Access Not Covered
The topics not covered in Data Accessibility Architecture:

• Folder access

• Content access

• Chatter access

• Knowledge Base access

• Ideas, Questions/Answers access

• Salesforce2Salesforce

• Mobile data accessibility

Types of Data Access

Record-level security lets you give users access to some object records, but not others. As with most applications, data access begins
with a user. The application needs to know who you are before it provides access. For Salesforce, there are different types of users and,
sometimes, the level of access is different by type. Instead of reviewing every attribute of every license type, we’re going to focus on
those interesting attributes that have significant impact on data access. Record ownership and full access are synonymous and
interchangeable and provide the user with the highest level of access to a record.

1

https://resources.docs.salesforce.com/200/latest/en-us/sfdc/pdf/salesforce_security_impl_guide.pdf
https://developer.salesforce.com/docs/atlas.en-us.200.0.fundamentals.meta/fundamentals/
http://wiki.developerforce.com/page/An_Overview_of_Force.com_Security

Licenses
Full Sharing Model Usage Users/Licenses

Most Standard Salesforce license types take full advantage of the sharing model components. The license might not make a module
accessible, or even some objects accessible. For example, the Force.com Free edition can't access any CRM objects. However, the
sharing entities, and functionality, still exists and is ready when and if the module ever does become active.

High Volume Customer Portal License
High Volume Customer Portal (HVPU) license users (including Community and Service Cloud license users) do not utilize the sharing
model. HVPU licenses have their own sharing model that works by foreign key match between the portal user (holding the license)
and the data on Account and Contact lookups. HVPU license is only used for the Customer Portal and not the Partner Portal.

Chatter Free License
The Chatter Free license doesn't follow the standard sharing model. Chatter Free is a collaboration-only license with the following
features: Chatter, Profile, People, Groups, Files, Chatter Desktop, and limited Salesforce1 app access. The license doesn't have access
to CRM records (standard or custom objects) and Content functionality, and therefore, there is no sharing.

For the remainder of this document, we are assuming a Salesforce user type utilizing a full sharing model. See User Licenses Overview
for more information about each available license type.

Components

Profiles and Permission Sets
Profiles and permission sets provide object-level security by determining what types of data users see and whether they can edit,
create, or delete records. For each object, the “View All” and “Modify All” permissions ignore sharing rules and settings, allowing
administrators to quickly grant access to records associated with a given object across the organization. These permissions are often
preferable alternatives to the “View All Data” and “Modify All Data” administrative permissions.

Profiles and permission sets also control field-level security, which determines the fields within every object that users can access.
For example, an object may have 20 fields, but field-level security can be set up to prevent the users from seeing five of the 20 fields.

Record Ownership and Queues
Every record must be owned by a single user or a queue. The owner has access to the record, based on the Object Settings for the
owner’s profile. For example, if the owner’s profile has Create and Read permission on an object, but not Edit or Delete
permission, the owner can create a record for the object and see the new record. However, the owner won't be able to edit or delete
the record. Users higher in a hierarchy (role or territory) inherit the same data access as their subordinates for standard objects.
Managers gain as much access as their subordinates. If the subordinate has read-only access, so will the manager. This access applies
to records owned by users, as well as records shared with them.

2

Types of Data AccessA Guide to Sharing Architecture

https://help.salesforce.com/apex/HTViewHelpDoc?id=users_understanding_license_types.htm

Queues help you prioritize, distribute, and assign records to teams who share workloads. You can access queues from list views, and
queue members can jump in to take ownership of any record in a queue. Queues are available for cases, leads, orders, custom objects,
service contracts, and knowledge article versions.

If a single user owns more than 10,000 records, as a best practice:

• The user record of the owner should not hold a role in the role hierarchy.

• If the owner's user record must hold a role, the role should be at the top of the hierarchy in its own branch of the role hierarchy.

Organization-Wide Defaults
Organization-wide sharing settings specify the default level of access users have to each others’ records. You use organization-wide
sharing settings to lock down your data to the most restrictive level, and then use the other record-level security and sharing tools
to selectively give access to other users. For example, let’s say users have object-level permissions to read and edit opportunities,
and the organization-wide sharing setting is Read-Only. By default, those users can read all opportunity records, but can’t edit any
unless they own the record or are granted additional permissions.. Organization-wide defaults are the only way to restrict user
access to a record.

Organization-wide default settings can be changed from one setting to another (private to controlled by parent,
then back to private); however, these changes require sharing recalculation and depending on volume could result in very long
processing times.

For custom objects only, use the Grant Access Using Hierarchies setting, which if unchecked (default is checked), prevents managers
from inheriting access. This setting is found in the organization-wide default settings.

Role Hierarchy
A role hierarchy represents a level of data access that a user or group of users needs. The role hierarchy ensures that managers always
have access to the same data as their employees, regardless of the organization-wide default settings. Role hierarchies don't have
to match your organization chart exactly. Instead, each role in the hierarchy should represent a level of data access that a user or
group of users needs.

An organization is allowed 500 roles; however, this number can be increased by Salesforce. As a best practice, keep the number of
non-portal roles to 25,000 and the number of portal roles to 100,000.

As a best practice, keep the role hierarchy to no more than 10 levels of branches in the hierarchy.

When a user's role changes, any relevant sharing rules are evaluated to correct access as necessary. Peers within the same role don't
guarantee them access to each other's data.

Modeling the role hierarchy begins with understanding how the organization is structured. This is usually built from understanding
a manager’s scope, starting from the top. The CEO oversees the entire company. The CEO usually has direct reports that can then
be segmented by Business Unit (Sales or Support) or geographical region (EMEA, APAC). That person then has direct reports that
could be further segmented, and so on. Although this sounds very much like an HR organizational chart, and we have said they
might be very much alike, keep in mind, when modeling data access, focus on data accessibility with a consideration to HR reporting.

Overlays are always the tricky part of the hierarchy. If they're in their own branch, they'll require either sharing rules, teams, or territory
management to gain needed access. If they are folded into the hierarchy, there might be reporting implications.

It's important to spend the time setting up the role hierarchy because it's the foundation for the entire sharing model.

Role Hierarchy Use Cases

Management access – the ability for managers to be able to see and do whatever their subordinates can see and do.

Management reporting – the ability for reporting to roll up in a hierarchical fashion so that anyone higher in the hierarchy sees
more data than those below them.

3

Types of Data AccessA Guide to Sharing Architecture

Role Hierarchy Use Cases

Segregation between organizational branches – different business units don’t need to see each other’s data; having a hierarchy
in which you can define separate branches allows you to segregate visibility within business units, while still rolling visibility up to
the executive levels above those units.

Segregation within a role – in many organizations/applications, people who all play the same role should not necessarily see each
other’s data. Having hierarchical roles allows you to define a “leaf” node in which all data is essentially private, and still roll that
data up to a parent role that can see all.

Public Groups
A public group (not Chatter group) is a collection of individual users, roles, territories, and so on, that all have a function in common.
Public groups can consist of:

• Users

• Customer Portal Users

• Partner Users

• Roles

• Roles and Internal Subordinates

• Roles, Internal and Portal Subordinates

• Portal Roles

• Portal Roles and Subordinates

• Territories

• Territories and Subordinates

• Other public groups (nesting)

Groups can be nested (Group A nested into Group B), however don't nest more than five levels. Nesting has an impact on group
maintenance and performance due to group membership calculation. As a best practice, keep the total number of public groups
for an organization to 100,000.

Public Groups Use Cases

When you need to provide access to an arbitrary group of people, you create a public group to collect them, and then use other
sharing tools to give the group the necessary access. Group membership alone doesn't provide data access.

Groups can also be nested inside each other, therefore, allowing a nested group to gain the same access as the group in which it
is contained. This allows the creation of smaller, ad-hoc hierarchies that don’t necessarily interact with the role or territory hierarchies.
If Group A is a member of Group B, then the members of Group A will have access to data shared to Group B at the same access
level as the members of Group B.

Groups also have the ability to protect data shared in the group from being made accessible to people in the role hierarchy above
the group members. This (and dealing with the access of record owners and their management hierarchy) allows the creation of
groups in which very highly confidential information can be shared—the data will be accessible ONLY to group members, and
nobody else in the organization. This is accomplished by using the Grant Access Using Hierarchies setting.

Ownership-based Sharing Rules
Ownership-based sharing rules allow for exceptions to organization-wide default settings and the role hierarchy that give additional
users access to records they don’t own. Ownership-based sharing rules are based on the record owner only.

4

Types of Data AccessA Guide to Sharing Architecture

Contact ownership-based sharing rules don't apply to private contacts.

As a best practice, keep the number of ownership-based sharing rules per object to 1,000.

Ownership-based Sharing Rule Use Cases

Role-based matrix management or overlay situations: a person in Service needs to be able to see some Sales data, but they live in
different branches of the hierarchy, so you can create a rule that shares data between roles on different branches.

To provide data access to peers who hold the same role/territory.

To provide data access to other groupings of users (public groups, portal. roles, territories). The members of the groupings who
own the records can be shared with the members of other groupings.

Criteria-based Sharing Rules
Criteria-based sharing rules provide access to records based on the record’s field values (criteria). If the criteria are met (one or many
field values), then a share record is created for the rule. Record ownership is not a consideration.

As a best practice, keep the number of criteria-sharing rules per object to 50; however, this can be increased by Salesforce.

Criteria-based Sharing Rule Use Case

To provide data access to users or groups based on the value of a field on the record.

Manual Sharing
Sometimes it’s impossible to define a consistent group of users who need access to a particular set of records. In those situations,
record owners can use manual sharing to give read and edit permissions to users who would not have access to the record any
other way. Although manual sharing isn’t automated like organization-wide sharing settings, role hierarchies, or sharing rules, it
gives record owners the flexibility to share particular records with users that need to see them.

Manual sharing is removed when the record owner changes or when the sharing access granted doesn't grant additional access
beyond the object's organization-wide sharing default access level. This also applies to manual shares created programmatically.

Only manual share records can be created on standard objects. Manual share records are defined as share records with the row
cause set to manual share.

All share records (standard and custom objects) with a row cause set to manual share can be edited and deleted by the Share button
on the object's page layout, even if the share record was created programmatically.

Manual Sharing Use Case

To provide the user with the ability to give access (read only or read/write) to the current record to other users, groups, or roles.

Teams
A team is a group of users that work together on an account, sales opportunity, or case. Record owners can build a team for each
record that they own. The record owner adds team members and specifies the access level each team member has to the record.
Some team members can have read-only access, while others have read/write.

Only owners, people higher in the hierarchy, and administrators can add team members and provide more access to the member.
A team member with read/write access can add another member who already has access to the record with which the team is
associated. The team member can't provide them additional access.

5

Types of Data AccessA Guide to Sharing Architecture

Creating a team member in the app creates two records: a team record and an associated share record. If you create team members
programmatically, you have to manage both the team record and associated share record. There is only one team per record (Account,
Opportunity or Case). If multiple teams are needed, depending on your specific needs consider territory management or programmatic
sharing

The team object is not a first-class object. You can't create custom fields, validations rules, or triggers for teams.

Teams (Account and Opportunity) Use Cases

To provide the user with the ability to give access (read-only or read/write) to a single group of users (the team).

If teams are managed externally, say through an external commission or territory management system, then integration can be
used to manage the account team. There are cases when territory management in an external system can align to a team solution
within Salesforce.

Multiple owners of an account can be managed by the account team.

A single group of users (team) require either read-only or read/write access to an opportunity record. (Opportunity Team)

Territory Hierarchy
The territory hierarchy is a single dimensional, additional hierarchy which can be structured by business units or any kind of
segmentation in a hierarchical structure. When territory management is enabled you must manage both the role hierarchy and
territory hierarchy.

Territories exist only on Account, Opportunity and master/detail children of Accounts and Opportunities. Organizations can have
up to 500 territories; however, this number can be increased by Salesforce. As a best practice, keep the territory hierarchy to no more
than 10 levels of branches in the hierarchy.

If the assignment rules for a territory are changed, any Account Territory sharing rules using that territory as the source will be
recalculated. Likewise, if the membership of a territory changes, any ownership-based sharing rules that use the territory as the
source will be recalculated.

Territory Management Use Cases

Multiple groups of people (multiple teams) require either read-only or read/write access to accounts.

An additional hierarchical structure (different from the role hierarchy) is needed.

A single user needs to hold multiple levels in the hierarchy.

Global users (GAM – global account manager) need to see everything from the global account downward.

Account Territory Sharing Rules
Account territory sharing rules become available only when Territory Management has been enabled for an organization. These
sharing rules provide access to Account records that have been stamped with the Territory defined in the rule.

Account Territory Sharing Rule Use Case

To provide data access to accounts within a territory (not based on ownership) to a grouping of users. Applies only to accounts
and when territory management is enabled.

6

Types of Data AccessA Guide to Sharing Architecture

Programmatic Sharing
Programmatic sharing (formally Apex-managed sharing) allows you to use code (Apex or other) to build sophisticated and dynamic
sharing settings when a data access requirement cannot be met by any other means.

If you create a share record programmatically, and the out-of-box row cause (manual share) is used, then you can maintain this share
record with the Share button in the app. The share record is subject to all rules with the manual share row cause such as deletion
upon owner transfer.

Review https://developer.salesforce.com/page/Using_Apex_Managed_Sharing_to_Create_Custom_Record_Sharing_Logic before
you consider using programmatic sharing.

Programmatic Sharing Use Cases

No other method of sharing (declarative) meets the data access needs.

There is an existing, external system of truth for user access assignments which will continue to drive access and be integrated
with Salesforce.

Poor performance by using native sharing components. (Usually applies to very large data volumes)

Team functionality on custom objects.

Implicit Sharing
Implicit sharing is automatic. You can neither turn it off, nor turn it on—it is native to the application. In other words, this isn't a
configurable setting; however, it's very important for any architect to understand. Parent implicit sharing is providing access to parent
records (account only) when a user has access to children opportunities, cases, or contacts for that account. Salesforce has a data
access policy that states if a user can see a contact (or opportunity, case, or order), then the user implicitly sees the associated account.
Child implicit sharing is providing access to an account’s child records to the account owner. This access is defined at the owner’s
role in the role hierarchy. Child implicit sharing only applies to contact, opportunity, and case objects (children of the account). The
access levels that can be provided are View, Edit, and No access for each of the children objects when the role is created. By setting
to View, the account owner can implicitly see the associated object records (contact, opportunity or case). By setting to Edit, the
account owner can implicitly modify the associated object (contact, opportunity or case).

Implicit sharing doesn't apply to custom objects.

Customer Implementation Scenarios

There isn't a sharing model that fits all organizations. Every organization has different requirements and challenges when trying to
architect the best sharing model. It's crucial to use the most appropriate data access components to fit the sharing requirements of the
organization. The following scenarios are common challenges when trying to architect a sharing model.

Customer Scenario: Team Assignment Managed Externally via Customer
Master System

SolutionRequirements/Challenges

Ownership-based Sharing Rule: An ownership-based sharing rule
works here because these are edge cases and not the norm. It is

Two in a box: a sales manager of one geographic coverage area
also wants access to another geographic coverage area in order
to assist. also acceptable if the ownership-based sharing rule provides more

7

Customer Implementation ScenariosA Guide to Sharing Architecture

https://developer.salesforce.com/page/Using_Apex_Managed_Sharing_to_Create_Custom_Record_Sharing_Logic

SolutionRequirements/Challenges

access than is truly necessary because this is a manager – a trusted
individual.

Ownership-based Sharing Rule: A very common use of a sharing
rule is when a different department (other than sales) needs access
to sales data.

Country-based operations users need access to all country sales
data.

Teams (Account and Opportunity): Since there is always only one
team per account, even if there are many different members with

At least 80% of the time, there is a “core 4” team on an account
(Account Executive, Inside Sales Rep, Sales Consultant, Technical

different roles, the account team functionality satisfies this
requirement.

Sales Rep). The system of record for the account team assignment
is external to SFDC. There is always only one team to an account.

Role Hierarchy: The role hierarchy solves this by allowing managers
to have access to the data of their subordinates.

Managers of the team should have the same access as their
subordinates.

Teams (Account and Opportunity): This is not actually accomplished
with the account team functionality, however, it also shouldn’t

The assigned account team should not be modifiable.

prevent you from still using account teams. There are multiple
ways of locking down the teams, however, for this case, removing
the account team page layout is used.

Teams (Account and Opportunity): A “buddy” can simply be a role
on the team that accomplishes this requirement. However, the

There needs to be “buddy” functionality so that when someone is
sick or on vacation, someone without standard access to an account
or opportunity can be accessed and covered during the time off. challenge comes from the previous requirement where Teams

should not be modifiable. The only solution is to have a set group
of people who can modify teams within SFDC to create the buddy
role when necessary.

Teams (Account and Opportunity): A pretty standard usage of the
Opportunity Team accomplished by manually adding a new

When a deal requires a custom solution, additional people (who
are not necessarily in the sales organization) need to have access
to the deal. member to the Opportunity Team (via related list). Can also be

accomplished via a trigger if you always know who should be
added. In this case, it is opportunity by opportunity.

Customer Scenario: Out-of-box Territory Management

SolutionRequirements/Challenges

Territory Management: The best way to think of this is having two
branches of a hierarchy that may be structured very differently.

Two different opportunity teams from two distinct business units
(Retails Sales and Remarketing) need access to the same account

What justifies territory management is that there are two levels ofrecord. They should share contacts and be aware of all activities
these two different branches (both levels with members = theon the account. These two business units have their own hierarchy

and rollups. opportunity team for that business unit) who need access to the
account. Although you could have accomplished this with a
Teaming concept, that was too granular. The sales segmentation
was not a an account level but in a hierarchy.

Territory Management: Because this is a group of users (or a team),
and each business development team could be different by

There is a separate group of business developers who are assigned
and need access to specific accounts for a specific opportunity

8

Customer Scenario: Out-of-box Territory ManagementA Guide to Sharing Architecture

SolutionRequirements/Challenges

team (a territory). The business developers are shared resources
for the opportunity teams which mean each business developer

account, and since territory management was needed for another
reason, then the likely best approach is to build out sub-territories
that represent these business development teams.may be assigned to one or more accounts for one or more

opportunity teams.

Teams (Account and Opportunity): The key portion of the
requirement is “one off basis”. This means it is done on an account
by account basis so account teams provide that natively.

There are non-commission based sales supporting roles who need
access to accounts on a one off basis.

Ownership-based Sharing Rule: This is a situation where across the
board, for a given business unit, a group of users needs to see

The credit department needs access to all accounts for a given
business unit.

everything. This could be accomplished with a sharing rule for a
role the group belongs to, a branch of the role hierarchy the group
belongs to (role and subordinates) or even a public group.

Role Hierarchy: The role hierarchy solves this by allowing managers
to have access to the data of their subordinates.

Managers should have the same access as their subordinates.

Considerations

You have exhausted all other sharing components and you still need territory management. Territory management is not reversible, so
it’s extremely important to know its implications.

What happens to the Role Hierarchy?
Nothing happens to the role hierarchy. You are now managing two hierarchies, which means sharing is more complex. The best
practice is to flatten (or simplify) the role hierarchy as much as possible. If your organization is only an SFA organization with mostly
sales data, it should be possible to flatten the role hierarchy and use the territory hierarchy as the sales hierarchy. However, if your
organization has non-sales applications, like Service Cloud, an HR application, or a legal application, then you’ll likely need a hefty
role hierarchy as well (to satisfy those non-sales users). The rule of thumb is to make your role hierarchy your non-sales hierarchy,
try to flatten the sale department branch(es), and then use the territory hierarchy as your “sales” hierarchy. We do not recommend
making the role hierarchy and territory hierarchy identical because it will cause unnecessary sharing activity.

Another consideration when determining the necessity of the role hierarchy is that some functionality is only available via the role
hierarchy, such as Delegated Admin, My Teams filters, and Folder-based access.

Can You Still Use Teams?
Yes. However, if you can satisfy your access requirements within the territory hierarchy (like overlays), it is better to do it there than
to use teams. You are already maintaining two hierarchies (role and territory), so in trying to keep things as simple as possible, only
implement teams if no other existing sharing component will satisfy the requirement.

Realignment and Reassignment
There are two types of changes that will occur – the membership of roles, teams, or territories, and the structure of the hierarchy.
Membership changes can typically occur daily, even hourly. Hierarchy structural (realignments) changes generally occur less often
(quarterly, semi-annually, or annually) and can be resource expensive. What needs to be considered are the volume of changes and
the number of cascading changes that each change will cause. As a rule of thumb, have structural changes occur no more than
quarterly and all changes of high volume (bulk or mass changes) be well planned, tested, and coordinated.

9

ConsiderationsA Guide to Sharing Architecture

Large Data Volumes
Whether you are modeling for the initial rollout or planning a realignment change, you need to make some serious consideration
to the volume of data. There are thresholds where performance can become a factor, so testing out your changes in a sandbox is
highly recommended before production. This will also give you a baseline for how long the change will take.

If you have more than two million accounts, and have implemented teams or Territory Management, you especially need to pay
attention to performance. These are complex sharing model components that can make for a huge volume of share records and
hence, long running transactions.

Defer Sharing Calculations
If you have an object that utilizes sharing and has a large volume of records (such as more than two million accounts), and you need
to make a bulk change (such as a quarterly realignment requiring a hierarchy change), then there is a feature that can be enabled
by Salesforce Support to defer automatic sharing calculations. Natively, every individual change to the role hierarchy, territory
hierarchy, groups, sharing rules, user roles, team membership, or ownership of records can initiate automatic sharing calculations.
When a bulk change is made, it causes a number of automatic sharing recalculations to begin. By suspending these temporarily,
you are able to make the change and then have sharing calculations happen all at once. This is typically a more efficient and better
performing method to bulk changes.

Data Skews/Ownership Skews
Data skews are defined as a few parent records with many children records. This can really hurt you when a few accounts have many
contacts, opportunities, or cases. The ratio where we start seeing performance degradation is 1:10,000. As a best practice, keep the
ratio as close to that as possible (lower is preferred).

Ownership skews are similar to data skews, except if we are referring to a single user, role, or group owning a large number of records
for an object. As with data skews, these can also cause long running transactions, causing a performance degradation when change
occurs. The recommended ratio of owner to number of records is also 1:10,000.

If a single user owns more than 10,000 records, as a best practice:

• The user record of the owner should not hold a role in the role hierarchy.

• If the owner's user record must hold a role, the role should be at the top of the hierarchy in its own branch of the role hierarchy.

The Account Hierarchies Impact on Data Access
A lot of people make a very bad assumption when they implement an account hierarchy. They assume the users who can access a
parent account can also access the children accounts. The simple fact of only having a parent/child relationship between two records
does not drive access. Although the role hierarchy and the territory hierarchy do work in this way, the account hierarchy does not.

Troubleshooting

Once you have completed your sharing model architecture, you will likely be challenged with why a user can or can't see a record.
Typically, you won’t hear when someone can see something they shouldn’t, but should that arise, there is a way to see every user who
has access to a record and why.

The more difficult challenge, and probably more common, is why a user can't see a record. The security layers you have architected will
determine where you start. If you know the sharing model well, then you will probably know what component should have provided
the access and should start there. But if you are less familiar with the sharing model, start with the role hierarchy and peel back each
layer to determine which one should provide the access and make an update. Here is a troubleshooting flow.

1. Verify that the user has permissions to access to the object.

2. Identify the user's role who can't see the record and note it.

3. Identify the owner's role of the record and note it.

4. Review the role hierarchy and verify these two roles are in two different branches (they should be).

10

TroubleshootingA Guide to Sharing Architecture

5. Now you need to review the sharing rules for the object and make sure there is no rule that will grant the user access. This can also
cause you to look in public groups as well. Maybe the user just got left out of a group where there is a sharing rule, or does it make
sense to create a new sharing rule to grant the user access? This depends on the architecture you are trying to maintain, and applies
to both ownership-based sharing rules and criteria-based sharing rules.

6. If you are using teams, should this user be on the team for that record? How are teams maintained and how did the miss occur?

7. If manual sharing is used, the user may have lost access because the record owner changed. Manual shares are dropped when
ownership changes. The manual share could also have been removed using the Share button.

8. If you are using territory management, is the user missing from one of the territories? Where is the membership of territories
maintained and how did the miss occur? Or, maybe the record did not get stamped with the territory where the user is a member.

9. If you are creating programmatic shares and there are criteria for creating the share in code, review the code to understand why this
user was omitted.

Have feedback on the Guide to Sharing Architecture? Send your feedback to ccefeedback@salesforce.com.

11

TroubleshootingA Guide to Sharing Architecture

mailto:ccefeedback@salesforce.com

	A Guide to Sharing Architecture
	Introduction
	Intended Audience and Prerequisites
	Data Access Not Covered

	Types of Data Access
	Customer Implementation Scenarios
	Customer Scenario: Team Assignment Managed Externally via Customer Master System
	Customer Scenario: Out-of-box Territory Management

	Considerations
	Troubleshooting

